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Vibrational properties and magnetic specific heat of the covalent chain antiferromagnet RbFeSe2
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The magnetic specific heat of RbFeSe2 and the spin state of Fe3+ ions in the compound have been studied.
Phonon dispersion and phonon density of states (PDOS), element specific and total, were evaluated from first-
principles calculations. It is shown that iron atoms in quasi-one-dimensional chains have dramatically different
vibrational properties against Rb and Se atoms: the Fe PDOS is mostly concentrated within two Einstein-like
optical phonon peaks at high frequencies. Analysis of our Mössbauer data for RbFeSe2, utilizing the calculated
Fe PDOS as well as our optical absorption measurements, have shown full agreement with the location of the
high-frequency optical-type lattice vibrations within the FeSe4 tetrahedra. The calculated PDOS was utilized
to evaluate the lattice contribution to the specific heat. The phonon heat capacity has been used to evaluate
the magnetic specific heat of the quasi-one-dimensional antiferromagnetically correlated Fe3+ ion chains in
RbFeSe2. An intermediate spin state S = 3/2 has been found most closely relevant to our magnetic entropy
analysis for Fe3+ ions in RbFeSe2.
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I. INTRODUCTION

The recent discovery of iron-based superconductors [1–4]
has triggered enormous interest in iron-pnictide and chalco-
genide materials. The crystal structure of these iron-based
superconductors contains two -dimensional (2D) layers built
of FePn4 or FeCh4 (Pn = pnictogens, Ch = chalcogens)
tetrahedra. Recently [5], pressure-induced superconductivity
has been discovered in the spin-ladder compound BaFe2S3

consisting of one dimensional (1D) chains of FeS4 tetrahedra.
The mechanism of superconductivity and its relation to the
crystal structure in these systems of reduced dimensionality
are still under debate. In order to achieve deeper insight into
the nature of superconductivity and its relation to magnetism,
the study of materials containing similar building blocks is of
significant interest.

In our previous paper [6] we have studied magnetization,
heat capacity, and Mössbauer effect in single crystals of
the ternary iron selenide RbFeSe2. This compound belongs
to the family AFeCh2 (A = alkali metal or Tl), which are
quasi-1D systems by crystal structure [7–9], although most
of them undergo 3D antiferromagnetic order [8–17] with
Néel temperatures TN lying in the range of 188–310 K.
Magnetic susceptibility, specific heat, and Mössbauer spectra
of RbFeSe2 were measured in a wide range of temperatures
and interpreted in terms of conventional approaches. In par-
ticular, the temperature dependence of the specific heat C(T)
was analyzed approximating the lattice contribution by one
Debye and two Einstein vibration modes. The best fit was

achieved with the Debye temperature θD = 110 K and the
two Einstein temperatures θE1 = 158 K and θE1 = 520 K. At
the same time, the traditional treatment of the temperature
dependence of the Mössbauer spectral area (Lamb-Mössbauer
factor [18,19]) fM (T ) within the Debye approximation has
given θMD = 223 K (at T < TN). This value is twice as large
as the Debye temperature θD = 110 K deduced from the spe-
cific heat. It was suggested in Ref. [6] that high-frequency
phonons dominate for the iron sites, because FeSe4 tetrahedra
are the most rigid units of the RbFeSe2 lattice structure. As the
Mössbauer effect is affected only by the iron-nuclei motion,
being some kind of local probe of lattice vibrations, their high
frequencies come out through the elevated Debye temperature
θMD when described in the standard Debye approximation.
No quantitative estimations to resolve the contradiction were
proposed so far, because of the absence of information on the
phonons in highly anisotropic RbFeSe2.

