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Abstract

In this paper, we present a visual authoring approach for
the management of highly interactive, mixed-initiative,
multi-party dialogues. Our approach enforces the sep-
aration of dialog-content and -logic and is based on
a statechart language enfolding concepts for hierar-
chy, concurrency, variable scoping and runtime history.
These concepts facilitate the modeling of dialogs for
multiple virtual characters, autonomous and parallel be-
haviors, flexible interruption policies, context-sensitive
interpretation of the user’s discourse acts and coher-
ent resumptions of dialogues. It allows the real-time
visualization and modification of the model to allow
rapid prototyping and easy debugging. Our approach
has successfully been used in applications and research
projects as well as evaluated in field tests with non-
expert authors.

1 Introduction
Virtual characters in interactive applications can enrich the
user’s experience by showing engaging and consistent be-
havior. To what extent virtual characters contribute to mea-
surable benefits is still fiercely discussed (Heidig and Clare-
bout 2010; Miksatko, Kipp, and Kipp 2010). Therefore, vir-
tual characters need to be carefully crafted in cooperation
with users, artists and programmers. The creation of interac-
tive virtual characters with a consistent and believable dia-
logue behavior poses challenges such as modeling personal-
ity and emotion (Marsella and Gratch 2006), creating believ-
able facial expressions, gestures and body movements (Kipp
et al. 2007), expressive speech synthesis (Schröder 2008)
and natural language recognition as well as dialog and in-
teraction management (Traum et al. 2008). In this work, we
address the tasks of modeling consistent highly interactive
mixed-initiative multi-party dialogue behavior and realiz-
ing effective interaction management for dialogue situations
with embodied conversational characters.

During the last years, several approaches for modeling in-
teractive dialogue behavior of virtual characters have been
researched. A variety of systems such as, frame-, plan-,
rule- and finite state-based systems were presented. Most of
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these systems required a substantial degree of expert knowl-
edge and programming skills, thus, being unserviceable for
non-computer experts, such as artists and screenwriters that
wanted to craft interactive applications with virtual charac-
ters. Therefore, as a next step, authoring systems were de-
veloped to exploit related expert knowledge in the areas of
games, film or theater screenplay.

These systems are created to facilitate the authoring pro-
cess and to allow non-computer experts to model believable
natural behavior for virtual characters. They can be catego-
rized by their conceptual and methodological approaches.
On the one hand, character-centric approaches aim on creat-
ing autonomous agents for multi-agent systems, while they
do not explicitly include support for scripting the behavior of
multiple agents in a simple and intuitive way. Examples for
character-centric systems are Improv (Perlin and Goldberg
1996) or Scream (Prendinger, Saeyor, and Ishizuka 2004),
where an author defines the agents’ initial goals, beliefs and
attitudes. These mental states determine the agents’ behav-
ioral responses to received communicative acts. In author-
centric approaches, on the other hand, a human author can
communicate an artistic vision with the primary focus of
scripting at the plot level. The user can contribute to the plot
within the narrative boundaries defined by the author. Ex-
amples for author-centric systems include Scenejo (Spier-
ling, Weiss, and Mueller 2006), Deal (Brusk et al. 2007)
and Creactor (Iurgel et al. 2009). Hybrid approaches, as de-
scribed in (McTear 1998; Gandhe et al. 2008) or (Gebhard
et al. 2003), try to bridge the gap between the author-centric
and character-centric approach by combining the advantages
of both.

So far, none of the mentioned authoring systems supports
concepts for dialogue and interaction history and concur-
rent process modeling for parallel behavior on the authoring
level. However, this would facilitate the modeling task and
reduce the complexity of the model. It would help to handle
typical challenges in the creation of applications with inter-
active virtual characters, such as the modeling of reactive
and deliberate behavior, the use of multiple virtual charac-
ters and their synchronization and the handling of user inter-
action. In this paper, we face these challenges using our new
version of the authoring tool Scenemaker which pursues a
hybrid approach to contribute on the user modeling level for
the creation of interactive virtual character applications in a
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rapid-prototyping style.

