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ABSTRACT
Social signals and interpretation of carried information is
of high importance in Human Computer Interaction. Of-
ten used for affect recognition, the cues within these sig-
nals are displayed in various modalities. Fusion of multi-
modal signals is a natural and interesting way to improve
automatic classification of emotions transported in social
signals. Throughout most present studies, uni-modal af-
fect recognition as well as multi-modal fusion, decisions are
forced for fixed annotation segments across all modalities.
In this paper, we investigate the less prevalent approach
of event driven fusion, which indirectly accumulates asyn-
chronous events in all modalities for final predictions. We
present a fusion approach, handling short-timed events in
a vector space, which is of special interest for real-time ap-
plications. We compare results of segmentation based uni-
modal classification and fusion schemes to the event driven
fusion approach. The evaluation is carried out via detection
of enjoyment-episodes within the audiovisual Belfast Story-
Telling Corpus.

Categories and Subject Descriptors
I.5 [PATTERN RECOGNITION]: Applications—Com-
puter vision; Waveform analysis; Signal processing

Keywords
affect recognition; social signal processing; multi–modal fu-
sion; event–driven fusion

1. INTRODUCTION
Affective states of human beings refer to the experience

of feelings or emotions. These conditions are expressed by
the experiencing person through various channels and can
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be naturally understood by other humans. One of the goals
of human computer interaction (HCI) is to automate this
perception process and give machines the capability to assess
affective states of users [18, 24]. Through the appliance of
appropriate sensor technologies and recognition techniques,
multi-modal cues that point to certain affective states can
be measured and recognized. These sources of evidence lead
to the automatic classification of human emotions.

Since emotions are generally observable in multiple chan-
nels, the obvious approach is to incorporate as much multi-
modal information as possible in the classification process
[30]. Meaningful features and hints of monitored signals are
then to be combined through fusion strategies in order to
generate a final prediction. For example, if confronted with
a classical audio-visual emotion recognition problem, one
would probably first have a look at single spoken sentences,
calculate prosodic features from the audio signal and clas-
sify the whole sentence with a statistical feature set. In order
to enrich descriptive information about the observed signal
segment and assumably enhance recognition performance,
additional descriptors can be extracted from the video im-
ages that are recorded during the spoken sentence in the
audio signal. At this point fusion of information from both
modalities has to be applied. In the simplest case the two
feature sets are merged to be used by a single classifier [26].
More elaborate ways of fusing multiple modalities are in use
throughout many affect recognition studies [22, 31, 29, 28,
16, 17]. These fusion strategies and their effects on recog-
nition accuracies will be discussed in the following sections.
Some facts can however be anticipated here: Present stud-
ies have shown varying degrees of success or even failure of
classical fusion approaches [2]. Assuming decent data con-
tent in all considered modalities, one would generally expect
a steady classification gain from adding additional informa-
tion.

A possible reason for the unsteady performance of pre-
sented fusion schemes could lie in the initiation of considera-
tion of multiple signals and appliance of the above mentioned
fusion algorithms. In off-line studies, the triggering of fu-
sion processes is simply given by the annotation boundaries;
in a real-time scenario this is typically done by detecting
the on and offset of a relevant time-interval in one modal-
ity. Afterwards fusion techniques are called for classification
throughout all available modalities. Consequently, the seg-
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mentation of a cue in one modality is forced upon other
available channels. What if nothing is happening in the face
at this point in time, as emotional reactions are time-shifted
between modalities or not present at all? Meaningful infor-
mation in additional modalities is assumed - but it is not
guaranteed. Cutting fixed segments through multi-layered
signals does seem to be undesirable. One could think of
adding deltas to additionally concerned modalities, but this
approach would most likely lead to a hard-wired construct,
that is hard to define and not generalizable. So how do we
solve the problem of non-aligned cues in multiple signals?

A first step is to reject the assumption that all relevant
cues happen at the same time in all modalities. Practical
observations demonstrate the need to detect events for each
modality separately. But if all signal–events are treated in-
dividually, we have to find ways to relate them for proper
fusion of identified information. Therefore, we introduce
an event driven fusion model that incorporates the tempo-
ral relation between the events. It is specially suited for
real-time applications. An early prototype has been already
successfully applied at the eNTERFACE 13 workshop in Lis-
bon[13]. For evaluation we will analyse a suitable corpus for
recognition of enjoyable emotions.We compare single modal-
ity accuracy to segmentation based fusion approaches and
event driven fusion - concerning framewise classification of
enjoyment. We define enjoyment as an episode of positive
emotion, indicated by visual and auditory cues of enjoy-
ment, such as smiles and voiced laughters. This enables us
to compare overarching enjoyment–annotations to accumu-
lated indication-events. Based on this evaluation we can
finally discuss advantages and disadvantages of event driven
fusion for affect recognition.

