
TabletopCars - Interaction with Active Tangible Remote
Controlled Cars

Chi Tai Dang
Augsburg University

Department of Computer Science
Human Centered Multimedia

Universitaetsstr. 6a
86159 Augsburg, Germany

dang@informatik.uni-augsburg.de

Elisabeth André
Augsburg University

Department of Computer Science
Human Centered Multimedia

Universitaetsstr. 6a
86159 Augsburg, Germany

andre@informatik.uni-augsburg.de

ABSTRACT
In this paper, we report on the development of the compet-
itive tangible tabletop game TabletopCars, which combines
the virtual world with the physical world. We brought to-
gether micro scaled radio controlled cars as active tangibles
with an interactive tabletop surface to realize the game. Fur-
thermore, we included Microsoft Kinect1 depth sensing as
an interaction mode for embedded and embodied interac-
tion. Our aim was to investigate the possibilities that emerge
through the augmentation capabilities of interactive table-
tops for creating novel game concepts and the interaction
modes that novel input devices facilitate. This work presents
TabletopCars as a testbed for embedded and embodied inter-
action and describes the system in detail. Finally, we report
on a preliminary user study where users controlled the active
tangible micro scaled cars through hand gestures.

Author Keywords
Tabletop game, tangible objects, interaction, design.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

General Terms
Design, Experimentation, Human Factors.

INTRODUCTION
Small-scale radio controlled cars, also called R/C cars, have
always been fascinating and attractive toys for all age groups.
R/C cars have in common that they are controlled over a
radio-frequency link with a wireless connected controller de-
vice. There is a variety of different kinds of R/C cars that
depend on the cost, size, power source and engine, achiev-
able speed, or level of detail in terms of resemblance to a
1http://www.xbox.com/KINECT/ (Sep. ’12)

© Author | ACM 2013. This is the author's version of the work. It is 
posted here for your personal use. Not for redistribution. The 
definitive Version of Record can be found at 
http://dx.doi.org/10.1145/2460625.2460630

Figure 1. The remote controlled microsizer (right) with their radio re-
mote control and the byte tag on the underside.

real car model. In general, such cars can be electrical pow-
ered or nitro/gas powered. Nitro powered R/C cars are meant
to be operated outdoors, for example, at large race courses
where multiple players compete for the best lap time or to
be the first player who crosses the finish line. Actually, the
most frequent usage for nitro powered cars are competitions
that are organized as professional events by R/C car clubs.
Electrical powered models, however, can also be operated
within buildings or small rooms since they do not produce
exhaust fumes. The sizes of electrical powered models range
from scales of 1:5 down to 1:87 or even smaller, whereby the
smallest models are called microsizers with lengths around
5cm (see Figure 1). Such models often have limitations, for
example, in terms of power capacity or radio control capa-
bility. While the bigger sized models have to be operated
on large areas, the application of microsizers is limited to
small areas due to their weak radio-frequency link. The ra-
dio control’s coverage of such microsizers is usually up to
10m, which makes them well suited for games that require
only little space. An example of such a requirement is driv-
ing the microsizers on a table where players are located face
to face. This quality is inherently different from the typical
car-racing scenario where players usually stand side by side
and concentrate on distant R/C cars. The proposed scenario
offers chances and qualities known from board games.

1



Instead of playing on a static table surface, employing an in-
teractive tabletop such as the Microsoft Surface2 for games
with microsizers offers much potential for dynamic enhance-
ments. In general, interactive tabletops have in common
that they display arbitrary digital content on a table-sized
surface, which also serves as the input device. The sur-
face of such tabletops is able to sense any kind of objects
or contacts on the surface. Thereby, combining microsiz-
ers with interactive tabletops provides rich possibilities for
creating game designs, novel game concepts, and increased
game experiences, for example, through integrating virtual
and real world objects into the gameplay as proposed in [5].
Furthermore, this concept benefits from qualities that are
known from computer games, such as computer-mediated
game management or augmentation of the microsizer de-
pending on their playing context.

This kind of interaction falls into the general category of in-
teraction with tangible user interfaces, for example [6, 4],
whereby the usage of tangible objects that are self propul-
sive in the form of locomotion assigns this interaction into
the concrete extension called active tangible interaction [14].
Since users interact with the microsizers locally, the concept
is based on local active tangible interaction as defined by
Mueller et al. [14, p. 171]. Building systems to investi-
gate active tangible interaction is usually attended by labo-
rious handicraft work to fabricate the active tangibles [9] or
to establish reliable position sensing of the tangibles such as
proposed in the system DMCS [17].