2 Dialogue and Interaction Management
The central concept of our authoring approach with the
Scenemaker authoring tool is the seperation of dialogue con-
tent and structure. Multimodal dialogue content is specified
in a set of scenes that are organized in a scenescript. The
narrative structure of an interactive performance and the in-
teractive behavior of the virtual characters is controlled by a
sceneflow - a statechart variant specifying the logic accord-
ing to which scenes are played and commands are executed.
Sceneflows have concepts for hierarchical refinement and
the parallel decomposition as well as an exhaustive runtime
history and multiple interaction policies. Thus, sceneflows
adopt and extend concepts that can be found in similar stat-
echart variants (Harel 1987; von der Beeck 1994).

Sceneflows and scenescripts are created using a graphi-
cal authoring tool and executed by an interpreter software.
This allows the real-time extension and modification of the
model and the direct observation of the effects without the
need for an intermediate translation step. The real-time visu-
alization of a sceneflow’s execution and active scenes within
the graphical user interface allows to test, simulate and de-
bug the model.

2.1 Creating Multimodal Dialogue Content
A scene resembles the part of a movie script consisting of the
virtual characters’ utterances containing stage directions for
controlling gestures, postures, gaze and facial expressions as
well as control commands for arbitrary actions realizable by
the respective character animation engine or by other exter-
nal modules. Scenescript content can be created both man-
ually by an author and automatically by external generation
modules. The possibility to parameterize scenes may be ex-
ploited to create scenes in a hybrid way between fixed au-
thored scene content and variable content (Figure 1 1©), such
as retrieved information from user interactions, sensor input
or generated content from knowledge bases. In Section 3.5
we present an application which makes extensive use of pa-
rameterized scenes and generated scene content from a do-
main knowledge module.

Figure 1: Parameterizable scenes of a scenegroup.

A scenescript may provide a number of variations for each
scene that are subsumed in a scenegroup, consisting of the
scenes sharing the same name or signature (Figure 1 2©, 3©).
Different blacklisting strategies are used to choose one of

the scenes from a scenegroup for execution. This mecha-
nism increases dialogue variety and helps to avoid repetitive
behavior of virtual characters, which would certainly impact
the agents’ believability.

2.2 Modeling Dialogue Logic and Context
A sceneflow is a hierarchical and concurrent statechart that
consists of different types of nodes and edges. A scenenode
can be linked to one or more scenegroup playback- or sys-
tem commands and can be annotated with statements and
expressions from a simple scripting language or function
calls to predefined functions of the underlying implementa-
tion language (Figure 2 1©). A supernode extends the func-
tionality of scenenodes by creating a hierarchical structure.
A supernode may contain scenenodes and supernodes that
constitute its subautomata. One of these subnodes has to be
declared the startnode of that supernode (Figure 2 2©). The
supernode hierarchy can be used for type and variable scop-
ing. Type definitions and variable definitions are inherited to
all subnodes of a supernode. The supernode hierarchy and
the variable scoping mechanism imply a hierarchy of local
contexts that can be used for context-sensitive reaction to
user interactions.

Figure 2: Node statements and supernode hierarchy.

Different branching strategies within the sceneflow, e.g.
logical and temporal conditions or randomization, as well as
different interaction policies, can be modeled by connect-
ing nodes with different types of edges. An epsilon edge
represents an unconditional transition (Figure 2 3©). They
are used for the specification of the order in which compu-
tation steps are performed and scenes are played back. A
timeout edge represents a timed or scheduled transition and
is labeled with a timeout value (Figure 2 4©). Timeout edges
are used to regulate the temporal flow of a sceneflow’s ex-
ecution and to schedule the playback of scenes and com-
putation steps. A probabilistic edge represents a transition
that is taken with a certain probability and is labeled with
a probability value (Figure 5 2©). Probabilistic edges are
used to create some degree of randomness and desired non-
determinism during the execution of a sceneflow. A condi-
tional edge represents a conditional transition and is labeled
with a conditional expression, as shown in Figure 3. Con-
ditional edges are used to create a branching structure in
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the sceneflow which describes different reactions to changes
of environmental conditions, external events or user interac-
tions. In Section 3.4 we present an application which makes
extensive use of a hierarchy nested supernodes to refine the
dialogue context for an adequate reaction to the user’s inter-
actions.