2. MULTI-MODAL FUSION
In a standard classification task, recognizers are trained

with samples of pre-segmented data. This segmentation is
achieved by annotation of the recorded data. Experts review
the data, marking time-segments of interest and providing
them with a pre-defined label that describes the nature of
the respective time period. Resulting data samples are then
subject to feature extraction techniques. When dealing with
one modality, this procedure is carried out on one specific
kind of signal and one classification model can be trained
with the resulting samples. In multi-modal classification,
every single signal needs an adapted feature extraction step,
resulting in feature sets for every observed signal. Reason-
able combination of available information is the challenge of
multi-modal fusion approaches.

2.1 Segmentation–Based Fusion Approach
When confronted with fusion of multiple signals, a vast

amount of eligible strategies come into consideration [20].
Possible methods can be differentiated by the levels at which
they are executed. Authors in [30] cite 18 studies dealing
with audio-visual fusion. Here, they distinguish between
feature-, decision- and model-level fusion.

A very straightforward way to fuse all observed modali-
ties is to merge all calculated features into a single and high
dimensional feature set for one single classification model
(feature level fusion). The accumulated features contain a
greater amount of information than a single modality. Pre-
diction based fusion, as proposed in [19], tries to discrimi-
nate classes by modelling spatial and temporal relationships

between multi-modal features. Decision level fusion sums
up combination rules for the probabilistic outputs of several
classification models. Instead of using all available features
for a single classifier, the available feature set is divided into
subgroups (e. g. one classifier per modality). Standard deci-
sion techniques include class-label combination (e. g. voting,
look-up tables and algebraic combination rules such as sum
rule or product rule). Feature and decision level fusion in-
clude the most standard approaches used in most studies
concerning multi-modal fusion experiments. In model level
fusion (e. g. stacked generalisation [23] the outputs of several
classifiers are not fused by predefined combination rules. In-
stead their results are used as input for one or more meta
classification models that generate the final decision.

A fair amount of studies incorporate these segmentation
based fusion techniques for combination of observed signals
and final classification. Meta studies like [2] compare gath-
ered results and give an overview: Some report remarkable
accuracy gains over uni-modal classification, others do not
notice statistically relevant benefits. Even substantial drops
in classification quality are sometimes registered. In num-
bers, the effect of multi-modal fusion in comparison to uni-
modal classification range from a +27.4% gain in recognition
performance to a -9.0% drop in overall accuracy for a total of
30 compared studies. The study also points out, that classi-
fication improvements are far more likely to be achieved on
acted data than on natural or semi-natural recordings. Such
meta comparisons do not go into detail about the applied
fusion schemes. Studies like [3, 11, 10, 6] examine rather ba-
sic fusion strategies and sometimes advise on which scheme
dominates others. Results are not consistent throughout
mentioned experiments. Furthermore, the success of fusion
is obviously not primarily dependent on the chosen algo-
rithm (though of course there are differences in performance
between the single fusion strategies).

2.2 Asynchronous Fusion Approach
In segmentation based fusion approaches, analysis of all

modalities is initiated and margined by a comprehensive an-
notation for the given classification problem [12]. For ex-
ample, when doing audiovisual emotion recognition it is a
common strategy to trigger analysis of further modalities
by voice activity detection in the vocal modality. Whenever
there is activity in the voice, classification of facial expres-
sions is done during this time segment. Fusion algorithms
are then applied to the cues of the extracted time-slice. This
approach of triggering multi-modal fusion from a single an-
notation or modality has at least one severe drawback: Ad-
ditional cues in further modalities can be expected but are
not guaranteed to coexist at the time frames or in the worst
case, are not present at all. Imagine the audio-visual affect
recognition scenario: The vocal component of an emotional
expression may be signalled before the facial component.
This way, the observed segment of modalities does indeed
fit to relevant data in the audio signal, but boundaries of
facial activity are shifted. Such component asynchronicity
fully contributes to the multi-modal fusion and negatively
influences final classification.

An elegant way of fusing modalities without forcing de-
cisions from all channels in every time slot is offered by
dynamic classification. Since dynamic classifiers work on
continuous streams of short-term features, it is not nec-
essary to force a fusion decision ”from above”. Instead,
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they (principally) have the ability to model temporal re-
lations between the streams and learn when and how multi-
modal information should be combined. Dupont et. al [4]
were among the first to tackle the asynchronous nature of
audio and video streams by modelling temporal topologies
with multi-stream HMMs for continuous speech recognition.
Song et. al [22] proposed a tripled Hidden Markov Model
(THMM), which is able to integrate three or more streams
of data and allows the state asynchrony of the sequences
while preserving their natural correlation over time. Zeng
et. al [31] applied Multi-stream Fused Hidden Markov Model
(MFHMM), where state transitions of different component
HMMs do not necessarily occur at the same time across
different streams so that the synchrony constraint among
different streams is also relaxed. Coupled Hidden Markov
Models (CHMM), where the probability of the next state of
a sequence depends on the current state of all HMMs and
therefore enables an improved modelling of intrinsic tempo-
ral correlations between multiple modalities, have also been
proposed [15].