There is another common feature of the specific heat in
low-dimensional ternary iron chalcogenides (and, at least, in
some oxychalcogenides): the λ anomaly at the transition to an-
tiferromagnetic order is very weak if visible at all [20–26]. For
RbFeSe2 the magnetic contribution, treated as the difference
between the experimentally measured C(T) and the calculated
lattice contribution around the λ anomaly at TN = 248 K,
yields an entropy change �SM = 0.52 J K−1 mol−1 [6]. This
is one order of magnitude smaller than the entropy change
�S1/2 = Rln2 = 5.76 J K−1 mol−1 theoretically expected for
an order-disorder transition of low-spin S = 1/2 Fe3+ ions.
Although it is seen that, because of the equipment limitations
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in temperature T<300 K, the contribution of higher temper-
atures to the magnetic specific heat has not been accounted
for (see the inset (a) in Fig. 5 of Ref. [6]), the missing area
is definitely insufficient to pull up the entropy change by
one order of magnitude. However, despite the small entropy
change at TN, the measured magnetic moment of 2.66 μB per
iron ion [9,10] contradicts a low-spin state.

To shed light on the origin of these contradictions, in this
paper we perform first-principles calculations of electronic
band structure and phonon spectra for RbFeSe2. The band-
structure calculations account for the spin polarization due
to magnetic constituents of the crystal structure. This allows
us to estimate the magnetic moment located at the iron site.
The calculations of the phonon spectra are performed ele-
ment specifically, i.e., the phonon density of states (PDOS)
is calculated for rubidium, iron, and selenium separately.
Thus, the contributions of each element of the lattice to the
specific heat—or to other quantities which depend on lat-
tice vibrations—can be identified. To corroborate our PDOS
calculations we present infrared absorption measurements on
single crystals of RbFeSe2 and compare the spectroscopy
data with our calculations. We demonstrate that our approach
successfully accounts for the above-mentioned controversy
between different kinds of measurements.

II. DENSITY-FUNCTIONAL THEORY CALCULATIONS

A. Computational background

The ab initio calculations were performed by means
of density-functional theory (DFT) utilizing the Vienna
Ab initio Simulation Package (VASP 5.3) [27–30]. The
electron-ion interactions were taken into account using the
projector-augmented wave (PAW) method. The PAW method
is a frozen-core one that utilizes the exact shape of the wave
functions of the valence electrons instead of pseudo-wave
functions [31]. The Perdew-Burke-Ernzerhof generalized gra-
dient approximation (GGA) was applied for the exchange and
correlation corrections [32]. The Rb (4p65s1), Fe (3d64s2), Se
(4s24p4) electrons of the valence shell were treated explicitly,
whereas the remaining electrons of the cores were taken into
account by using pseudopotentials. The maximum energy for
the plane-wave basis set was selected to be equal to 300 eV.
The k-point mesh was a 3 × 2 × 3 Monkhorst-Pack grid
which corresponds to the actual spacing of 0.300 × 0.259
× 0.202 per Å [33]. Equilibrium geometry was obtained
after several stages of full structural relaxation including
atomic positions, cell shape, and cell volume. The PDOS
were obtained by means of a direct approach of harmonic
approximation making use of the MEDEA-PHONON software
[34]. The so-called direct approach to the lattice dynamics
is based on the ab initio evaluation of forces on all atoms
by a set of finite displacements of a few atoms within an
otherwise perfect crystal. The totally optimized equilibrium
structure was used for calculation of the phonon dispersion.
The lattice parameters obtained after the lattice relaxation are
given by a = 7.520 Å, b = 12.153 Å, c = 5.574 Å, and the
angle β = 111.83◦. A slight deviation of the calculated lattice
parameters from the experimental ones, Ref. [6], of about
1–2% percent is typical for DFT calculations [35].

TABLE I. Calculated vibrational frequencies of the phonon
modes of RbFeSe2. The phonon modes are labeled according to the
irreducible representations of the C2 point-group symmetry.

Mode (Mulliken symbol) Frequency, THz

A 0
B 0.007
B 1.205
A 1.829
A 1.880
B 1.985
B 2.121
B 2.164
B 2.343
B 2.792
A 2.807
A 2.824
B 3.041
A 3.090
B 4.556
A 4.823
A 6.362
A 6.782
B 6.869
B 7.103
B 8.507
A 8.574
B 8.878

All calculations accounted for the spin polarization due
to the antiferromagnetic state of RbFeSe2. The antiferro-
magnetic spin pattern was set in accordance with the mag-
netic structure obtained previously by neutron-diffraction
data [10]. The best agreement between the calculated
[m(Fe) = 2.80 μB] and the experimental (m(Fe) = 2.66 μB

[9,10]) values of the magnetic moment per iron ion was
obtained for choosing the Hubbard U parameter equal to zero.
For this reason, GGA+U approximation was not used in our
calculations.