2.3 Continuous Real-Time Interaction Handling
User interactions as well as other internally or externally
triggered events within the application environment can rise
at any time during the execution of a model. Some of these
events need to be processed as fast as possible to assert cer-
tain real-time requirements. There may, for example, be the
need to contemporarily interrupt a currently running dia-
logue during a scene playback in order to give the user the
impression of presence or impact. However, there can also
exist events that may be processed at some later point in
time allowing currently executed scenes or commands to be
regularly terminated before reacting to the event. These two
different interaction paradigms imply two different interac-
tion handling policies that find their syntactical realization
in two different types of interruptibility and inheritance of
conditional edges:

• Interruptive conditional edges (Figure 3 1©, 3©) are inher-
ited with an interruptive policy and are used for the han-
dling of events and user interactions requiring a fast re-
action. Whenever an interruptive conditional edge of a
node can be taken, this node and all descendant nodes
may not take any other edges or execute any further com-
mand. These semantics imply, that interruptive edges that
are closer to the root have priority over interruptive edges
farther from the root.

• Non-interruptive conditional edges (Figure 3 2©, 4©) are
inherited with a non-interruptive policy, which means that
a non-interruptive conditional edge of a certain node or
supernode can be taken after the execution of the node’s
program and after all descendant nodes have terminated.
This policy is implicitly giving higher priority to any con-
ditional edge of nodes that are farther from the root.

Figure 3 shows a supernode hierarchy with different con-
ditional edges. If the condition ”stop” becomes true during
the execution of the two innermost scene playback com-
mands, then the scene within the supernodes with the non-
interruptive conditions (Figure 3 2©, 4©) will be executed to
its end. However, the scene within the supernodes with the
interruptive conditions (Figure 3 1©, 3©) will be interrupted
as fast as possible. In the non-interruptive case the execution
of the sceneflow continues with the inner end node (Figure
3 4©) before the outer end node is executed (Figure 3 2©).
In the interruptive case the execution of the sceneflow im-
mediately continues with the outer end node (Figure 3 1©)
because the outer interruptive edge has priority over the in-
ner interruptive edge (Figure 3 3©).

2.4 Modeling Parallel Dialogue and Behavior
Sceneflows exploit the modeling principles of modularity
and compositionality in the sense of a hierarchical and par-
allel decomposition. Multiple virtual characters and their be-

Figure 3: 1©, 2© Interruptive conditional edges. 3©, 4© Simple
non-interruptive conditional edges.

havior, as well as multiple control processes for event detec-
tion or interaction management, can be modeled as concur-
rent processes in parallel automata. For this purpose, scene-
flows allow two syntactical instruments for the creation of
concurrent processes: (1) By defining multiple startnodes
for a supernode, as shown in Figure 4, each subautomaton
which consists of all nodes reachable by a startnode, is exe-
cuted by a separate process, (2) by defining fork edges (Fig-
ure 5 1©) an author can create multiple concurrent processes
without the need for changing the level of the node hierar-
chy.

Figure 4: Hierarchical and parallel decomposition.

Following this modular approach, an author is able to sep-
arate the task of modeling the overall behavior of a virtual
character into multiple tasks of modeling individual behav-
ioral aspects, functions and modalities. Behavioral aspects
can be modified in isolation without knowing details of the
other aspects. In addition, previously modeled behavioral
patterns can easily be reused and adopted. Furthermore, pre-
modeled automata that are controlling the communication
with external devices or interfaces can be added as plugin
modules that are executed in a parallel process.

Individual behavioral functions and modalities that con-
tribute to the behavior of a virtual character are usually not
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Figure 5: 1© Concurrent processes with fork edges. 2© Ran-
domization with multiple probability edges.

completely independent, but have to be synchronized with
each other. For example, speech is usually highly synchro-
nized with non-verbal behavioral modalities such as gestures
and body postures. When modeling individual behavioral
functions and modalities in seperate parallel automata, the
processes that concurrently execute these automata have to
be synchronized by the author in order to coordinate all be-
havioral aspects. This communication is realized by a shared
memory model which allows an asynchronous non-blocking
synchronization of concurrent processes.

