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Students entering academic mathematics programmes struggle with various 
challenges in their transition from secondary school to tertiary education. One 
challenge is the strong focus on formal-deductive argumentation and proof in 
university mathematics.  Producing acceptable mathematical arguments requires both, 
the ability to find deductive lines of arguments as well as skills to communicate these 
arguments with precision. We present a study with N=159 students at the transition 
from secondary to tertiary education that examines how the quality of mathematical 
arguments and of different formal aspects of their presentation are interrelated. We 
discuss implications for research as well as for support of students at the beginning of 
their mathematics study. 

INTRODUCTION  

A substantial amount of students give up studying mathematics during their first year 
at university (Heublein, 2014). Possible reasons for the high drop-out rate might be 
that the character of mathematics as a scientific discipline changes dramatically in the 
transition from school to university. This is not primarily a change of topics, but there 
is a shift toward an increased depth in the subject, with respect to the understanding 
and use of formal mathematics (Clark & Lovric, 2008). In tertiary mathematics 
courses, abstract concepts, formally presented arguments and proofs play a central role. 
Students are exposed to the emphasis on multiple representations of mathematical 
objects and on the precision of mathematical language (Clark & Lovric, 2008). Our 
study is situated in the transition phase from secondary to tertiary education with a 
specific focus on mathematical argumentation and proving, and the use of formal 
representations to communicate mathematical arguments. 

Mathematical argumentation, i.e. to generate arguments for or against a mathematical 
conjecture and to convince oneself as well as the mathematical community about their 
validity, comprises empirical exploration (e.g., Koedinger, 1998), logical deductions 
and the ability to deal consciously with formal-symbolic representations and 
mathematical language (Epp, 2003). Several studies indicated that students at all levels 
have great difficulty with the task of proof construction (e.g., Healy & Hoyles, 1998; 
Ufer, Reiss, & Heinze, 2008). Even students who want to pursue undergraduate courses 
in mathematics at university often show poor proof-writing attempts, which may 
consist of little more than a few disconnected calculations or are characterised by an 
imprecise or incorrect use of mathematical words or phrases (Epp, 2003). There has 
been much research pointing to reasons for these deficiencies (e.g., Selden & Selden, 
2011). Models of the proving process suggest to differentiate two idealized sub-
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processes of proving when searching for explanations (Selden & Selden, 2009): Firstly, 
students have to find adequate arguments and organize them into a deductive chain 
mentally. Secondly, they have to communicate their arguments and proofs in a 
formally correct way according to mathematical standards. 

The content of mathematical arguments 

Identifying a conclusive chain of mathematical arguments is a complex problem 
solving process that relies on several individual prerequisites, like knowledge of 
heuristic strategies (Schoenfeld, 1985) and conceptual mathematical knowledge (Ufer 
et al., 2008). Moreover, methodological knowledge on the nature of proofs (e.g., Healy 
& Hoyles, 1998) is necessary to direct this search process. For example, evaluating the 
truth or falsity of mathematical statements requires knowledge about the role of 
examples and counterexamples (Koedinger, 1998). During the proof construction 
process, students have to identify relations between mathematical concepts, and select 
those for which they see a chance to support them by acceptable mathematical 
arguments and organize them in a conclusive deductive chain.  

content of 
 

the formal quality of the presentation of these arguments (e.g., Healy & Hoyles, 1998; 
Reichersdorfer, Vogel, Fischer, Kollar, Reiss, & Ufer, 2012). Even though this is a 
reasonable choice when viewing proof from a problem solving perspective, the 
adequate presentation of arguments is also a relevant goal of most university 
mathematics programmes (Epp, 2003).  

The form of mathematical arguments 

Engelbrecht (2010) points out that students have to be able to communicate their 
- t the quality 

of a specific mathematical argument, however, the use of a specific formal notation or 

certainly not a necessary feature for the validity and acceptability of a proof, even if 
this feature occurs in many mathematical texts. On the other hand and more generally, 
the precise communication of mathematical ideas is a decisive criterion. This means 
that, if a specific formal notation or specific mathematical language is used, it must be 
used in a precise and correct way. 