To overcome the computational complexity of asynchronous
Hidden Markov model (AHMM), Wöllmer et. al [29] sug-
gested a multidimensional dynamic time warping (DTW)
algorithm for hybrid fusion of asynchronous data, requiring
significantly less decoding time while providing the same
data fusion flexibility as the AHMM. Finally, Artificial Neu-
ral Networks (ANN) offer a third alternative for asynchronous
fusion; in particular in the form of Long Short-Term Mem-
ory Neural Networks (LSTM-NNs), which replace the tradi-
tional neural network nodes with memory cells, essentially
allowing the network to learn when to store or relate to bi-
modal information over long periods of time. In fact, LSTM-
NNs have been successfully applied to combine acoustic and
linguistic features to continuously predict the current quad-
rant in a two-dimensional emotional space spanned by the
dimensions valence and activation [28]. Likewise, in a simi-
lar emotion recognition task, this approach successfully fuses
facial expressions, shoulder gestures and audio cues [17].

2.3 Event Driven Fusion Approach
While the aforementioned asynchronous fusion approaches

theoretically outperform segmentation based schemes, they
also have some drawbacks. One severe disadvantage comes
from their complexity in terms of training and decision tak-
ing. Since it is difficult to understand how the network
reaches a decision, applying it in a real-time system bears the
risk that the learned model parameters may poorly translate
if applied in a possibly less controllable environment. Fur-
thermore, once trained, they function as a black box whose
hard-wired parameters leave little opportunity for adjust-
ments to the new conditions. Another issue, which is gladly
overlooked in pure offline studies, is the problem of missing
data. Missing data can occur when either no useful infor-
mation can be detected (e.g. the user is not looking into the
camera), or because there is nothing useful to detect (e.g.
the user is not talking), or last but not least, due to a failure
of one of the sensors.

A possible way to make the fusion process more transpar-
ent is by shifting from a frame-by-frame based processing
towards an event driven approach. Introducing events as an
abstract intermediate layer effectively decouples uni-modal
processing from the final decision making. Each modality
serves as a client which individually decides when to add

information. Signal processing components can be added or
replaced without having to touch the actual fusion system
and missing input from one of the modalities does not cause
the collapse of the whole fusion process. In some sense this
kind of event-driven fusion is similar to semantic fusion used
to analyse the semantics of multi-modal commands, and typ-
ically investigates the combination of gestures and speech in
new-generation multi–modal user interfaces [14]. However,
only few attempts have been made to apply event-driven
concepts for automated emotion detection.

In an artistic Augmented Reality installation, the Callas
Emotional Tree [7], Gilroy et. al uses event-based fusion to
derive the affective state of a user in real-time. The basic
idea of their approach was to derive emotional information
from different modality-specific sensors and map it onto a
continuous affective space spanned by the three dimensions
Pleasure, Arousal and Dominance (PAD model). Since the
application depended on a continuous assessment of the af-
fective user state, the current state of the fusion system was
constantly represented by a vector in the PAD space. And
the direction into which the vector would move was set by
a bunch of vectors representing the single modality–specific
contributions. The values of those guiding vectors was up-
dated whenever a new affective cue was detected or other-
wise decayed over time. A different approach for predict-
ing user affect in a continuous dimensional space based on
verbal and non-verbal behavioural events (e.g. smiles, head
shakes, or laughter), has been published by Eyben et. al [5].
In their system events are seen as ”words”, which are joined
for each time segment and converted to a feature vector
representation through a binary bag–of–words (BOW) ap-
proach. Tests on an audiovisual database proved the pro-
posed string-based fusion to be superior over conventional
feature-level modelling.

3. EVENT BASED VECTOR FUSION
As implied by first attempts for event driven fusion, a pos-

sible way to avoid the problem of restricting segmentations
is to have customized annotations for every single modality,
from which the recognition of single events – that indicate
the sought classification – can be learned. The task of the
event driven fusion algorithm then has to be to accumu-
late these indicating events, take their temporal flow into
account and, finally, to classify each single time frame and
give boundaries for the recognition on the timescale.

3.1 General Requirements
A real-time event driven fusion scheme, meant to reduce

negative effects of the segmentation problem, must meet cer-
tain requirements. It should be based on separated event
detection in observed signals and its inherent fusion rules
must consider the temporal flow of all detected events.

Temporal Component
Once recognized, an event enters the fusion process and in-
fluences the continuous result with potency given by the
strength of the recognized cue. An event’s influence then
has to decrease over time - as the moment of occurrence
shifts further back in time – until the influential potency
reaches a value of zero and the event is discarded. This way,
current events are given a stronger impact on the fusion pro-
cess than the ones that lie further down the time-axis.
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Combining Modality Based Events
The additional effort of detecting events in every single modal-
ity leads to a fusion model that should link independent
signal-events. If complementary events are detected in mul-
tiple signals during overlapping time-segments, the cues re-
inforce each other by amplifying the prediction probability
of the continuous fusion output. On the other hand, the de-
tection of contradictory cues leads to events that neutralise
each other and therefore have a lesser negative effect on the
fusion result. This way, additional information from multi-
ple modalities is more likely to enhance the overall classifi-
cation performance.

