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ABSTRACT
Recently, automatic emotion recognition has been estab-
lished as a major research topic in the area of human com-
puter interaction (HCI). Since humans express emotions
through various channels, a user’s emotional state can natu-
rally be perceived by combining emotional cues derived from
all available modalities. Yet most effort has been put into
single-channel emotion recognition, while only a few studies
with focus on the fusion of multiple channels have been pub-
lished. Even though most of these studies apply rather sim-
ple fusion strategies – such as the sum or product rule – some
of the reported results show promising improvements com-
pared to the single channels. Such results encourage investi-
gations if there is further potential for enhancement if more
sophisticated methods are incorporated. Therefore we apply
a wide variety of possible fusion techniques such as feature
fusion, decision level combination rules, meta-classification
or hybrid-fusion. We carry out a systematic comparison of
a total of 16 fusion methods on different corpora and com-
pare results using a novel visualization technique. We find
that multi-modal fusion is in almost any case at least on
par with single channel classification, though homogeneous
results within corpora point to interchangeability between
concrete fusion schemes.
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1. INTRODUCTION
In human interaction, social signals are generally expressed

through multiple available modalities. Emotions in particu-
lar are illustrated by a combination of vocal behaviour, facial
expressions, gestures and postures. One main goal of human
computer interaction (HCI) is to make information about a
users emotional state available to a machine via automatic
emotion recognition and classification. A generic approach
to this problem is to choose one type of signal, train the
computer to extract and recognize preassigned features and
cues from it, and finally associating made observations with
predefined emotional classes. But as humans tend to base
and refine their predictions on emotional states on more than
one modality, a machine should do so too if possible.

This means fusing multi-modal observations at some point
of the prediction-process. Generally said this effort can be
done at different levels, mainly the feature level by merg-
ing cues from all modalities into one classification scheme,
or at decision level by combining outputs of several clas-
sifiers (one can think of other levels of fusion and we will
present some later on). If we however consider the great
amount of meanwhile established and further possible en-
semble based strategies, the question arises if there exist
generally advisable ones or if the success of a strategy is
based on the observed problem. The No Free Lunch The-
orem [15] has proven for supervised machine learning that
there is no universally applicable classification scheme for all
given classification tasks. When observing all possible prob-
lems, solutions perform on an equal level on average. Stud-
ies like [3, 9, 8, 4] examine rather basic fusion strategies and
sometimes try to give advise on which scheme dominates
others. Results are not consistent throughout mentioned
experiments, so suspicion that the No Free Lunch Theorem
holds for combination rules as well as for the underlying
classification methods seems reasonable.

In the field of emotion recognition fusion has been mainly
applied to audio-visual data. Authors in [16] cite 18 studies
dealing with audio-visual fusion. The authors distinguish
between feature-, decision- and meta-level fusion, where the
latter describes approaches, which use a 2nd-level classifier
to combine predictions of the single channels. While none of
the mentioned studies uses methods of all three kinds, it is
also difficult to compare the results between the studies as
they differ greatly in their methodology, as well as, the un-
derlying databases. We will try to enrich the ongoing discus-
sion with a comprehensive comparison of various established
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and novel fusion strategies, ranging from feature fusion and
elaborated decision level combination rules to meta-level and
hybrid-fusion. These will be applied to different corpora
for emotion recognition in order to directly compare rela-
tive recognition-success on different classification-problems.
Thus, on the one hand we investigate the general potential
of multi-modal fusion compared to single channel emotion
recognition and on the other hand give clear hints on benefits
of certain fusion schemes or even their interchangeability for
future studies. To our best knowledge this is the most com-
prehensive empirical fusion study applied on audio-visual
emotion recognition.

2. APPLIED FUSION TECHNIQUES
When confronted with multi-modal fusion for audio-visual

emotion recognition, a vast amount of eligible fusion strate-
gies come into consideration. In the following, possible fu-
sion techniques for combining available modalities are pre-
sented and discussed in detail. For the sake of clear arrange-
ment, possible methods can be differentiated by the levels
on which they are executed. Fusion at decision level can be
further sub-divided into class-label combination strategies,
algebraic combination rules and specialist selection methods.