However, there is a wide basis of research documenting that students have problems 
to use formal notations and specific mathematical language in a correct way: (1) 

using logical symbols correctly are well documented (Epp, 
2003). One reason for this might be that logical statements can be interpreted 
differently in formal and informal settings. For instance, in informal settings, the 

mathematics, this implication is not valid (Epp, 2003). (2) Clement (1982) reported 
that a large proportion of university engineering students have problems translating 
relationships expressed in spoken language into corresponding mathematical 
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expressions, 

as symbols for objects or persons, writing 8C=E in this case. Comparable problems 
might be identified in symbolizing relationships like the divisibility of two integers. 
(3) Connected to this, students often have trouble with using variable symbols 
correctly. For example, they fail to understand that the value of a variable can be 
arbitrary, but fixed and does not change its value within one algebraic expression. 
Some also fail to introduce the meaning of the variable symbols they use. Epp (2011) 
noted that, alongside the emphasis on mechanical procedures at school, the meaning of 
variables as unknown quantities with specific properties, such as in functions or as 

quantifiers are also well-documented (e.g., Dubinsky & Yiparaki, 2000; Epp, 2003; 
Selden & Selden 2011). It seems to be a challenge for students to understand that the 
meaning of a statement is influenced by the order of the quantifiers, or to know the 

erpreting 
implicit quantifiers (i.e. expressed in words, not symbols) as a significant barrier for 
proof construction. 

as their formal quality (e.g., Selden & Selden, 2009, 2011), the relation between the 
two has rarely been studied. In some works, the two quality aspects seem to be treated 
as fairly separated, as if skills in the formal presentation of arguments are something 
that is necessary primarily after a conclusive chain of arguments is found (e.g., 
Engelbrecht, 2010). While the skill to use some formal aspects might  in this sense  

needs not to be held for all formal aspects. Some works emphasize a stronger 
connection between, for example, understanding the language of logic (as different 
from everyday language) and logical notation, and the understanding of logical 
structures themselves (e.g., Epp, 2003). This is in line with theories that emphasize an 
epistemic function of language use (Sfard, 2008), which assumes that (mathematical) 
thinking is at least partly structured by the mental use of language. Following this line 
of argument, not being able to use formal language, notations or representations 
correctly might reflect and also cause a deficient understanding of the arguments that 
are constructed and presented in a proving or argumentation process. Thus, it remains 
an open question, which aspects of formal quality of stud
to the content quality of these arguments, and which are less related to it. 

GOALS OF THE STUDY AND RESEARCH QUESTIONS 

generating rigorous mathematical argumentations have been reported in many studies 
(e.g., Selden & Selden, 2011), there have been little attempts to study how the content 
quality of mathematical arguments and their formal quality are interrelated. To fill this 
gap, the present study addresses the following questions: (1) Which difficulties of 
mathematical argumentation regarding content and formal quality can be identified? 
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(2) 
arguments form a one-dimensional construct, or is it necessary to differentiate multiple 

 

DESIGN AND METHODS 

N=159 incoming students (72 female) from a regular mathematics programme, 
financial mathematics programme and a mathematics teacher education programme 
with an average age of 19.67 years (SD = 3.18) from two German universities took part 
in our study, which was embedded in a voluntary two-week preparatory course for 
university mathematics. Daily lectures and tutorials about elementary number theory 
as well as about other basic topics such as sets, functions and relations were included 
in this course. On day four, students worked for 45 minutes on mathematical 
argumentation problems from elementary number theory on their own adapted from 

for all natural numbers, a and b the following statement is true: If 15 divides (10a-5b) 
then 3 divides (2a-  the following 

of two natural numbers is even, then the product of these two numbe
4 items with correct and false statements, each).  