Real–Time Fusion Result
The result of the fusion scheme is calculated by temporal
influences (expressed through momentary weights) of regis-
tered events. This result will consist of n continuous confi-
dence values (typically valued and normalized between zero
and one) for an n-dimensional classification problem. The
continuous fusion result is accessible at any point in time.
This circumstance is especially valuable in real–time sce-
narios, where reactions to changing conditions have to be
carried out as fast as possible.

Handling Missing Data
The last demand on the real–time system, is an implemen-
tation that resists the temporal absence of cues from one
or more modalities. This can result for example from miss-
ing activity in a modality, tracking problems, or even the
breakdown of attached devices. If recognizers involved in
decision making each represent the observations of an as-
sociated modality, the absence of a single contribution to
the final decision is unlikely to result in a drastic quality
fall–off for overall classification accuracy – especially if the
malfunction is recognized and the corresponding classifier’s
(most likely counter–productive) contribution is accordingly
rated or completely left out of the fusion process.

3.2 Algorithm
The proposed fusion algorithm is based on preceding work

done by [8] (section 2.3). We generalize this approach by
designing a fusion scheme that operates in a user-defined
vector space.

3.2.1 Vector Space and Event Vectors
In the simplest scenario, the vector space is a one-dimensional

axis, typically describing a likelihood between zero and one.
Events, generated from observed signals, are mapped into
this space as vectors. The vectors are provided with the
following parameters:

• Confidence Value
One for each defined axis in the event space. This de-
fines the position of the vector within the dimensional
model. For instance, it can be dynamically calculated
from the probabilities of a detected cue.

• Vector Weight
The vector weight is a quantifier for the initial weight-
ing the event has in the calculation of the fusion result.
It is defined by the modality the event is detected in
and serves as a regulation instrument for emphasizing
more reliable information sources. If, for example, one

modality is generally better suited for the given clas-
sification problem, it can be assigned a higher overall
weight. The weight can also be defined by the context.
For example, in case of a high noise level, audio might
be given less weight.

• Decay Speed
This is also defined for each modality and describes the
average lifespan of cues extracted from the respective
signal. If determines the time it takes for the event’s
influence to decrease to zero and get discarded. Events
that strongly indicate the fusion’s target class can be
given longer decay times, in order to prolong their in-
fluence on the result.

In our case, these parameters are empirically determined
by systematically testing a large number of combinations for
the enjoyment recognition task (see 5.4 for detailed analy-
sis). Figure 1 shows a series of events and their confidence
values in the event space. The weight (and therefore influ-
ence on the fusion result) of an event vector decrease over
time (see dotted line) until the vector is completely removed.

For real-time enjoyment recognition, each frame of audio-
visual data undergoes checking for correct face tracking and
voice activity. If consequently possible, a SVM classifier for
smile recognition (trained with 36 statistical features over
action units and smile annotation) and a SVM classifier for
laughter recognition (trained with 1451 statistical prosodic
features and laughter annotation) each give a normalized
probability for the respective event. These confidence val-
ues directly map the probabilities given by the SVM models
and are used to create uni-modal event-vectors in the multi-
modal vector space (with resulting event-values in the range
of zero to one). Influences (weights) of these events hy-
perbolically decrease over time, precisely calculated by the
initial weight-parameter and speed-parameter of the corre-
sponding modality.

t [s] Description e(E) 

 
5.4 

vocal event 
indicating 
enjoyment 

 
0.9 

 
6.2 

facial 
expression 
indicating 
enjoyment 

 
1.0 

 
8.0 

vocal event 
indicating 
enjoyment 

 
0.8 

e(E) 

0.75 

0.5 

0.25 

0.0 
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

1.0 
 

t[s] 

Figure 1: Multi-modal events mapped into the event
space.

3.2.2 Fusion Vector
A mass centre is calculated at each frame for all active

(weight greater zero) events, by summing up all event-values
modified by their current influence (decreased weight) and
averaging over the number of active events. The fusion result
itself is a vector, which approaches the calculated mass cen-
tre with a predefined speed-parameter (figure 2). If this vec-
tor rises above a specified classification threshold, we clas-
sify the frame to contain enjoyment. This way, we logically
fuse smile and laughter events for enjoyment recognition and
can evaluate the fusion result against enjoyment annotations
frame by frame.
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Figure 2: The fusion vector (solid line) approaching
the temporary mass centre (bars) and then decreas-
ing to a neutral state.

3.2.3 Characteristics
The fact that the fusion vector does not instantly assume

the value of the mass centre, but instead approaches it in a
predefined speed, gives the continuous result of event driven
vector fusion a special characteristic: The fusion result re-
acts inertially to new events. Some misclassifications that
happen during a row of correct interpretations do not di-
rectly shift the overall result in a wrong direction. On the
other hand, this slow reaction time can have negative effects,
for example if quick classification switches between classes is
desired. A possible countermeasure is to raise the speed of
the fusion vector towards the mass centre or lower the lifes-
pan of active events – of course this goes along with lowering
the mentioned robustness to single misinterpretations. As a
consequence, the decay speed and weights of vectors have to
be adapted to the observed classification problem.