2.1 Feature Level Fusion
A very straightforward way to fuse all observed channels

is to merge all calculated features into a single and high
dimensional feature set. One classifier is then trained for
the task of classification. The accumulated features con-
tain a bigger amount of information than a single modality.
Thus, increased classification accuracy can theoretically be
expected. The eventually occurring Curse of Dimensionality
has to be accounted for on small datasets. If the available
observations are not proportional to the amount of features
covered by a sole classifier, the classification results become
non-meaningful. As a second, it has to be mentioned that a
growing feature vector may stress computational resources.
However, appliance of feature selection techniques may re-
lieve both problems.

2.2 Decision Level Fusion
Decision level fusion sums up combination rules1 for the

outputs of several classification models. Instead of using all
available features for a sole classifier, the available feature set
is divided into subgroups (e.g. one classifier per modality)
and the partitions are used to form classifiers. The assembly
of these classifiers is called an ensemble. The outcomes of
these slim classifier models are taken into account for the
final decision making process.

2.2.1 Class-Label Combination
Voting could be considered the most generic approach to

decision level fusion, because it simply combines class labels
gained from T classifiers by summing up decisions. The
ensemble decision for an observed sample x is chosen to be
the class ωn which received the most votes (decisions) vn.

1For the explanation of reviewed algorithms the following
annotations are used: The decision of ensemble member t
for class n is denoted as dt,n ∈ {0, 1}, with t = 1..T and
n = 1..N and dt,n = 1 if class ωn is chosen, dt,n = 0 oth-
erwise. The support given to each class n (i.e. the calcu-
lated probability for the observed sample to belong to single
classes) by classifier t is described as st,n ∈ [1, 0].

A definite decision is only guaranteed if an odd number of
ensemble members handle a two-class problem (thus it is
not capable of producing definite decisions in many practical
applications and is therefore often replaced by the weighted
variant).

vn(x) =

T∑

t=1

dt,n(x)

In Weighted Majority Voting each vote is associated with
a pre-calculated weight (in our case weights are determined
by evaluations of classifiers on training data) of the ensem-
ble member. Ties are not likely to happen this way, which
makes the weighted variant more suited for most classifica-
tion problems.

Another way of combining the class labels generated by
ensemble members is to construct a lookup-table. This method
is introduced by [5] as Behavior Knowledge Space (BKS).
During training the table counts combinations of labelling
outputs together with the true class and occurrences of this
composition. Test samples then are compared to that table
and the true class for which the currently observed labelling
combination was recorded most often gets chosen as ensem-
ble decision.

2.2.2 Algebraic Combination Rules
Algebraic combiners for continuous outputs mathemati-

cally compute the ensemble decision from probabilities for
each class over all classifiers. The Maximum Rule and Min-
imum Rule respectively choose the maximum or minimum
support generated by T ensemble members. The ensemble
decision for an observed sample x is chosen to be the class
ωn for which support μn(x) is largest.

μn(x) = max,mint=1..T {st,n(x)}
The Sum Rule simply sums up the support given to each
class ωn in order to generate total support μn for each class.
By averaging the support ( 1

T
serves as normalization factor)

given to each class ωn we obtain the Mean Rule. When addi-
tionally adding classifier weights wt, the Weighted Average
method calculates total support μn for class n as:

μn(x) =
1

T

T∑

t=1

wtst,n(x)

By multiplying the support given to each class ωn, the Prod-
uct Rule determines total support μn for class n as:

μn(x) =
1

T

T∏

t=1

st,n(x)

The following two combination rules make more extensive
use of continuous outputs of ensemble classifiers. Given sam-
ple x, the decision profile DP (x) for T ensemble members
contains the probability distributions among N classes:

DP (x) =
s1,1(x) ... s1,N (x)

... ... ...
sT,1(x) ... sT,N (x)

Decision template DTn can then be defined for each class
ωn as respective decision profile during training, averaged
by the cardinality of observed class. Given an unlabelled
test-sample x, we first constructDP (x) from ensemble mem-
bers and then calculate similarity (as Squared Euclidean dis-
tance) S between DP (x) and the decision template DTn for
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each class ωn. Finally the most similar class is chosen as
ensemble decision.