This paper presents an easy and low-cost approach to realize
the concept of local active tangible interaction based on mi-
crosizers. The proposed design combines microsizers with
an interactive tabletop, thus extends the range of applications
for microsizers and at the same time offering a testbed for in-
vestigations for local active tangible interaction. We imple-
mented an application called TabletopCars that is based on
this concept, which consists of four different games for the
microsizers. Furthermore, we connected the original radio
control units of the active tangible cars to a software layer
by utilizing a microcontroller in order to enable embedded
and embodied interaction. We describe the whole system
in detail and report on issues that arose in engineering such
an interactive system. Finally, we present results of a pre-
liminary user study that indicates the general acceptance of
embedded and embodied interaction with active tangible mi-
crosizers.

RELATED WORK
Games that are based on tangible user interfaces and inter-
active tabletops have often been the focus for investigations,
for example STARS [13], Weathergods [1], PINS [8], Inc-
reTable [10], Optical Chess [20], Comino [11] or Futura
[16]. However, only few have been done for active tangi-
ble interaction.

On a conceptional level, Jain et al. presented Sketch-a-Move
[7] which allowed children to explore the relationship be-
tween courses drawn with the finger on small physical cars
2http://msdn.microsoft.com/en-us/library/ee804902.aspx (Sep. ’12)

and the corresponding physical movements of the cars. In
comparison with the concept of TabletopCars, Sketch-a-Move
involved seperated interaction and execution phases, whereas
the interaction in TabletopCars is direct and immediate.

Robert and colleagues [15] built a mixed reality robot gam-
ing platform where the user teleoperated a small robot called
Miso. This robot was the active tangible, which moved within
a hybrid space that combines physical and virtual spaces by
means of displays and projectors. The projection was used
to augment the physical space with virtual objects in order to
create a mixed reality. Their mixed reality system focused on
interaction of a robot with its virtual peers, whereas we ad-
dress novel interaction possibilities with active tangible mi-
crosizers.

Kojima et al. [9] reported on an augmented game environ-
ment with small vehicles that is called augmented coliseum
where a robot attacked another robot with an augmented
laser cannon. Their augmentation of the game environment
also included a central part of the tracking system called
display-based measurement system, which was the focus of
their work.

Tanev et al. presented a system in [18, 19] which connected
the radio remote control of a small scaled car to a computer.
They tracked the position of the microsizer by means of a
live video feed of the gaming environment and developed a
driving agent that remotely operated the car through a lap
with obstacles. Tanev’s work focused on algorithms that en-
abled the driver agent to optimally achieve the best lap time
in a manner that competes with human drivers.

Robot Arena [3] is a system presented by Calife that built
on small Lego robots with an interactive table. The position
of the robots on the surface was tracked via a top-mounted
webcam combined with markers on top of the robots. The
presented system represents an infrastructure for the devel-
opment of novel games and interactive applications. There-
fore, the authors concentrated on describing the system de-
sign and architecture instead of interaction possibilities and
modes.

The work of Haller et al. [5] reported on design recommen-
dations concluded from experiences with several tabletop
games. One of the games was called NeonRacer, which is
related to TabletopCars in the sense that small cars had to
be navigated through a course with tangible obstacles. They
showed that everyday objects such as beverage cans or cups
can be used to enhance gaming experience on interactive
tabletops. In contrast to TabletopCars, the cars in NeonRacer
were virtual objects and the interaction was carried out with
traditional game pads. In a pilot study, the authors found
that players often had orientation difficulties stemming from
the car orientation when using the game pad. Many par-
ticipants would prefer a more intuitive interface for the in-
teraction. Their results motivate TabletopCars, which offers
the possibility to connect natural interaction devices such as
the Microsoft Kinect depthsensor. Furthermore, supporting
embodied interaction also increases player’s engagement as

2



found by in Bianchi-Berthouze [2] or Lindley [12], which
promises for novel gaming experiences.

SYSTEM OUTLINE
To realize our active tangible game system, we combined the
Microsoft Surface tabletop with micro sized cars from Simu-
lus as sketched in Figure 2. In order to enable embedded
and embodied interaction experience, we built a controller
unit that establishes wireless control of the micro sized cars
through arbitrary input devices and systems, such as the Mi-
crosoft Kinect sensor, a standard PC-keyboard, or traditional
game pads. The following sections describe each of the com-
ponents in detail.