B. Phonon density of states

This section presents computed phonon frequencies at the
center of the Brillouin zone (Table I) and the phonon density
of states (Fig. 1) obtained by integration of the phonon dis-
persion of RbFeSe2. Each vibrational mode is simultaneously
Raman and infrared active and belongs to one of the two
irreducible representations of the C2 point-group symmetry
corresponding to the RbFeSe2 structure. It is seen that the
PDOS exhibits a complex structure with two distinct fre-
quency ranges where the density achieves maximal values.
The vibrational modes of rubidium atoms have relatively low
frequencies, so they provide the main contribution to the
frequency range 1–3.5 THz (see the top bar chart of Fig. 1).
Iron atoms possess the highest vibrational frequencies and
constitute a substantial part of the high-frequency range (6.5–
9.5 THz; see the second bar chart from the top of Fig. 1).
Selenium atoms show vibrational modes both in low and
high-frequency regimes, and exhibit a nonzero density of
states in the intermediate frequency range 3.5–6.5 THz (see
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FIG. 1. Calculated phonon density of states as a function of
frequency in RbFeSe2: element specific (Rb, Fe, and Se atoms from
top toward bottom) and the total PDOS (bottom).

the third bar chart from the top of Fig. 1). The rubidium
PDOS resembles a Debye one, and in accordance with the
spectra, one could argue that the Rb atoms vibrate almost
independently of the iron atoms in the chain. Such vibrations
are expected for weakly bound Rb atoms.

Given the total PDOS by Fig. 1, the origin of the dis-
agreement in the Debye approximation temperatures, deduced
from the specific heat and the Lamb-Mössbauer factor, be-
comes quite transparent: the total PDOS (the bottom bar
chart in Fig. 1), with dominating weight of the low-frequency
vibrations, contributes to the specific heat, while the high-
frequency vibrations of iron ions (the second bar chart in
Fig. 1 from the top) contribute to the Lamb-Mössbauer factor
fM (T ), yielding a higher Debye temperature as compared to
the specific heat.

One more feature of the calculation method needs to be
clarified before we move to C(T) and fM (T ) calculations:
it is known that the DFT approach usually underestimates
vibrational frequencies [35,36]. A correction factor is usually
established by comparison of calculated and experimental
phonon spectra. Known experimental phonon spectra from
isostructural systems can be applied, if experimental data
for the compound under investigation are unavailable. As an
example we refer to the 2D system KxFe2−ySe2 which is
composed of edge-sharing FeSe4 tetrahedra cross-linked by
alkali cations [37]. Theoretical phonon frequencies calculated
by DFT and experimental phonon spectra of K1.08Fe1.6Se2

measured using inelastic neutron-scattering techniques were
reported in Ref. [38]. In accordance with those data,
the calculated phonon frequencies for the K0.8Fe1.6Se2 system
are underestimated by about 6–7%. In our particular case,
the frequency-scale renormalization for the PDOS can be

verified by analysis of the temperature dependence of the
Mössbauer spectral area which is solely determined by vibra-
tions of the iron atoms.

III. LAMB-MÖSSBAUER FACTOR ANALYSIS

The temperature dependence of the Mössbauer spectral
area for iron ions in RbFeSe2 was presented in Ref. [6]. The
iron PDOS (see Fig. 1, the second bar chart from the top)
clearly shows that the standard Debye approach, realized in
Eq. (2) of Ref. [6], is not applicable to lattice vibrations of the
Fe ions, and the fictitious Debye temperatures θMD = 223 K
at temperatures T < TN and θMD = 194 K at T > TN indicate
only the relevance of much higher oscillation frequencies
for the Lamb-Mössbauer factor as opposed to the specific
heat (θD = 110 K for the Debye-mode contribution [6]). To
reinterpret the Mössbauer-spectroscopy data we have to return
to the initial definition of the Lamb-Mössbauer factor as the
temperature dependence of the ratio of recoil-free to total
nuclear resonant absorption given by [18,19]

fM (T ) = exp

{
−〈x2〉E2

γ

(h̄c)2

}
, (1)

where Eγ denotes the gamma-quantum energy, c the veloc-
ity of light, and h̄ the Planck constant. The mean-square
displacement 〈x2〉 is the expectation value of the squared
vibrational amplitude of the iron ions in the direction of the
gamma-radiation propagation. The temperature dependence
of the mean-square displacement can be expressed via the
phonon density of states [19]:

〈x2〉 = h̄

2M

∫
1

ω
coth

(
h̄ω

2kBT

)
gFe(ω)dω, (2)

where ω is the phonon frequency, gFe(ω) is the PDOS of
Mössbauer nuclei, M is the (effective) nucleus mass, and kB

is the Boltzmann constant. Then, instead of taking the tradi-
tional next step of transition to the Debye PDOS in gFe(ω),
we calculate the temperature dependence of the Mössbauer
spectral area, Eq. (1), numerically integrating in Eq. (2) with
the partial phonon density of states of iron gFe(ω), given on
Fig. 1.

Figure 2 shows the result of the fitting to the experimental
temperature dependence of the Mössbauer spectral area. The
oscillations of iron ions along the X, Y, and Z axes have
been accounted for in the analysis without weighting, because
x-ray diffraction measurements did not show any significant
texture of the samples. The bare iron atom mass has been
taken for M. The only fitting parameter was the phonon
frequency underestimation factor, discussed above, i.e., the
scale-correction factor for the frequency. The best agreement
with the experiment has been achieved by expanding the
frequency scale by a factor of 1.08.

IV. INFRARED SPECTROSCOPY

A. Experimental details

High-frequency phonons are Raman and optically active
according to calculations, so infrared (IR) spectroscopy could
also clarify the presence of high-frequency vibrations within
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FIG. 2. Temperature dependence of the Mössbauer spectral area
of RbFeSe2: black solid symbols, experiment; red solid line, calcula-
tion utilizing the iron partial PDOS.

FeSe4 tetrahedra manifested as singularities (peaks) in the
PDOS at ∼7.0 and ∼8.5 THz (see Fig. 1). The IR absorption
was obtained in the wave-number range 100–600 cm−1, which
corresponds to the frequency range 3–18 THz, by using a
Bruker IFS 113v spectrometer. The ground sample was dis-
persed in CsI powder in the ratio 1.35 mg RbFeSe2 to 100 mg
CsI. This mixture was cold pressed under vacuum to obtain a
disklike pellet with 13-mm diameter.

B. Infrared absorption spectrum

The experimental infrared absorption spectrum shows two
broad lines, which are compared to the frequency-scale cor-
rected PDOS in Fig. 3. It is clearly seen that the resonance
frequencies of the two experimental absorption peaks fairly
fit to the lower bounds of the frequency ranges 7.30–7.70 and
9.00–9.50 THz corresponding to the oscillation modes of iron

FIG. 3. Infrared absorption spectrum of RbFeSe2 compared with
the calculated PDOS of RbFeSe2. The frequency scale of the PDOS
is corrected in accordance with the Mössbauer data (see details in
Sec. III) and to get best coincidence of the peaks of PDOS maxima
with the IR absorption maxima (solid bar charts).

and selenium atoms scaled by a factor of 1.08 according to the
Mössbauer results (dashed bar chart). One can argue that the
experimental IR-absorption spectrum qualitatively confirms
the calculated PDOS, but the frequency scales, as expected,
do not exactly match. The IR spectrum has best agreement
with the calculated PDOS in case of a scaling factor of 1.06
(solid bar chart). A 2% difference in the scaling factors from
Mössbauer and optical experiments can be qualitatively ex-
plained by possible slight structural distortion because of the
surface oxidation upon IR measurements and a corresponding
phonon-frequencies shift. As the IR measurement was per-
formed in ambient air atmosphere, and because of the optical
frequency domain, we expect it to be more sensitive to surface
modifications than the Mössbauer measurements, which were
conducted in argon protective atmosphere, both the absorber
preparation and the measurements, and moreover, because
gamma rays refer to ionizing radiation, one expects vanishing
influence of the surface properties on the measurement results.