To score the content quality -level coding was 

disregarding their formal presentation as much as possible. We scored no or irrelevant 
trials with score zero, partially correct solutions including less than half of all central 
arguments required with score one, solutions including more than half of all central 
arguments but with small methodological errors (like an incorrect proof structure) with 
score two  and completely correct solutions with score three.  

Coding schemes for different aspects of formal quality were developed based on data 
from prior studies: Symbolizing divisibility (e.g., use of the symbol |) was coded on two 
levels (0: incorrect, 1: correct). A three-level coding was applied to score the use of 
logical symbols (e.g.,  or  0: using logical notations, although no logical statement 
is made, 1: use of incorrect logical symbols for logical statements, 2: correct), 
symbolizing definitions ( , : ) (0: not symbolizing of definitions, 
although necessary, 1: incorrect, 2: correct), and the use of variables (0: inconsistent 
or incorrect, 1: correct and consistent, but without systematic introduction, 2: 
completely correct). The use of quantifiers (universal quantifiers and existential 
quantifiers) was coded on four levels (0: no use of quantifier, although necessary, 1: 
incorrect use of a single quantifier, 2: correct use of single quantifiers, but problems 
with the use of consecutive quantifiers, 3: correct). If a certain formal notation or 
corresponding language constructs were not used in a student solution, the respective 
value was coded as missing value. The only exception was if the corresponding aspect 
would have been required to communicate the argument according to the mathematical 



Ottinger, Kollar, Ufer

PME40  2016 4 23 

standards of the course. If this was the case and the corresponding aspect did not occur, 
this was coded with the lowest score (0). All arguments were coded by two independent 
raters and interrater reliability for each part of the test was found to be good (Mean of 
ICC=.86, SD =.08). 

RESULTS 

Descriptive results for the content quality of arguments can be found in Table 1. 

 Technical 
proof skills 

Flexible proof 
skills 

Conjecturing 
skills (true) 

Conjecturing 
skills (false) 

Mean quality score 1.37 (.75) 1.24 (.80) 1.30 (.73) 1.68 (.85) 

Table 1: Means (and standard deviations) of the content quality of arguments  

On average, less than half of all arguments required to completely solve the items were 
present. The findings further support prior results (Reichersdorfer et al., 2012), that 
students have less trouble with refuting false statements than to solve technical proof 
tasks, tasks that require flexible proof skills, or conjecturing tasks for true statements. 

skills. For 
space restrictions, we will not differentiate the different task types in the further 
analysis, even though this might be an interesting direction to pursue.  

as well as presents means and standard deviations of the standardized quality scores 
for the different aspects of formal quality. As might be expected from the type of tasks, 
symbols for defining mathematical objects occurred comparably rarely (24.8%), while 
variables were used in 84.4% of the solutions. It was, nevertheless, possible to write 
arguments of high content quality without using variables. We would like to repeat that 
not using a certain formal notation or corresponding language construct did only result 

urse.  

 Symbolizing 
divisibility 

Use of logical 
symbols 

Symbolizing 
definitions 

Use of 
variables 

Use of 
quantifiers 

Cases 63.5% 59.3% 24.8% 84.4% 40.9% 

Mean score .85 (.36) .77 (.41) .53 (.25) .71 (.32) .53 (.46) 

Table 2: Number of cases coded, means (and standard deviations) of the standardized 
quality scores of the use of symbolic notations and formal representations  

Results indicate that symbolizing definitions and the use of quantifiers caused the most 
problems, followed by the use of variables and the use of logical symbols. We 
identified the following difficulties in the use of symbolic notations and formal 
representations: In 9.4% of all solutions, an incorrect symbolizing of divisibility could 
be observed. a|b
though a did not divide b. In 12.1%, students applied logical symbols invalidly. For 
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example, they used the implication symbol to delineate different statements, even 
though no valid implication could be established between the two statements. They 
marked valid logical relations by the use of an incorrect symbol in 3.4% of all solutions. 
In 2.6 % of all solutions, definitions were not made explicit at all, although the meaning 
of a symbol had been changed. In 18.4%, definitions were made explicit, but using a 
wrong symbol. For instance, some students marked a definition only by using the usual 
equal sign. In 6.4% of all solutions, variables were used inconsistently, for instance, 
representing the sum of consecutive even numbers by (2k) + (2m). In 36.1%, variables 
were used without a systematic introduction that explained what they stood for. We 
found that in 14.5% of all solutions, students did not use quantifiers or verbal 
quantifications, even it would have been necessary. In 6.7%, single quantifiers or 
verbal quantifications were used incorrectly, for example introducing a variable x, with 