Controller API

Input Devices

Tracking

Keyboard

Game: TabletopCars

rc-car rc-car

T
a

b
le

to
p

Gamepad

FUBI, OpenNI

Direct 

Control

High-Level 

Control

Obstacle

Obstacle

Obstacle

Figure 2. The system outline of TabletopCars.

Microsoft Surface
TabletopCars was implemented for the Microsoft Surface
tabletop, which is a commercially available horizontal multi-
touch tabletop that provides a development kit for the cre-
ation of applications. The form factor conforms to a living
room table where people sit around on chairs or couches.
The tabletop’s vision system offers multi-touch recognition
and object tracking based on infrared light technology and
rear-projection. The surface measures 24” x 18” with a res-
olution of 1024 x 768 pixel.

Micro R/C Cars
The micro sized cars (Simulus NC-1195/NC-1196) employed
in TabletopCars are miniature models of racecars sized 61mm
x 32mm x 28mm (L x W x H). Their engine, magnets for
steering control, and lights are electrically powered by a
rechargeable battery, which lasts for about 5 minutes of con-
tinuous operation and can be charged within 10 minutes. The
engine and steering control are radio-controlled over a wire-
less connection at the frequencies 27 MHz and 40 MHz by
means of a proprietary frequency signal scheme. The origi-
nal radio control unit depicted in Figure 1 provides four but-
tons for controlling the car. The buttons at the top and bot-
tom produce forward and reverse motion on the back wheels
at a constant speed, whereas the buttons at the left and right
produce left and right turns on the front wheels. Thereby,
these commands afford to drive the car forward or backward
at a constant speed while having the choice to drive straight
or to turn left or right at a fixed turn radius.

Position and Orientation Sensing
In order to realize a game mangement that maintains a state
of the physical world above the tabletop surface, all tangi-
ble objects needs to be tracked and identified by the sys-
tem. Therefore, TabletopCars makes use of the tabletop vi-
sion system’s capabilities that include detection and track-
ing of so called byte tags3 which are also known as surface
domino tags. Such tags encode a byte value (0 to 255) and
also the direction in which the tag was placed as a geometri-
cal scheme. A byte tag is mounted on the underside of each
car in between the rear wheels as depicted in Figure 1. The
gap between the tabletop surface and the byte tag is adjusted
to about 1mm in order to ensure a stable detection and to
prevent friction between the byte tag with the tabletop’s sur-
face.

Furthermore, the motor speed of the cars in their original
condition was too high for the tabletop’s vision system re-
sulting in loosing track of the cars at default driving speed.
Therefore, we electrically modified the cars and reduced the
motor speed by installing a resistor in between the main
power line of the car engine and the battery. This modifi-
cation reduced the maximum speed of the cars as well as the
start-up speed while maintaining full functionality. The re-
sistor has a value of 15Ω which is the best tradeoff between
slowing down the cars while ensuring a reliable start-up of
the engines. Despite this modification, the cars might still
drive too fast for a short time in the rare situation when a car
drives over the full distance of the surface without stopping.
TabletopCars compensates this rare situation successfully by
accounting for short periods (<= 1sec) of tracking loss.

Physical Obstacles
In addition to the microsized cars, we employ physical ob-
jects as part of the game environment in TabletopCars. The

Figure 3. The tangible objects used as obstacles in TabletopCars.

objects act as obstacles which the cars have to drive around,
for example miniature models of trees, traffic cones or oil-
drums as depicted in Figure 3. These objects are printed out
by means of the BFB-30004 which is an affordable desktop
3http://www.microsoft.com/download/en/details.aspx?id=11029
4http://www.bitsfrombytes.com (Sep. ’12)

3



3D printer. The objects are assembled in layers, where the
layers consist of either PLA (Polylactic Acid) or ABS (Acry-
lonitrile Butadiene Styrene) thermoplastic material with a
layer thickness of 0.125mm, which also enables printing of
detailed and fine grained structures as can be seen for the
oildrums in Figure 3. The printed objects are painted af-
terwards to match the coloration of real objects. Therefore,
they are printed with white colored material as white mate-
rial affords the most neutral background. Finally, the objects
are tagged with a byte tag at the bottom side so as to be
tracked by the tabletop system.