The intermediate conclusion is that the ab initio calcu-
lated PDOS well describes the temperature dependence of
the Lamb-Mössbauer factor and agrees with the experimental
infrared absorption spectrum. For further quantitative analysis
of the thermodynamic properties we use the frequency-scaling
factor 1.08.

V. SPECIFIC HEAT ANALYSIS

We assume that the total specific heat originates from two
contributions, a lattice specific heat due to acoustic and optical
phonons, and a magnetic one determined by thermal popu-
lation of excited magnetic states. We estimate the magnetic
specific heat as the difference between the total experimental
heat capacity and the calculated vibrational part. The PDOS
enables us to calculate directly the lattice contribution to the
specific heat by using the harmonic approximation [39]. In
the harmonic approximation the lattice heat capacity can be
determined as follows [40]:

CV (T ) = DNkB

∫ [
h̄ω/2kBT

sinh (h̄ω/2kBT )

]2

gT (ω)dω, (3)

where D is the number of degrees of freedom in the unit cell
(3 in our case), and gT (ω) is the total PDOS (Fig. 1, bottom
panel).

In most of the cited experimental works [20–26] the tem-
perature dependence of the specific heat at constant pressure,
CP (T ), is presented, because the specific heat is usually mea-
sured at ambient conditions in a wide range of temperatures
so that the thermal expansion could not be neglected. Since,
from general thermodynamic approach, CP (T ) − CV (T ) =
−T [(∂V/∂T )P ]2/(∂V/∂P )T > 0 (see Ref. [41], Sec. 16),
therefore CP (T ) is always larger than CV (T ) approaching the
latter at low temperatures. For solids (Ref. [41], Sec. 67),

CP (T ) − CV (T ) = −T
α2V 2

0

dV0/dP
= α2BV0T , (4)

where α(P) denotes the thermal expansion coefficient, V0 the
molar volume, and B = −V0/(dV0/dP ) is the bulk modulus.
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FIG. 4. Temperature dependence of the specific heat CP of
RbFeSe2: black points, experimental data; red line, calculated lattice
contribution to the specific heat at constant pressure CP = CV +
0.008 [J/mol K2]T (see details in Sec. V). Inset: the experimental
and calculated specific heat drawn as CP (T )/T .

In the present study, the bulk modulus of RbFeSe2 has been
estimated directly from the second derivative of the total
energy as a function of the unit-cell volume by ab initio
calculations: B = 17.10 GPa. The total energy per unit-cell
volume itself was obtained from a polynomial fit, which was
truncated after the fourth-order term. The thermal expansion
coefficient α was estimated utilizing the crystal-structure data
presented for room temperature and 14 K in Ref. [10], so that
the specific heat at constant pressure could be expressed as
CP ≈ CV + 0.008[J/mol K2]T . This expression was used for
the calculated specific heat shown in Fig. 4 (see the legend).

Figure 4 compares the calculated lattice contribution to
the experimentally obtained total specific heat. It is seen that
below 12 K the calculated lattice contribution demonstrates a
cubic dependence on temperature (the inset in Fig. 4), whereas
the experimental specific heat deviates from this dependence.
This difference is associated with the magnetic specific heat
that is obviously expected for the case of the quasi-one-
dimensional antiferromagnetically ordered RbFeSe2.

The magnetic contribution to the specific heat Cm(T )
is shown in Fig. 5. The corresponding magnetic entropy
change can be calculated from the experimentally measured
magnetic specific heat as �SM = ∫

[Cm(T )/T ]dT . The in-
tegration from zero temperature to 290 K gives �SM =
6.03 J K−1 mol−1, which is an estimation of the lower bound-
ary, because of the temperature limit (T < 290 K) of our
equipment. For quasi-one-dimensional systems one expects
magnetic fluctuations to persist far above the Néel temper-
ature. Indeed, Figs. 6 to 9 in Ref. [42] for purely 1D spin
chain with antiferromagnetic exchange and Figs. 1 and 6 in
Ref. [43] for 1D to 3D antiferromagnets clearly show a large
enhancement of the high-temperature tail of the specific heat
when lowering the lattice dimensionality. In fact, our RbFeSe2

compound is a quasi-1D, highly anisotropic antiferromagnet
with the 3D Néel temperature TN = 248 K induced by weak
interchain interaction (exchange and/or dipole-dipole). The
absence of the magnetic susceptibility maximum [42,44] in
the temperature range from the Néel temperature until 720 K