Further utilisation of decision templates is based on on the
Dempster-Shafer theory of evidence [12]. It can be applied
to decision making by interpreting the classifiers outputs as
a measure of evidence. Instead of similarities, proximities
and resulting beliefs (evidence) is calculated. This repre-
sents the belief in one classifier correctly classifying observed
instance into respective classes. Following Dempsters rule of
combination, these beliefs can be multiplied throughout the
ensemble in order to obtain the final decision.

2.2.3 Specialist Selection
In contrary to the fusion schemes described so far, the

Cascading Specialists [6] method does not focus on merging
outputs from all ensemble members, but on selecting special-
ists for each class and bringing them in a reasonable order.
In a preparation step, experts for every class of the classi-
fication problem (based on evaluation of training data) are
chosen. Next, classes are rank ordered, from worst classified
class across all classifiers to the best one. The algorithm for
classification works as follows: First class in the sequence is
chosen and the corresponding expert is asked to classify the
sample. If the output matches the currently observed class,
this classification is chosen as ensemble decision. If not, the
sample is passed on to the next weaker class and correspond-
ing expert whilst repeating the strategy. Whenever the case
occurs that none of the experts classifies its connected class,
the classifier with the best overall performance on the train-
ing data is selected as final instance and is asked to label the
sample. This strategy aims at a flattening effect among class
accuracies that will – at best – improve overall classification
performance.

Specialist
for Class 1

TRAINING
PERFORMANCE

Decision for Class 1ORClassification

ASSIGNS

Specialist
for Class n

Decision for Class nORClassification

Final
Instance

DecisionClassification

Figure 1: Cascading Specialists Scheme

2.3 Meta Level Fusion
In meta level fusion, the outputs of several ensemble clas-

sifiers are not fused by predefined combination rules. Instead
their results are used as input for one or more meta classi-
fication models, that generate the final ensemble decision.
This process is lent from meta-classification and conforming
to notations used byWolpert and Macready, ensemble classi-
fiers correspond to level-0 base classifiers, the meta classifiers
fusing their results equate to level-1 meta generalisers.

In Stacked Generalisation – as proposed by [13] – a level-
1 classifier tries to learn the probability distribution among
level-0 ensemble classifiers together with the true class that
lead to this combination. When asked to classify an un-
known sample x, the method first collects probability esti-
mates of all ensemble members that consecutively form the
basis for the level-1 classifier’s final prediction.

Another approach to meta-classification is Grading [11],
where the goal of level-1 classifiers is to correct potentially
false decisions of level-0 ensemble members. During train-
ing every base classifier is complemented by a meta classifier
with same training data but a graded label – a boolean value
stating correct or incorrect prediction of the ensemble clas-
sifier. At classification time our implementation fuses en-
semble predictions as every member adds the probability of
correctness (generated by it’s grading classifier) to the final
support of the class it predicted. As usual, the class with
highest support is chosen as final ensemble decision.

2.4 Hybrid Fusion
In this study we use the term hybrid fusion to characterise

fusion techniques that incorporate classifiers with merged
features into used ensembles and therefore combine decision
and feature level fusion. Of course this approach is appli-
cable to most ensemble combination rules discussed so far,
but we decided to develop a refined fusion scheme with two
variants in order to explore the capabilities of hybrid fusion.

The One Versus Rest approach trains N classifiers on ev-
ery available feature-set (excluding merged features), each
specialised in recognising one of N classes. This breakdown
on several two-class classification problems is done by re-
labelling. Additionally the ensemble is completed by one
multi-class classification model trained on the merged fea-
ture set.

Given test-sample x, variant one multiplies probabilities
gained from classifiers trained on recognising class n with
the associated probability generated by the multi-class clas-
sification model. This is done for classes 1..N and the class
with the highest accumulated support gets chosen as en-
semble decision. Variant two chooses among the two-class
classification models the most promising one for every class.
The specialist’s probability is then summed with the respec-
tive probability from the multi-class classification model.

3. AFFECTIVE CORPORA
To draw a comparison of the presented fusion techniques

we use two different corpora - the DaFEx and CALLAS cor-
pus. These corpora have been chosen as they both contain
audio-visual recordings of Italians. They differ, however,
in the number of expressed emotional states and their level
of naturalness. In the past most studies dealing with the
recognition of emotions were based on recordings from pro-
fessional actors. Lately, we can observe an increasing trend
towards more natural data sets. It turned out that findings
derived from acted data must not necessarily be transferred
to spontaneous emotions [14]. Using corpora of both kinds
allows us to investigate to what extent the choice of the
fusion technique depends also on the naturalness of the ob-
served data.