Another approach to realize tracking is to consider the pat-
tern of the byte tags in the design state, that is to include the
pattern on the bottom side of the model, which also works
well. However, we decided to use additional byte tags due to
more flexibility in case of changing the tag values for partic-
ular objects. The proposed process to create physical objects
is ideal for realizing tangible objects for tangible interaction,
since it enables to model individual objects easily while tak-
ing haptics into account. Furthermore, it allows for cost-
efficient producing of individual designs that are customized
to particular applications.

Remote Controller Unit
In order to build the basis for realizing embedded and em-
bodied interaction, the microsized cars need to be control-
lable by the tabletop computer. Therefore, we have devel-
oped a remote controller unit that connects the original re-
mote controls of the cars to a serial COM-port by means
of a microcontroller. The remote controller unit depicted in
Figure 4 also houses the antennas, charging indicators, and
serves as a charging station for the cars. Furthermore, an
external power supply makes the system independent of ad-
ditional batteries.

Figure 4. The front- and backview of the remote controller unit.

The remote controller unit is built on the open source rapid-
prototyping board Arduino Uno Revision 35, which is based
on the microcontroller Atmel 328 as the core component.
The Arduino platform is widely used for physical computing
development due to its simple development environment that
employs a variant of the C programming language accompa-
nied by an easy-to-use, rich, and versatile function library.
5http://arduino.cc/en/Main/ArduinoBoardUno (Sep. ’12)

Hence, it enables development of prototypes in quite a short
time. The particular microcontroller provides 14 digital in-

Figure 5. The inner view of the remote controller unit with the micro-
controller in the middle and the original remote controls at the left and
right.

put/output ports of which eight are used to drive reed-relays
that trigger the button presses on the original remote controls
(see Figure 5).

Controller API Layers
In order to keep the remote controller unit’s operation as sta-
ble and reliable as possible, the functionality within the mi-
crocontroller’s firmware is limited to the basic commands,
that is drive forward, drive backward, turn left, and turn
right. In addition to that, there is an extended drive com-
mand which produces drive pulses similar to a PWM (Pulse
Width Modulation) to realize different driving speeds. The
remote controller unit provides a USB connection that of-
fers a virtual COM port for communication with a high-level
API.

The high-level API is developed as a C#-library that wraps
the connection and low-level communication with the mi-
crocontroller into a static class. This class enables to submit
direct commands to the cars for driving or steering which
makes it simple to map input devices such as a keyboard,
a WiiMote controller, or a traditional game pad directly to
the cars’ functions. These functions might also be redirected
through a game logic to influence the behavior of a car, for
example to match certain game conditions such as imitat-
ing the behavior of a car when driving over a sleek or clut-
tered ground. Furthermore, the library offers higher-level
functions such as driving to a given position which involves
submitting a sequence of driving and steering commands de-
pending on the currently tracked position for the respective
car.

TABLETOPCARS GAMES
TabletopCars is developed as a C#-application employing
the Microsoft Surface SDK and provides four different game

4



modes, which have in common that they have to be played
in a competitive manner. Each of the game modes has a time
limitation that requires the player to gain as much points as
possible within the time frame. In order to start a game,
the players’ corresponding cars have to be identified by their
byte tag value. Hence, each car has to be placed at a given
start location as depicted in Figure 6. As soon as Tabletop-
Cars has detected the byte tag values and mapped them to
the corresponding cars, a timer counts down to zero. The
players then have to achieve the goal of the particular game.

The bridge between the virtual and physical world is based
on the tracking capabilities of the tabletop system which can
be broken in certain situations, such as when a car leaves the
tabletop surface, or when obstacles get knocked over by a
car. In such cases, TabletopCars pauses the game and indi-
cates the cars’ last positions in the virtual world by display-
ing blinking circles at the particular location on the surface.
In order to continue the game, the cars have to be placed at
the correct locations after which a countdown starts again.

Car Soccer
Similar to a real soccer game, the Car Soccer game offers a
green meadow with big goals at both sides of the play area
as depicted in Figure 6. Furthermore, there is a virtual soc-
cer ball that can be moved over the play area. The aim of
this game is to achieve points by kicking the ball into the
opponent’s goal.

Figure 6. Car Soccer: The initial placement of the cars.