Realizing the premise of separated events turns out to be
a labour–intensive task. In practice, it takes considerably
more effort to independently identify events in different sig-
nals than triggering interpretation in all modalities by a sin-
gle signal–event. A deeper understanding of every single
modality is needed and the signal processing tasks rise pro-
portionally, as meaningful segments now have to be found in
each modality. These unrelated segments need to be inter-
preted and forwarded to the fusion algorithm as events. A
strong technical framework for multi–modal event detection
in real–time is needed as a foundation for the realisation of
an event driven fusion scheme.

4. A FRAMEWORK FOR EVENT DRIVEN
FUSION

The Social Signal Processing framework (SSI)1 [27] offers
special support for the development of online recognition
systems from multiple sensors. A list of special traits make
the SSI framework a good choice for implementing the event
driven fusion approach: An architecture is established to
handle diverse signals in a coherent way, no matter if it is a
waveform, a heart beat signal, or a video image. Live sensor
input is available for a long list of hardware devices and new
ones can be implemented via offered interfaces. Thereby,
implementation details related to real–time processing such
as buffering, synchronization, and threading are hidden from
the developer of additional content. Components to process

1http://www.openssi.net/

captured signals and assemble machine learning pipelines are
included in the framework. Possibilities range from real–
time signal processing to high-level feature extraction and
online classification.

pipeline 

communication 

offline anaysis 

network 

sensory processing detection 

heard a 
laughter 

saw a  
smile 

fusion 

= 

% 

logging 

saw a  
smile 

learning 

Figure 3: SSI framework: Offline trained recognizers
applied in a pipeline for event fusion in real–time.

SSI breaks data handling down to two basic data struc-
tures, that perfectly fit the idea of event driven fusion: Streams
and events. Data read from a sensor is transformed into a
stream, i.e. a continuous flow of samples with fixed sample
rate and size. Various transformation algorithms (e. g. filter-
ing, feature calculation, etc.) can be applied to manipulate
and further process a raw data stream.

In addition to streams, SSI features the concept of events.
Events are meant to describe relevant parts of streams. Sin-
gle events are usually generated from continuous streams by
applying some kind of activity detection. Their length is
variable and they may contain additional data, such as a
feature set or textual descriptions. Whenever on and offsets
are detected, events are sent to the event board. Recogni-
tion components that have subscribed to the event are now
informed. According to the segment they can request stream
chunks or corresponding feature sets and feed them, for ex-
ample to a single classifier. Classification probabilities are
again published as events and can be further processed by
event driven fusion schemes.

5. ENJOYMENT RECOGNITION
For evaluation of the event driven fusion approach, we

picked the task of enjoyment recognition. We define enjoy-
ment as an episode of enjoyable emotion. These episodes
are typically accompanied by visual and auditory cues: We
summarize voiced laughters and unvoiced laughters in the
audio modality as laughters. The visual component of a
laugh as well as visual smiles are in the following denoted as
smiles. An annotation of an enjoyment segment will most
likely contain one or more of these indicators of enjoyment
(figure 4).

5.1 Belfast Story–Telling Corpus
The training corpus for evaluation was taken from the

first session of the Belfast Storytelling corpus. The corpus
was comprised of six sessions of groups of three or four peo-
ple telling stories to one another in either English or Span-
ish. The storytelling task was based on the 16 Enjoyable
Emotions Induction Task [9]. Participants were recruited at
least a week ahead of the recording session, and were in-
structed to prepare or think of stories that relate to each of
16 listed positive emotions or sensory experiences. During
the storytelling session the participants were seated in com-

381



Voiced Laughter 

Unvoiced Laughter 

Visual Smile 

Visual Laughter 

Enjoyment 

  01  |  02  |  03  |  04  |  05  |  06  |  07  |  08  |  09  |  10  |  11  |  12  |  13  |  14  |  15 
#frame 

Figure 4: Exemplary annotation of a full enjoyment episode aligned with various voiced and visual cues
emitted by the user. For each frame (bordered by dotted lines) a decision has to be made by the fusion
system. In a conventional segmentation–based approach each frame is seen in isolation, i.e. a decision is
derived from the multi–modal information within the frame. However, we can see that the single cues
only partly overlap with the enjoyment episode: While other frames align with cues from a single modality
(see e.g. frame 2 and 4), some of the frames, which are spanned by the enjoyment episode do actually not
overlap with any observable cues (see e.g. frame 9 and 10). Those frames are likely to be misclassified by
a segmentation–based approach. The event–driven fusion approach proposed in this paper, which takes in
account the temporal asynchronicity of the events, is able to overcome frames with sparse cues of enjoyment
based on information of preceding frames.

fortable chairs around a central table, and each participant
wore a head-mounted microphone to capture high quality
audio recordings. Video signals were recorded using Log-
itech Pro HD webcams. Kinect motion capture technology
was used to capture facial features, gaze direction and depth
information. Participants took turns at recalling a story as-
sociated with each enjoyable emotion. The list of enjoyable
emotions was randomised for each story telling session, and
all of the participants told stories associated with the same
emotion in each round of stories. The amount of laugh-
ter varied depending on which emotion was being recalled
and the nature of the story that was being recounted. The
story-telling events occasionally evolved into an open dis-
cussion, which further facilitated episodes of laughter. First
session involved three male native English speakers recount-
ing stories to one another. Manual annotations of enjoyment
episodes and laughter / smile events have been created for
this session with the ELAN annotation tool [21] (see figure
4 for an exemplary excerpt).