The DaFEx corpus [1] contains recordings of 8 professional
Italian actors (4 male and 4 female) expressing 6 basic emo-
tions and neutral. It was initially constructed as a bench-
mark for the evaluation of facial expressivity of Embodied
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Conversional Agents, but is well suited for the evaluation
of emotion recognition systems, too (see e. g. [10]). It con-
sists of 1008 short videos clips, where each clip corresponds
to one the basic emotions happiness, surprise, fear, sadness,
anger and disgust, or neutral. The facial expressions are
available at 3 intensity levels (low, medium and high), but
for our purpose are combined to a single class. Finally, we
select only those samples, where the actors were also utter-
ing a sentence, resulting in 84 samples per subject equally
distributed among the 7 classes.

The CALLAS expressivity corpus [2] was constructed within
the European Integrated Project CALLAS. Designed for ex-
amination of cultural differences it was actually recorded in
three countries, Germany, Italy and Greece. In contrast to
the DaFEx corpus participants in the CALLAS corpus have
no special acting abilities and were asked to perform ex-
pressions in the three broad categories positive, neutral and
negative. For this study we only consider the Italian sub-
corpus consisting of 1539 samples of 13 persons (7 female and
6 male) equally distributed among the three classes. Specific
emotions were elicited by a mood induction technique. For
this study samples were consequently labelled corresponding
to the state of the stimuli sentences.

4. METHODOLOGY OF EXPERIMENTS
Extraction of descriptive features is a necessary step to

convert the raw signals into the compact form required for
classification. From the audio channel we extract acous-
tic features related to the paralinguistic message of speech,
i. e. “how” something is said. MFCCs and spectral features
as well as prosodic features from pitch, energy, duration,
voicing and voice quality total to the amount of 1316 fea-
tures calculated by EmoVoice2. For video analysis we use
SHORE, a library for facial emotion detection developed
by Fraunhofer IIS3 [7]. For each face detected, SHORE is
able to extract a set of features including amongst others
the position of the face, the eyes, nose and mouth, as well
as information whether the eyes or the mouth are open or
closed. Collected for each frame, these values build a series
of 24 short-term features. Together with the calculation of
11 long-term measurements, we obtain a facial feature set
with 264 entries.

Both resulting feature sets are then reduced by correlation
based feature selection followed by a sequential forward
search – a simple but popular wrapper approach that uses
a classifier to determine significant features. This and all
other classification tasks within this study is done via Naive
Bayes. This classification model is a probabilistic classifier
based on the Bayes’ theorem, which makes the (unrealistic)
assumption that the presence (or absence) of a particular
feature of a class is unrelated to the presence (or absence) of
any other feature. Hence, the probability for the occurrence
of a certain category given a set of observations can be esti-
mated as the product of the individual attributes. We chose
this rather simple classification scheme due to its successful
application in earlier emotion recognition tasks [14] and its
fast computation, which allows us to run our experiments
in a reasonable amount of time. After feature selection 35
audio and 40 video features remained for the DaFEx corpus,

2http://hcm-lab.de/EmoVoice.html
3http://www.iis.fraunhofer.de/en/bf/bv/ks/gpe/demo/

while on the CALLAS corpus 64 audio and 45 video features
were chosen.

For evaluation of made experiments we agreed on a realis-
tic, user independent approach: Leave-One-Person-Out. We
consecutively draw samples belonging to one subject out of
the available corpus. Remaining samples are used for train-
ing of classification models which then are tested against
the isolated samples. The procedure is repeated until every
person was once evaluated.

The described analysis was implemented and run with
the Social Signal Interpretation (SSI) framework. SSI of-
fers tools to record, analyse and recognize human behaviour
in real-time, such as gestures, mimics, head nods, and emo-
tional speech. In particularly it supports the machine learn-
ing pipeline in its full length and suits the fusion of multi-
modal information at different stages including early and
late fusion. SSI is written in C++ and source code is avail-
able under LGPL4.