used single quantifiers correctly, but still showed problems with the order of 
consecutive quantifiers. 

Table 3: Geomin rotated factor loadings 

To analyse how the quality of arguments and the quality of different formal aspects of 
their representations are interrelated, we used exploratory factor analysis. Missing 
values in codings of formal quality were accounted for using the Full Information 
Maximum Likelihood (FIML) method. Each single task solution represented one case. 
The resulting hierarchical structure of the data (solutions nested in students) was also 
accounted for statistically analysis. Principal components analysis was used because 
the primary purpose of this study was to identify and later compute composite scores 
for the factors. Initial eigenvalues indicated that the first two factors explained 32.67% 
and 18.5% of the variance in all quality codings. The two factor solution was preferred 
because of our previous theoretical considerations and because it showed a 

2 (9) = 40.946, p<.001). 
Table 3 contains the Geomin rotated factor loadings for all quality criteria. The two 
factors were correlated significantly (r=.40, p<.01). 

DISCUSSION 

 Factor 1 Factor 2 
Quality of arguments .445* .142 

Symbolizing divisibility .706* -.037 

Use of logical symbols .676* .010 

Symbolizing definitions .091 .178* 

Use of variables .004 .582* 

Use of quantifiers -.037 .352* 
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arguments and the formal quality of their presentation are interrelated. Firstly, our 
study replicates results that finding adequate arguments and communicating arguments 
with formal precision is a great challenge for students at the secondary-tertiary 
transition in mathematics (e.g., Clark & Lovric, 2008; Selden & Selden, 2009). In 
particular, when longer arguments have to be produced, students at the transition show 
similar problems as were reported for secondary students (Ufer et al., 2008) to find and 
describe conclusive chains of multiple deductive arguments. Regarding the formal 

are documented in the literature, e.g., use of mathematical symbols, use of variables 
and quantifiers, and explicating definitions (e.g., Epp, 2003; Selden & Selden, 2011). 

Apart from this, our study is to our knowledge the first that systematically studies 

There are good theoretical arguments to assume that some of the formal aspects are 
quite unrelated to the content quality of an argument (Engelbrecht, 2010). 
Nevertheless, there are also theoretical reasons to assume that some formal aspects 
might be connected to the content quality of an argument (Epp, 2003; Sfard, 2008). We 
took an explorative approach to study these relations, and our analyses indicate that 
two dimensions of argument quality can be distinguished in our sample. One of these 
dimensions is substantially related to the conte
also to higher scores on symbolizing divisibility and using logical symbols for the 
respective arguments. Both of these formal aspects address relations between 
mathematical ideas (numbers and statements). The other dimension, largely unrelated 
to content quality, described the use of variables and quantifiers and  less pronounced 

 symbolizing definitions. These formal aspects seem to be more relevant to clarify the 
meaning of the mathematical objects used in an argument. 

Of course our study was restricted to a specific educational setting and mathematical 
content. Nevertheless, our results indicate that not all, but some aspects of formal 
argument quality go along with the quality of the argument to be presented itself. If 
these results can be sustained, they might offer fruitful information to conceptualize 
student support in the learning of mathematical argumentation and proof. In particular, 
it might be possible to address some aspects (e.g., variables, quantifiers) separately in 
form of general behavioural schemata (Selden & Selden, 2009), while for others (e.g., 
logical symbols) a deeper connection to the underlying argument content will be 
necessary. 
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