TabletopCars takes the dimensions of the cars into account
for a simple collision detection to recognize when a physical
car gets in contact with the virtual ball. Depending on the
speed of the car and the point of contact, the virtual ball
gets either moved or kicked into the appropriate direction,
thus gives the virtual ball a realistic behavior that imitates a
real soccer ball in terms of physical behavior. Furthermore, a
sound for kicking the ball and scoring a goal gives additional
feedback to the players.

Car Crashing
Contrary to the Car Soccer game, the Car Crashing game
focuses on physical contact of the cars. The aim is to drive
with the front of the car into the opponent’s car. Points are
distributed depending on the parts of the cars where the hit

Figure 7. Car Crashing: The blue car hitting the red car at the side
(left); Parcours: An example course with physical obstacles and virtual
oil slicks (right).

took place. If both cars hit each other in the front, then both
players scores 3 points because none of the players is at an
advantage. If one player hits the other at the side (see Figure
7) or at the back of opponent’s car, then the player causing
the hit scores 5 points because the player is at an advantage
and the active part within the crash.

Fastest Lap
One of the most common games with remote controlled cars
is driving a car on laps as fast as possible in order to achieve
the shortest time for a lap over the opponent’s lap times.
Fastest Lap implements this game on the tabletop surface
where players have to skillfully maneuver their cars as quick
as possible through a lap over the track.

Figure 8. Fastest Lap: Two-player mode (left); Single player mode
(right).

The game area consists of a round track on which the cars
have to drive, and the start or finish line respectively. Since
there is no physical barrier that delimited the round track, the
cars can also drive off. Therefore, colored arrows correlating
to the colors of the cars assist the players and indicate transit
points on the track that needs to be crossed by the cars in
order to successfully complete a lap (see Figure 8). For each
lap, the lap times are measured and shown together with the
best lap time per player. Fastest Lap also offers to choose
the amount of laps for each game session within an options
menu. The player with the best overall lap time wins the
game. Fastest Lap offers a single player mode and a two-
player mode as depicted in Figure 8. In contrast to the two-
player mode, the single player mode records the actual path
that the car drives for each lap and stores the path for the
best lap time. Thereby, a virtual ghost car that displays the
path of the best lap in the correct chronology accompanies
the game as soon as a recorded lap is available.

5



Parcours
The Parcours game makes use of tangible objects as obsta-
cles (see Figure 3). They are placed on the tabletop surface
to compose a course, which the cars have to drive through as
exemplarily depicted in Figure 7. Parcours offers two modes
of which the first one provides a level editor to create courses
with particular obstacle placements, and the second one pro-
vides the actual game to play a formerly determined course.

Game rules
In order to successfully pass a course, players have to ma-
neuver their cars through several waypoints as quick as pos-
sible and with as few mistakes as possible. The waypoints
are connected to a path which is visually indicated by green
lines, as shown in Figure 7. Each course has a start and finish
line that needs to be passed by the cars whereby they trig-
ger a stopwatch measuring the time taken to pass the course.
In addition to the physical objects on the surface, there are
virtual oil slicks on the course which the cars have to drive
around. In order to determine the winner of a match, the
game manages a score for each player, which is calculated
as follows. Each passed obstacle scores 10 points and each
collision with an obstacle reduces the score by 10 points. In
case a car hits an oil slick, the score gets reduced by 5 points.
Finally, the score is weighted with the time taken to pass the
course in order to determine the overall score.

Level Editor
The level editor enables a player to compose a course by sim-
ple placements of tangible objects and touch interaction. The
simplest course is defined by a start and finishing line that is
also the initial course shown at the start of the level editor.
The start and finishing lines can be repositioned and manip-
ulated by touch interaction with the fingers. Each physical
obstacle defines a waypoint that needes to be passed by the
cars. When placing an obstacle on the surface, the path gets
adapted to include the new waypoint and by rotating the ob-
stacle around its z-axis, the waypoint position around the ob-
stacle changes depending on the orientation of the obstacle
(see Figure 7). In this phase, oil slicks are added, reposi-
tioned, or removed by means of touch interaction.

EARLY USER FEEDBACK
A first version of TabletopCars was presented to eight com-
puter science students in order to gather comments and early
user feedback on the design and game concept. This first ver-
sion had all four games implemented and had to be played
with the original remote controls. Extended functionality
through the remote controller unit was not taken into account
due to early development status. The students learned the us-
age of the remote control within few minutes and all students
preferred the two-player mode due to the higher fun factor
when playing against a human player. Overall, the students
had never played such a game concept and were really keen
on the idea to have active tangible cars enhanced with a dig-
ital environment.