5. RESULTS
Results for DaFEx and CALLAS corpora are summarised

in Table 1. For the DaFEx data we observe an improvement
of up to 7% and 10% compared to classification results on the
audio and video channel. Here, BKS and One Versus Rest
turn out to give the best performance closely followed by
Feature Fusion, Mean Rule, Sum Rule, Weighted Average,
Product Rule, Grading and One Versus Rest-Specialists. All
in all, remarkable are results established across all fusion
levels on the acted affective corpus.

In case of the more natural CALLAS corpus no improve-
ment is achieved compared to the audio channel. However,
on the video channel an enhancement of up to 8% is ob-
served. Except for Grading and Min Rule results of all other
fusion strategies lie within 3%.

Across corpora, simple fusion techniques like Feature Fu-
sion as well as Mean, Sum and Product Rule perform on a
very stable basis. More elaborate strategies seem to be more
reliant on the structure of observed data. For example, the
Cascading Specialist method generates the desired flattening
effect among classes on the CALLAS corpus and therefore
lists among the best fusion approaches. In contrary, needed
specialist selection seems to be harder on the DaFEx corpus
and it ranges among worst combination rules. Sophisticated
ensemble strategies bare the potential to outperform more
simple ones, but success is not guaranteed. Differences in ac-
curacy tend to be rather small among all considered fusion
techniques.

6. DISCUSSION
In Figure 2 recognition results are visualized per sample,

as we compare the prediction for each sample with its real
label. If the sample was correctly classified, it is marked with
a white square, otherwise with a black one. Each column
represents one sample of the data set and each row stands for
the used classification method. The first row, for instance,
visualizes classification results obtained for the single audio
channel. We can for example infer from the DaFEx pattern
on top of Figure 2 that the first two samples were correctly
classified by audio, video and most fusion schemes, while
sample three and four were obviously misclassified.

4http://hcm-lab.de/ssi.html
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DaFEx CALLAS

anger disgust fear happiness neutral sad surprise average positive neutral negative average

Single Modalities

Audio 0.39 0.32 0.43 0.21 0.86 0.67 0.25 0.45 0.59 0.64 0.61 0.61
Video 0.57 0.34 0.11 0.82 0.72 0.59 0.22 0.48 0.60 0.50 0.48 0.53

Feature Level Fusion

FeatureFusion 0.54 0.36 0.36 0.79 0.77 0.70 0.26 0.54 0.57 0.59 0.62 0.59

Decision Level Fusion

WeightedMajorityVoting 0.57 0.34 0.11 0.82 0.72 0.59 0.22 0.48 0.59 0.64 0.61 0.61
BKS 0.53 0.45 0.30 0.84 0.85 0.51 0.35 0.55 0.62 0.62 0.56 0.60

MaxRule 0.48 0.31 0.22 0.80 0.84 0.69 0.16 0.50 0.62 0.55 0.64 0.60
MinRule 0.44 0.39 0.41 0.44 0.73 0.59 0.39 0.48 0.56 0.61 0.55 0.57

MeanRule 0.52 0.38 0.36 0.79 0.78 0.71 0.26 0.54 0.59 0.58 0.59 0.59
SumRule 0.52 0.38 0.36 0.79 0.78 0.71 0.26 0.54 0.59 0.58 0.59 0.59

WeightedAverage 0.58 0.41 0.28 0.83 0.77 0.66 0.23 0.54 0.61 0.58 0.58 0.59
ProductRule 0.50 0.39 0.38 0.79 0.77 0.70 0.27 0.54 0.59 0.58 0.59 0.59

DecisionTemplate 0.51 0.41 0.30 0.67 0.81 0.61 0.22 0.50 0.57 0.60 0.59 0.59
DempsterShafer 0.48 0.41 0.31 0.67 0.81 0.59 0.25 0.50 0.56 0.62 0.59 0.59

CascadingSpecialists 0.35 0.38 0.44 0.53 0.90 0.66 0.27 0.50 0.60 0.63 0.61 0.61

Meta Level Fusion

StackedGeneralisation 0.53 0.40 0.39 0.72 0.74 0.61 0.28 0.52 0.59 0.57 0.64 0.60
Grading 0.60 0.44 0.18 0.80 0.89 0.64 0.23 0.54 0.67 0.50 0.49 0.55