FIG. 5. Temperature dependence of the magnetic heat capacity
CM (T ) (top panel, black solid triangles) obtained as the difference
between the experimentally measured specific heat and the calculated
lattice contribution. Red solid circles, top panel, display the tempera-
ture dependence of CM (T )/T . Bottom panel, black open triangles
display change in the magnetic entropy with temperature, SM (T )
(CM (T )/T integrated from zero temperature up to the current value
of the temperature); red open circles display temperature dependence
of SM (T )/T .

(see Fig. 3 in Ref. [6]) indicates that the intrachain exchange
in temperature units is larger than the highest temperature
of the measurements. This, in turn, means that 1D fluctua-
tions and the enhanced specific heat might still persist up to
700 K, above which the sample begins to thermally deteri-
orate. Therefore, in spite of the 1/T factor in the integrand
of the magnetic entropy expression given above, there is
plenty of room for fluctuations above TN to contribute to
the entropy change upward from 6.03 J K−1 mol−1 received
in the temperature range 0–290 K. This has to be compared
with the theoretical expectation for the possible cases of
low-spin 1/2, intermediate-spin 3/2, and high-spin 5/2 for
Fe3+ (3d5) atoms in RbFeSe2, where the corresponding en-
tropy change �SM at the antiferromagnet-paramagnet order-
disorder transition is given by Rln2 = 5.76 J K−1 mol−1,
Rln4 = 11.52 J K−1 mol−1, and Rln6 = 14.89 J K−1 mol−1,
respectively. Thus, the experimentally obtained value of the
magnetic entropy change �SM comes closer to that for the
intermediate-spin state S = 3/2. Note that also the reported
magnitudes of hyperfine fields on iron nuclei (∼216 kOe at
liquid-helium temperature [6]) and of the magnetic moment
at the iron ions (∼2.66μB [9,10]) are not typical either for
the S = 1/2, or for the S = 5/2 spin state. Therefore, the
set of data for �SM , hyperfine field, and magnetic mo-
ment favors the intermediate-spin state S = 3/2 of the iron
atoms in RbFeSe2. The splitting of the Fe3+ d orbitals in
the case of edge-sharing FeSe4 tetrahedra in RbFeSe2 was
already reported in Ref. [10]: the S = 3/2 intermediate-spin
state can arise from the distortion of the tetrahedra and the
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corresponding splitting of orbital triplet and doublet by the
associated low-symmetry crystal field. The delocalization of
some fraction of the iron d electrons in RbFeSe2 leads to
reduced values of the hyperfine field and of the magnetic
moment with respect to those typical for the S = 3/2 case
(∼330 kOe and ∼3 μB , respectively, reported for ionic oxides,
Ref. [18], Chap. 7).

Now we will discuss the temperature dependence of
the specific heat in more detail. Since below TN = 248 K
RbFeSe2 is a 3D antiferromagnet, one has to expect a T 3

contribution to Cm(T ) from antiferromagnetic magnons [45]
which is hardly distinguished from the lattice contribution, if
the Debye-like low-frequency part of the PDOS (see Fig. 1,
a region adjoining a frequency of 1 THz) is characterized by
a Debye temperature θD several times smaller than TN which
seems to be our case. Indeed, the inset in Fig. 4 does not show
the additional contribution of T 3 functional dependence; in-
stead, a tiny upward deviation of the experimentally measured
CP (T ) (black line) from the low-temperature T 3 dependence
(red line) indicates an additional source of heat capacity with
stronger dependence on T than T 3.