To capture synchronised data we required the use of 9
computers and a Network Attached Storage (NAS) system.
Streaming the visual data from a single participant required
a dedicated computer for each HD webcam and Kinect, mak-
ing a total of 8 computers to capture the data. The au-
dio signals were captured using a ninth computer. The HD
Webcams streamed video data to the computers at 25fps,
with a resolution of 1024x576 for three of the cameras and
960x720 for the fourth camera. We also used standard video
recording equipment as a backup recording system. We-
bcam streams were compressed with the Huffyuv lossless
codec and later compressed using the lossy H264 to make
more usable file sizes. The audio from each head mounted
microphone was fed into a MOTU 8pre FireWire audio in-
terface preamp, and from there into another computer with
Firewire 800 recording hard drives. Audio was recorded us-
ing wav format files (mono, 48000Hz, 24-bit PCM). Each
session lasted about 120 minutes, resulting in approximately
75 minutes recording time. Synchronized recording of data
streams was achieved using the SSI software (section 4).

5.2 Enjoyment Recognition Systems
Figure 4 depicts multiple annotation tracks for the Belfast

Story–Telling Corpus. The overarching enjoyment episode
includes several segments of smiles and laughters. Training
of the following recognition systems is based on these anno-
tations. All classification systems perform recognition on a
framewise basis: A decision, if enjoyment is present within
the evaluated person or not, is made every 400 milliseconds
within a window of one second. Each recognition system
is subject independent – two of the persons of session one
(section 5.1) are used for training the recognizers needed for
compared approaches, one person is used for testing. Given
a recording length of approximately one hour per person,
this leads to a rough total of 18.000 samples for training
and 9.000 samples for testing. Considering class imbalances
within testing samples, we use the unweighted average as
evaluation criterion.

Uni–Modal Classification
Based on the segmentation given by the annotations, we rec-
ognize enjoyment directly from the single modalities audio
and video. As feature–sets for characterizing the raw audio
streams, we use 1451 statistical prosodic EmoVoice features
[25]. Recognizers for video classification are trained with 36
features, gained from statistics over action units provided by
the Microsoft KinectTM. Both feature extraction steps are
calculated within the SSI framework (section 4). As compu-
tational model for classification, we use LibSVM’s support
vector machines [1] with a linear kernel.

Segmentation Based Fusion
Segmentation based fusion approaches on the feature, de-
cision and model level (section 2.1) are applied to combine
both modalities for direct enjoyment classification (using the
same enjoyment annotation track as the uni–modal clas-
sification systems). From these experiments we can draw
first conclusions if the multi–modal information can deliver
classification improvements, if the same annotated time seg-
ments are sliced through modalities.
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Uni–Modal Classification Segmentation–Based Fusion

Audio Video Feature Decision Model

Enjoyment 50.26% 66.85% 73.75% 76.41% 76.08%
¬ Enjoyment 60.47% 76.90% 66.17% 61.53% 56.04%

UA 57.14% 73.62% 68.64% 66.39% 62.58%
WA 55.37% 71.88% 69.96% 68.97% 66.06%

Table 1: Results for uni–modal classification and segmentation based fusion on feature, decision and model
level. Trained on overall enjoyment annotations.

Modality-Tailored Fusion
Afterwards we try to recognize the annotated enjoyment seg-
ments indirectly from tailored annotations: Instead of us-
ing the annotations for whole enjoyment episodes for both
modalities, we annotate audible occurrences of laughters
within the audio channel and visible laughters and smiles
in the video separately. These tailored annotations are then
used to train classification models for detecting these en-
joyment indicating cues, rather than recognizing enjoyment
directly (same feature sets as for enjoyment classification are
applied).

Modality-tailored fusion is meant as an intermediate and
experimental step, in which these modality tailored cue-
recognizers are used directly in decision and model level fu-
sion schemes. The models trained on enjoyment segmenta-
tions are therefore replaced, probabilities given to each frame
by classifiers meant for detecting audible and visual laugh-
ters are mapped to the corresponding enjoyment classes.

Event Driven Vector Fusion
Finally we apply event–based vector fusion to compare this
indirect, event–based way of fusing multi–modal informa-
tion to single channel classification and segmentation based
fusion performance. The events have to be detected and
generated by the framework. Before classification, activity
recognition is performed for each modality, for example test-
ing if there is more than noise in the audio channel. Such
pre–processing can introduce additional prediction errors (as
the activity recognition is also not always correct), but a
very crucial point in robust real–time systems. For this rea-
son we simulate the process also for evaluation. Recogniz-
ers consider every frame that pass activity recognition and
generate events for smiles and laughters respectively. Con-
fidence values of these events correspond to the recognition
probabilities of smile and laughter detectors. All currently
active events are finally considered for mass–centre calcula-
tion and therefore influence the course of the fusion vector
(section 3). For every frame, we calculate the current posi-
tion of the fusion vector and based on its current position
we decide if enjoyment is present or not within the observed
time frame.