Hybrid Fusion

OneVersusRest 0.53 0.34 0.36 0.83 0.79 0.71 0.25 0.55 0.59 0.59 0.60 0.59
OneVersusRest-Specialists 0.59 0.31 0.40 0.82 0.76 0.70 0.21 0.54 0.60 0.58 0.63 0.60

Table 1: Recognition results for DaFEx and CALLAS corpora

A clear characteristic shown by this visualisation on both
corpora is the behaviour of fusion schemes in relation to sin-
gle modalities. Depending on the outcomes of audio and
video, there is a clear trend of forming white and black ver-
tical columns within the picture: If both modalities classify
correctly, most fusion approaches do so too; if both chan-
nels misinterpret the sample, most fusion strategies fail. Es-
pecially algebraic combiners like the sum or product rule
amplify consistent (correct or incorrect) ensemble decisions
because of their inherent combination rules. An exception
to this trend is shown by some decision level approaches
(BKS, decision template and dempster shafer) and the meta-
learners of stacked generalisation and grading: These ap-
proaches are meant to learn the behaviour of available modal-
ities. The logical connection between observed ensemble
members’ decisions and the actual true-class enables the
phenomenon of “error learning” and therefore the poten-
tial of generating correct predictions though both modali-
ties classify incorrect. This is visualized by white break-ups
in black columns caused by consistent miss-classification of
audio and video. Figure 2 unfortunately show that this de-
sirable “error-learning” is also the reason for these ensemble
methods to predict wrong classes even though both modal-
ities chose the correct one – an undesirable characteristic
that is not likely to be manifested by more simple fusion
schemes.

Both modalities perform on an equal level in the DaFEx
corpus (with a slightly better video channel), the more realis-
tic CALLAS corpus clearly shows better results on prosodic
observations and therefore the audio channel outperforms
the facial modality (though former studies like [17] have
shown a rather contrary behaviour). These results may
be caused by the appliance of mood-inducing sentences for
CALLAS sample generation: As the DaFEx corpus features
professional actors, vocal and facial expressions are be ex-

pressed on an equally convincing level, while the unexperi-
enced CALLAS probands focus strongly on expressing the
given sentences verbally. Sample-wise recognition outcomes
for the two modalities are therefore clearly more consistent
on the DaFEx corpus than on CALLAS data. Some fusion
strategies seem to benefit from consistency of modalities,
leading to improved fusion results compared to the single
channel-classifiers on the DaFEx corpus. But then again do
recognition accuracies on the CALLAS corpus show the po-
tential of combination rules to handle disagreeing modalities
in away so that at least comparable results to the best chan-
nel can be received. However, it is difficult to recognize from
the graphs in Figure 2, what exactly causes a potential gain
in recognition accuracy for combination rules compared to
the two single channels. To carve out those samples, which
are misclassified in one of the single channels, but correctly
recognized after fusion, we have included Figure 3.

Figure 3 compare sample-wise the results obtained from
the superior modality with the results for the fusion tech-
niques. For each corpus, the topmost row again shows sample-
wise classification results for respective best modality. Within
the following block we mark for each fusion strategy those
samples with a white square, which receive a false recog-
nition on the observed channel, but a correct one if fused
with a further modality. The numbers behind listed meth-
ods gives the amount of relative improvement. Within the
lower block, samples which are correctly predicted from the
video channel, but misclassified after fusion with the audio
channel are marked black. The numbers behind the method
now illustrates the amount of impairment. For example did
Feature Fusion correct 13% of the misses in the video chan-
nel on the DaFEx corpus. On the other hand it failed in
7% of the cases in which the facial modality did classify cor-
rectly. This leads to an overall improvement of 6% compared
to the video channel.
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Audio (0.45) 
 Video (0.48) 

FeatureFusion (0.54) 
 WeightedMajorityVoting (0.48) 

 BKS (0.55) 
 MaxRule (0.5) 
 MinRule (0.48) 

 MeanRule (0.54) 
 SumRule (0.54) 

 WeightedAverage (0.54) 
 ProductRule (0.54) 

 DecisionTemplate (0.5) 
 DempsterShafer (0.5) 

 CascadingSpecialists (0.5) 
 StackedGeneralisation (0.52) 

 Grading (0.54) 
 OneVersusRest (0.55) 

 OneVersusRest-Specialists (0.54) 

Audio (0.61) 
 Video (0.53) 