Much more significant magnetic contribution to the spe-
cific heat Cm(T ) is seen in Fig. 5 as a broad “feature” in the
temperature range 30–200 K. Indeed, because of the quasi-
one-dimensional structure of RbFeSe2, one could expect that
quantum fluctuations, which otherwise prevent magnetic or-
dering in ideal 1D spin chains according to the Mermin-
Wagner theorem [46,47], persist well below the 3D ordering
temperature TN = 248 K. Numerous theoretical and experi-
mental studies (see, for example, Refs. [42–44,48–50] and
references therein) have reported a nearly linear temperature
dependence of the magnetic specific heat for Heisenberg-
[spin-1/2 to 3] or XY- [spin-1/2] antiferromagnetic chains
at temperatures below the nearest-neighbor exchange en-
ergy in temperature units (see a collection of the results in
Figs. 6, 15, 18, and Table I of Ref. [43]). As far as our
system is quasi-one-dimensional, it undergoes a transition into
a 3D antiferromagnetic state with a Néel temperature roughly
equal to the intrachain mean-field TN (MF-intra) times an
interchain to intrachain exchange integral ratio. The latter is
much smaller than unity for highly anisotropic systems, which
is why the intrachain exchange energy is expected to be much
larger than the 3D antiferromagnetic transition temperature
(a cusp at TN = 248 K in Fig. 5). Under these conditions the
temperature range of our measurements undoubtedly falls into
the range of quasilinear Cm(T ) predicted by the theories for
Heisenberg antiferromagnetic chains.

In Refs. [51–57] it was shown that in a uniform external
magnetic field H0 a field-induced gap develops because of in-
duced exchange anisotropy due to transverse staggered mag-
netic field h � H0 and Dzyaloshinsky-Moriya [58] interac-
tion. Then, at low temperatures the specific heat is suppressed
by the gap; on the contrary, above the gap the specific heat
is enhanced since the total number of degrees of freedom
is conserved. At higher temperatures Cm(T ) recovers the
behavior for the uniform chain. This temperature dependence
resembles the one shown in Fig. 5; however, it is unlikely
that the above-mentioned model can be directly applied to our
case: The theoretical model is developed for spin-1/2 chains,
and there was no uniform magnetic field H0 applied upon

our CP (T ) measurements. The crucial difference is that our
quasi-one-dimensional system undergoes a 3D antiferromag-
netic transition at zero external magnetic field that implies the
existence of a strong local staggered interchain molecular field
transverse to the chain direction [10]. The role of interchain
interaction in the temperature behavior of the specific heat
was analyzed in Refs. [59–62] for the quasi-one-dimensional
spin-1/2 chain compound Yb4As3. To our best knowledge,
there is no appropriate theory to treat our particular case
of magnetic specific heat in quasi-one-dimensional spin-3/2
chains with the interchain interaction triggering the transition
to the 3D antiferromagnetic state at TN = 248 K.

VI. CONCLUSIONS

We have performed element-specific ab initio calculations
of the vibrational properties of the covalent antiferromagnetic
chain compound RbFeSe2 and discussed its implications to
results from Mössbauer and infrared spectroscopy as well
as specific-heat measurements. The calculation revealed that
rubidium vibrations are located in the low-frequency domain
1–3.5 THz and represented by dominating acoustic oscilla-
tions. On the contrary, iron ion vibrations are high-frequency
and predominantly optical-type oscillations in the 6.5–
9.5-THz frequency domain. In the selenium phonon spectrum
the low and high frequencies are present as well as oscillations
in the intermediate frequency range 3.5–6.5 THz. Using our
experimental Mössbauer and infrared data we adjusted the
frequency scale of the theoretical phonon density of states.
This allowed us to simulate a realistic lattice contribution to
the specific heat. The magnetic specific heat was obtained
as the difference between the measured total specific heat
and the calculated lattice contribution. The entropy change
in the temperature interval from 0 to 290 K, associated with
this magnetic contribution, amounts to 6.03 J K−1 mol−1 and
visually exhibits an extended high-temperature tail above
290 K due to the quasi-one-dimensionality of the system. This
suggests the intermediate S = 3/2 spin state to be realized for
the iron ions in the chains. The measured magnetic moment
of 2.66μB [9,10] and the calculated moment of 2.80 μB per
iron ion are in agreement with the intermediate spin state.
Our results suggest that the features of the phonon spectrum
and thermal properties are general for the whole family of
the covalent chain ternary iron chalcogenides of the structure
XFeY2.
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