In order to simulate a true real–time system it should be
noted that evaluation has been carried out for the full record-
ings, i.e. no frames were excluded at any time. Conse-
quently, in case of segmentation-based fusion a decision had
to be forced even for frames where no signal was detected
(i.e. no face tracked and silence detected in the audio chan-
nel). We decided to map those frames onto the class with
the highest a priori probability (i.e. no enjoyment).

5.3 Results
Result tables report unweighted (average accuracy across

frames) and weighted (average accuracy across classes) recog-
nition results (UA / WA). During the discussion, we will
focus on the weighted recognition performance, as classified
frames contain less samples of occurring enjoyment as well as
audible and visible laughter. Table 1 shows recognition re-
sults for single channel classification and segmentation based
fusion algorithms that use classification models trained di-
rectly on enjoyment annotations. Recognition of enjoyment
via the audio modality is close to random (55.37%). Expres-
sive cues for enjoyment are located within the boundaries of
an amused episode, but do not fit them very well, which
leads to noisy features and poor classification rates (figure
4). With a weighted 71.88%, the video modality yields far
better capabilities of determining enjoyment frames. Facial
expressions, which express enjoyable emotions, correspond
much better to the overarching annotation, as hints of smiles
are mostly present during enjoyment. These discrepancies
pass on to segmentation based fusion approaches: Feature,
decision and model level fusion perform on an intermediate
level between the merged modalities (69.96%, 68.97% and
66.06%)2. This is to be expected, as the problematic classifi-
cation models trained on the vocal modality fully contribute
to the fusion result.

Event Detection

Audio Video

Laughter 76.51% 78.15% Smile
¬ Laughter 91.66% 79.61% ¬ Smile

UA 90.99 79.31 UA
WA 84.09 78.88 WA

Table 2: Result for uni–modal event recognizers for
laughters and smiles. Trained on modality tailored
annotations.

Table 2 gives insight into the capability of event detection
recognizers for the audio and video modality. These are
not trained with the bi–modal annotations of enjoyment,
but with tailored, more narrow uni–modal annotations for
actual laughter occurrences and smiles respectively. When
looking at laughter classification within the audio channel,
it becomes clear that detection of these short indication–

2Several representative fusion schemes for decision and
model level have been tested with very close average recogni-
tion rates. Presented results are generated with the product
rule (decision level) and stacking (model level) – as described
in section 2.1.
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Modality–Tailored Fusion Event–Driven Fusion

Decision Model Vector Based

Enjoyment 55.16% 66.75% 76.18%
¬ Enjoyment 90.32% 80.54% 81.37%

UA 78.84% 76.04% 79.68%
WA 72.74% 73.65% 78.78%

Table 3: Results for modality tailored fusion on decision and model level and event driven vector fusion.

events is by far more reliable than recognition of whole en-
joyment episodes (84.09% to 55.37%). Differences between
smile– and enjoyment recognition on basis of the video chan-
nel is not as massive: The low recognition difference of 7.00%
(compared to auditory enjoyment and laughters) depicts the
high correlation of experienced enjoyment and positive facial
expressions.

Figure 5: Influence of audio and video decay speed
on vector fusion performance.

However, we can not directly use these event recognition
models for enjoyment detection. They are meant to be fur-
ther processed by an event–driven fusion algorithm, such as
vector fusion. But first we experiment with an intermedi-
ate step: Event recognition models are used in segmenta-
tion based fusion algorithms on decision and model level.
Laughter and smile detections are simply mapped to the
enjoyment class and fed into the fusion process. Results
of this procedure are described in the first entries of Ta-
ble 3 (modality–tailored fusion). Both fusion approaches
deliver good results. With a weighted average of 72.74% on
decision– and 73.65% on model–level they exceed uni–modal
classification of enjoyment on the more qualified video chan-
nel (71.88%). By combining laughter and smile detections,
these approaches are able to partially capture the course of
enjoyment episodes, but they do not take temporal relations
of recognized events into account. Table 3 shows clearly,
that the main improvements in recognition performance is
based on the detection of ¬Enjoyment. This means they
mostly predict the absence of indicating events during the
periods of enjoyment, there are still many misclassifications.
At this point, event–driven fusion schemes can gain further
improvements over previous approaches.

Figure 6: Influence of audio and video weights on
vector fusion performance. Stable performance is
observed if audio and video events are weighted in
a ratio of 8 to 10.