All players rated Car Crashing as the most preferred game
with the highest fun factor because of the physical crashes
of the cars and the act of chasing the opponent’s car. The

early user feedback showed that users quickly understood
the interaction and the game concept with active tangible
cars. The user’s comments provided us with suggestions for
improvements, for example, adapted placement of the point
indicators nearby the cars. It turned out that players had dif-
ficulties with keeping their score in view when displayed at
a static marginal position. Since their attention was focused
on the cars, scoring events should be displayed nearby the
appropriate cars.

EMBEDDED AND EMBODIED INTERACTION
In order to enable embedded and embodied interaction, the
Microsoft Kinect depthsensor was employed as an interac-
tion modality in TabletopCars. The depthsensor captured the
whole body of players and tracked a rough skeleton model
of them. Using the skeleton model, players can interact with
their hand, arm, or body gestures. For TabletopCars, the
depthsensor was connected to the game by using the Full
Body Interaction Framework6 (FUBI), which made use of
the middleware OpenNI7 for tracking the skeleton model.
FUBI enables easy recognition of static postures or a se-
quence of postures as dynamic gestures through providing
simple XML declarations of the gestures to be recognized.

We realized two simple sets of postures for an initial ex-
ploration of such kind of interaction with active tangible
cars. The first set makes use of the steering wheel metaphor
known from real cars where both hands hold a virtual steer-
ing wheel in front of the player as shown in the skeleton
model in Figure 9. Turning the steering wheel to the left
or to the right is directly mapped to turn commands to the
controlled car. Pushing both hands forward or pulling them
backward is mapped to forward and backward driving com-
mands of the controlled car. The second set of postures re-

Figure 9. Kinect steering pose (left); Virtual buttonfield (right).

quires only one hand to submit the commands and is based
on a virtual ”button field” (see Figure 9) spanned vertically
in front of the user where the user triggers a button by mov-
ing one hand into the area of the button. Depending on
whether the player is left handed or right handed, the stop
button is adjusted to the left or the right at hip level in order
to enable a comfortable initial position of the hands. Each
button has a square form with the length of 25cm for a side.
6http://www.informatik.uni-augsburg.de/en/chairs/hcm/projects/fubi
7http://openni.org (Sep. ’12)

6



User Feedback
For an initial exploration and to get user feedback on em-
bedded and embodied interaction, we conducted a prelim-
inary explorative study to investigate how users cope with
this kind of interaction. We compared the presented set of
postures with the original remote controls as the baseline in
order to get comments on the interaction. Therefore, we re-
cruited 20 volunteers, 17 males and three females, aged from
22 to 34 with a mean age of 28. Each of them was right-
handed and all of them were computer science students or
researchers.

Procedure
We chose Car Crashing for the exploration because of rat-
ings from early user feedback, which stated Car Crashing as
the easiest and most favorite game. Each session was carried
out with two volunteers at the same time who played against
each other. The players stood side by side at about 40cm
distance to each other in front of the tabletop and the Kinect
sensor. Both players were tracked by the Kinect sensor and
had a clear view on the tabletop. Each volunteer was given
an introduction into the game rules and all three interaction
modes, that is the original remote control, the Kinect steer-
ing wheel metaphor, and the Kinect buttonfield. The order
of interaction modes was randomized for each pair of vol-
unteers. After each introduction, the volunteers were given
up to 5 minutes to get acquainted with the interaction mode.
For this phase, players were instructed to try out each of the
commands and to navigate their car for several circular laps
over the surface one after another. As soon as each volun-
teer confirmed acquaintance with the interaction mode, the
volunteers were allowed to play one Car Crashing session.
Finally, the volunteers were instructed to fill out a question-
naire that asked for comments on and preference of interac-
tion modes.

Results and Discussion
The volunteers were asked to give a preference for an in-
teraction mode where multiple choices were allowed. One
of the volunteers preferred only the Kinect steering wheel
metaphor and 19 of them preferred the original remote con-
trol. Of these 19, three also gave the Kinect steering wheel
metaphor as preference and another one would also prefer
the buttonfield.