FeatureFusion (0.59) 
 WeightedMajorityVoting (0.61) 

 BKS (0.6) 
 MaxRule (0.6) 
 MinRule (0.57) 

 MeanRule (0.59) 
 SumRule (0.59) 

 WeightedAverage (0.59) 
 ProductRule (0.59) 

 DecisionTemplate (0.59) 
 DempsterShafer (0.59) 

 CascadingSpecialists (0.61) 
 StackedGeneralisation (0.57) 

 Grading (0.55) 
 OneVersusRest (0.59) 

 OneVersusRest-Specialists (0.6) 

Figure 2: Visualization of predictions for excerpts of the DaFEx and CALLAS samples

Again, a clear trend to vertical columns in the patterns
is obvious. This means that gains and losses of different
fusion schemes are – most generally spoken – produced on
the same samples. Outlying improvements achieved by elab-
orate ensemble combination techniques like the mentioned
“error learning”are subsequently lost by outlying misclassifi-
cation, caused by just this technique. The same regularities
become apparent if we compare the amount of improvement
with the amount of impairment between the different fusion
methods. Obviously does a high amount of positive cor-
rection on miss-classified samples come along with a high
number of errors on samples that were already correctly
classified. For instance, on DaFEx we improve correct clas-
sification on 16% of the samples with stacked generalisation,
but at the same time also lose a correct prediction in 11%,
while for the weighted average rule a smaller improvement
of 10% is accompanied by a lesser impairment of 5% (note
that these numbers describe absolute, sample-wise values
and do not directly transfer into class-wise recognition rates
presented in Table 5). The difference between both values
is more or less the same for all tested methods. On the
CALLAS corpus rates for improvement are mostly smaller
than generated impairments (as the audio channel clearly
performs better than the facial modality), resulting at best
in equal recognition results for some ensemble approaches as
for the single modality classification with vocal features.

Made observations imply to a certain degree an inter-
changeability of presented fusion schemes. Sample-wise in-
vestigations show a common recognition-behaviour and gains
in some specialised areas are paid for in others. Fusion tech-
niques, on the other hand, have the potential to outperform
single-channel classification on multi-modal datasets. Re-
sults are either considerably improved (DaFEx) or at least
in line with the dominating modality (CALLAS). This char-
acteristic is especially desirable, whenever the best modality
is not known in advance. But is there a generally advisable
fusion scheme? Performance of different strategies lie within
a close range, sophisticated methods do not necessarily out-
perform simple combination rules. Without prior knowl-
edge, appliance of feature fusion simple algebraic combin-
ers seems reasonable, as they perform stable across different
datasets despite simple mechanisms.

7. CONCLUSION
In this study we performed a comprehensive comparison

of fusion techniques for multi-modal affect recognition tasks.
Experiments were run on two Italian emotion corpora fea-
turing vocal and facial modalities: The acted DaFex corpus
and the more natural CALLAS expressivity corpus. Imple-
mented fusion rules included feature, decision, meta and hy-
brid level strategies and results were discussed using novel vi-
sualisations. We found interesting, common characteristics
among ensemble methods as well as uncommon effects like
“error learning”. Though a certain degree of interchangeabil-
ity between tested fusion approaches can be suspected – and
therefore no fusion scheme can be advised in general – are
most approaches capable of enhancing single channel clas-
sification or are at least on par with the superior modality,
if inconsistency of observed modalities prevent further im-
provements. Inconsistencies of fusion schemes performances
across corpora make no strategy advisable in general, the
applied fusion method should be chosen based on the un-
derlying classification problem.
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[14] T. Vogt and E. André. Comparing feature sets for
acted and spontaneous speech in view of automatic
emotion recognition. In IEEE International
Conference on Multimedia & Expo (ICME 2005),
2005.

[15] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1996.

[16] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang.
A survey of affect recognition methods: Audio, visual,
and spontaneous expressions. IEEE transactions on
pattern analysis and machine intelligence, 31(1):39–58,
January 2009.

[17] Z. Zeng, J. Tu, M. Liu, T. Zhang, N. Rizzolo,
Z. Zhang, T. S. Huang, D. Roth, and S. Levinson.
Bimodal hci-related affect recognition. In Proceedings
of the 6th international conference on Multimodal
interfaces, pages 137–143, 2004.

25