5.4 Parameter Analysis
As described earlier (section 3), the performance of event

driven fusion depends on the three parameters confidence,
weight and speed of the events. To achieve optimal results,
a reasonable configuration of the three parameters has to
be found. Confidence is directly derived from probabilities
given by the event detectors. This derivation only makes
sense if confidence values of given classifiers are compara-
ble. To prove this assumption, Figure 7 plots the confidence
values of event detectors against the correctness of the esti-
mation. Prediction behaviours of modalities resemble each
other clearly.
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Figure 7: Frequency of correctly classified frames
according to laughter / smile confidence. Similar
prediction behaviour allows to directly combine con-
fidence values during the fusion process.

Optimal configuration of weight and speed parameters
have been empirically determined by systematically testing
a large number of combinations (figures 5 and 6): Smile
events are weighted with full influence, as the occurrence
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of smiles correlate well with the boundaries of enjoyment
episodes. Their decay speed is regulated high, as the begin-
ning and ending of enjoyment are often similar to presence
and absence of smiles in the face and the fusion vector should
rise and fall fast whenever smiles are detected or not. The
decay speed of laughter events is regulated low. Laughters
are considered a strong indicator of enjoyment and when-
ever they occur we expect the enjoyment episode to last for
several frames afterwards. Best performance is achieved if
laughters are weighted less than smile events – again due to
the fact that smiles better describe the limits of enjoyment
segments. The optimal ratio lies around 8 to 10 (figure 6).

Taking these findings and the possibility to temporarily
relate the detected events into account, event–driven vec-
tor fusion achieves an average recognition rate of 78.78%.
This is the best result we were able to achieve for enjoy-
ment recognition during our experiments with examined ap-
proaches. According to McNemar’s Chi-Squared Test (p <
0.05), improvements in comparison to the second best ap-
proach (modality tailored fusion on model and decision level)
are significant. Table 3 also shows a well balanced distribu-
tion of accuracies among classes (76.18% for Enjoyment and
81.37% for ¬Enjoyment), which shows that event driven fu-
sion is accurate in detecting whole episodes of enjoyment
and models their boundaries well.

6. CONCLUSION
Affect recognition systems apply multi–modal fusion un-

der the reasonable assumption that combination of infor-
mation from several modalities does improve classification
accuracy. However, studies over the last years have shown
that the concrete enhancements of fusion systems compared
to uni–modal classification are – to say the least – unstable.
A possible problem causing this varying performance is that
overarching segmentations for given classification problems
are used throughout observed modalities, resulting in seg-
mentation based fusion approaches. In this study we have
specified and implemented an event driven real–time fusion
system for affect recognition. This kind of approach does
not directly fuse identical timeframes throughout modal-
ities, but calculates probabilities indirectly by accumulat-
ing shorter, detection–indicating and possibly time–shifted
events. This approach demands additional annotation, seg-
mentation and training steps, but our evaluation shows a
promising potential of the event driven approach:

Given the affect recognition task of enjoyment classifi-
cation on the Belfast Story–Telling Corpus, we exemplary
compare uni–modal and segmentation based, multi–modal
fusion systems to event driven vector vector fusion. While
the segmentation for enjoyment episodes indeed fits well
for classification via the video modality, it is not very suit-
able for the audio channel. This fact results in acceptable
recognition accuracy when using only the video modality
and very bad results for audio classification. Segmentation
based fusion aligns between these accuracies and performs
on an intermediate level. It then, recognizes the enjoyment–
indicating events of laughters and smiles and processes them
further with event driven vector fusion. We empirically
determined parameters for speed and weight distributions
among modalities. Best performance was yielded when smile
events were given a higher weight and speed than laugh-
ters. Laughters are a strong indicator of enjoyment and
should therefore have a long–term influence on fusion; smiles

on the other hand need quick reaction time as they de-
scribe well the margins of enjoyment. They also profit from
higher weightings as this allow smiles to hold steady during
longer enjoyment–periods with no vocal activity. Based on
this configuration (78.78%), we were able to enhance enjoy-
ment recognition accuracy by 6.09% compared to uni–modal
classification (video channel), 8.82% compared to segmen-
tation based fusion (feature level) and 5.13% compared to
modality-tailored fusion (model level).

7. FUTURE WORK
Having identified potential problems of segmentation based

fusion and the capabilities of an event driven approach, many
interesting investigations open up: By now, we have trained
few event recognizers for a valence related affect classifi-
cation problem. The amount of event detectors can be
raised by a great amount and expanded to further modal-
ities. Arousal related classification, e.g. on the basis of
physiological signals and events, potentially enables recogni-
tion coverage of the 2–dimensional valence–arousal emotion
space. The presented vector fusion implementation is just
one way of relating event detections for multi–modal fusion.
Because of its accessible and understandable logic and struc-
ture, vector fusion is a very good starting point for analysis
of the event driven fusion approach. However, more compli-
cated network structures seem very promising and are to be
examined and compared in future studies.
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interpretation (ssi) framework: multimodal signal
processing and recognition in real-time. In A. Jaimes,
N. Sebe, N. Boujemaa, D. Gatica-Perez, D. A.
Shamma, M. Worring, and R. Zimmermann, editors,
ACM Multimedia, pages 831–834. ACM, 2013.
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