Since players reported in [5] about orientation difficulties
with the cars, the questionnaire also asked for the best ori-
entation awareness. The comprehension of the direction in
which the car drives is important because left and right turn-
ing commands depend on the orientation of the car. Overall,
we observed orientation difficulties with all three interaction
modes because players corrected their steering commands
every once in a while after they realized that the car moved
into the wrong direction. Three of the volunteers stated the
Kinect steering wheel metaphor as the only preference for
orientation awareness, while 17 preferred the original re-
mote control. Of the 17, four also stated the Kinect steering
wheel metaphor as preference and two other volunteers also
gave the Kinect buttonfield the preference.

The volunteers showed a preference for the original remote
control, while 35% stated the Kinect steering wheel metaphor
as a preference for the comprehension of orientation. The
comments in the questionnaire and in talks afterwards re-
vealed that most players had the feeling of more immedi-
ate and direct control with the original remote control com-
pared to the additional latency induced by the Kinect sens-
ing. 50% of the volunteers commented that they would pre-
fer the Kinect steering wheel metaphor if the latency would
have been lower because of the novelty of the interaction.
The latency from Kinect sensing was not only a technical is-
sue, but also an issue of the amount of movements required
to submit a command. Compared to a button press move-
ment on the original remote control, the movement with the
hands for the Kinect sensing showed a higher extent, which
resulted in the feeling of additional latency. Further com-
ments from players proposed that higher-level interaction
techniques would be desired. For example, one hand to point
at a position on the surface where the car shall drive to and
the other hand for controlling the engine with finger pos-
tures.

Overall, all volunteers quickly understood the interaction
modes and could cope with them. The preference for the
original remote control stems from implementation issues
such as latency beside of familiarity with the remote con-
trol. Furthermore, the comments showed that Kinect sensing
would also be an acceptable interaction mode if the interac-
tion was implemented more intuitively and easier to perform.

CONCLUSION
This paper described the TabletopCars system and its com-
ponents. We discussed the issues that arose in engineering
such an interactive system to enable embedded and embod-
ied interaction. Early user feedback showed that users enjoy
the novel concept on games with active tangible cars within
a digital environment. The feedback for novel interaction
modes that take the whole human hand into account is en-
couraging in the sense that it would be accepted by users
as an input mechanism if the implementation was more in-
tuitive. Such an improvement might be to employ pointing
gestures combined with finger postures for the driving com-
mands. In conformance with Haller [5], we also observed
orientation difficulties of players when controlling the car,
which could be eliminated by using pointing gestures.

FUTURE WORK
Among improvement of the interaction, comments from user
feedback during several play sessions suggest to influence
the physical behavior of cars under certain circumstances,
for example to adapt the behavior of the cars when driving
over different virtual grounds or over an oil slick. Therefore,
the next steps include redirecting the submitted commands
through a game logic to modify the submitted commands in
order to adapt the car behaviors so as to adapt to the context
in the virtual world. Another purpose of this extension is
to enhance game management, for example to stop sending
commands to the cars after a physical obstacle has been hit
and needs to be repositioned.

7



ACKNOWLEDGMENTS
The work described in this paper is partially funded by the
EU under research grant eCUTE (Reference: 257666). We
also thank our students Franziska Mossner, Andreas Seiderer
and Matias Schulz for their contribution.

REFERENCES
1. S. Bakker, D. Vorstenbosch, E. van den Hoven,

G. Hollemans, and T. Bergman. Weathergods: tangible
interaction in a digital tabletop game. In Proceedings of
the 1st international conference on Tangible and
embedded interaction, TEI ’07, pages 151–152, New
York, NY, USA, 2007. ACM.

2. N. Bianchi-Berthouze, W. W. Kim, and D. Patel. Does
body movement engage you more in digital game play?
and why? In Proceedings of the 2nd international
conference on Affective Computing and Intelligent
Interaction, ACII ’07, pages 102–113, Berlin,
Heidelberg, 2007. Springer.

3. D. Calife, J. a. L. Bernardes, Jr., and R. Tori. Robot
arena: An augmented reality platform for game
development. Comput. Entertain., 7(1):11:1–11:26,
Feb. 2009.

4. G. W. Fitzmaurice. Graspable User Interfaces. PhD
thesis, University of Toronto, 1996.

5. M. Haller, C. Forlines, C. Koeffel, J. Leitner, and
C. Shen. Tabletop games: Platforms, experimental
games and design recommendations. In Art and
Technology of Entertainment Computing and
Communication, pages 271–297. Springer, 2010.

6. H. Ishii and B. Ullmer. Tangible bits: towards seamless
interfaces between people, bits and atoms. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’97, pages 234–241,
New York, NY, USA, 1997. ACM.

7. A. Jain, L. Klinker, M. Kranz, C. St
”oger, D. Blank, and L. M
”osenlechner. Sketch-A-Move - Design Inspired
Technology for Children, 2006.

8. T. Kirton, H. Ogawa, C. Sommerer, and
L. Mignonneau. Pins: a prototype model towards
thedefinition of surface games. In Proceedings of the
16th ACM international conference on Multimedia,
MM ’08, pages 953–956, New York, NY, USA, 2008.
ACM.

9. M. Kojima, M. Sugimoto, A. Nakamura, M. Tomita,
M. Inami, and H. Nii. Augmented coliseum: An
augmented game environment with small vehicles. In
Proceedings of the First IEEE International Workshop
on Horizontal Interactive Human-Computer Systems,
pages 3–8, Washington, DC, USA, 2006. IEEE
Computer Society.

10. J. Leitner, M. Haller, K. Yun, W. Woo, M. Sugimoto,
M. Inami, A. D. Cheok, and H. D. Been-Lirn. Physical

interfaces for tabletop games. Comput. Entertain.,
7:61:1–61:21, January 2010.

11. J. Leitner, C. Kffel, and M. Haller. Bridging the gap
between real and virtual objects for tabletop games.
International Journal, 7(4):1–5, 2009.

12. S. E. Lindley, J. Le Couteur, and N. L. Berthouze.
Stirring up experience through movement in game play:
effects on engagement and social behaviour. In
Proceedings of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems,
CHI ’08, pages 511–514, New York, NY, USA, 2008.
ACM.

13. C. Magerkurth, M. Memisoglu, T. Engelke, and
N. Streitz. Towards the next generation of tabletop
gaming experiences. In Proceedings of Graphics
Interface 2004, GI ’04, pages 73–80, School of
Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 2004. Canadian Human-Computer
Communications Society.

14. C. Mueller-Tomfelde. Tabletops - Horizontal
Interactive Displays. Human-Computer Interaction
Series. Springer, 2010.

15. D. Robert, R. Wistorrt, J. Gray, and C. Breazeal.
Exploring mixed reality robot gaming. In Proceedings
of the fifth international conference on Tangible,
embedded, and embodied interaction, TEI ’11, pages
125–128, New York, NY, USA, 2011. ACM.

16. T. Speelpenning, A. N. Antle, T. Doering, and
E. van den Hoven. Exploring how tangible tools enable
collaboration in a multi-touch tabletop game. In
Proceedings of the 13th IFIP TC 13 international
conference on Human-computer interaction - Volume
Part II, INTERACT’11, pages 605–621, Berlin,
Heidelberg, 2011. Springer.

17. M. Sugimoto, K. Kodama, A. Nakamura, M. Kojima,
and M. Inami. A display-based tracking system:
Display-based computing for measurement systems. In
Proceedings of the 17th International Conference on
Artificial Reality and Telexistence, ICAT ’07, pages
31–38, Washington, DC, USA, 2007. IEEE Computer
Society.

18. I. Tanev, M. Joachimczak, and K. Shimohara.
Evolution of driving agent, remotely operating a scale
model of a car with obstacle avoidance capabilities. In
Proceedings of the 8th annual conference on Genetic
and evolutionary computation, GECCO ’06, pages
1785–1792, New York, NY, USA, 2006. ACM.

19. I. Tanev and K. Shimohara. Towards human
competitive driving of scale model of a car.
SIGEVOlution, 2:14–26, December 2007.

20. A. Wu, D. Joyner, and E. Y.-L. Do. Move, beam, and
check! imagineering tangible optical chess on an
interactive tabletop display. Comput. Entertain.,
8:20:1–20:15, December 2010.

8


	General Terms
	Introduction
	Related Work
	System Outline
	Microsoft Surface
	Micro R/C Cars
	Position and Orientation Sensing

	Physical Obstacles
	Remote Controller Unit
	Controller API Layers


	TabletopCars Games
	Car Soccer
	Car Crashing
	Fastest Lap
	Parcours
	Game rules
	Level Editor


	Early User Feedback
	Embedded and Embodied Interaction
	User Feedback
	Procedure
	Results and Discussion


	Conclusion
	Future Work
	Acknowledgments
	REFERENCES 