Figure 6: Synchronization over configuration states.

Thereby, sceneflows enfold two different syntactic fea-
tures for the synchronization of concurrent processes. First,
they allow the synchronization over common shared vari-
ables defined in some supernode. The interleaving seman-
tics of sceneflows prescribe a mutually exclusive access to
those variables to avoid inconsistencies. Second, they enfold
a state query condition, as shown in Figure 6, which repre-
sents a more intuitive mechanism for process synchroniza-
tion. This condition allows to request weather a certain state
is currently executed by the sceneflow interpreter during the
execution of a sceneflow.

2.5 Consistent Resumption of Dialogue
Our concept of an exhaustive runtime history facilitates
modeling reopening strategies and recapitulation phases of
dialogues by falling back on automatically gathered infor-
mation on past states of an interaction. During the execu-
tion of a sceneflow, the system automatically maintains a
history memory to record the runtimes of nodes, the values
of local variables, executed system commands and scenes
that were played back. It additionally records the last exe-
cuted substates of a supernode at the time of its termination
or interruption. The automatical maintainance of this history
memory releases the author of the manual collection of such
runtime data, thus efficiently reducing the modeling effort
while increasing the clarity of the model and providing the
author with rich information about previous interactions and
states of execution.

The scripting language of sceneflows provides a variety
of built-in history expressions and conditions to request the
information deposited in the history memory or to delete it.
The history concept is syntactically represented in form of
a special history node which is an implicit child node of
each supernode. When reexecuting a supernode, the supern-
ode starts at the history node instead of its default startnodes.
Thus, the history node serves as a starting point for the au-
thor to model reopening strategies or recapitulation phases.

Figure 7: History node and condition.

Figure 7 shows a simple exemplary use of a supernode’s
history node and a history condition. At the first execution
of the supernode ”Parent”, the supernode starts at its startn-
ode ”First” (Figure 7 1©). If the supernode ”Parent” is in-
terrupted or terminated at some time and reexecuted after-
wards, it starts at the history node ”History”. The history
memory is requested (Figure 7 2©) to find out if the supern-
ode ”Parent” had been interrupted or terminated in the node
”First” or the node ”Second”. As the snaphot of the visual-
ized execution shows, depending on the result, the either the
node ”First” (Figure 7 3©) is executed or the node ”Second”
(Figure 7 4©) is started over the history node.

3 Applications
The new Scenemaker authoring tool supports the creation
of applications with interactive virtual characters on various
levels such as the modeling of reactive and deliberate behav-
ior, the use of multiple virtual characters and their synchro-
nization, and the advanced handling of user interactions. In
the following, we describe several applications and research
projects in which the new Scenemaker tool was used. We
present specific aspects of the models created in these ap-
plications in order to illustrate the use of certain modeling
features of Scenemaker introduced in the previous section.

3.1 IGaze - Modeling Reactive Gaze Behavior
Gaze as an interaction modality has many functions, such
like signaling attention, regulating turn-taking or deictic ref-
erence (Kipp and Gebhard 2008). An absence of gaze in a
virtual character’s behavior would be recognized directly by
a human interlocutor. Therefore gaze is highly relevant for
such characters, especially in human-computer interaction
(e.g. COGAIN1).

1http://www.cogain.org
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In the IGaze project, we have modeled a virtual char-
acter’s gaze behavior as dominant or submissive. A fine-
grained control of gaze can help to improve the overall be-
lievability of a virtual character. In one of the first projects
that uses the new SceneMaker the gaze behavior for the
two characters Sam and Max is represented by a concurrent
Sceneflow (see Fig. 8).

Figure 8: Hierarchical concurrent Supernodes model gaze
behavior (Gaze Sam and Gaze Max)

A separate gaze Supernode for each character holds com-
mands to control its gaze (head) behavior on an abstract level
(e.g. lookat(character), avert). Those commands define the
interface to a characters movement control. In general, the
Sceneflow model represents the following gaze behavior:

• Dominant (Dom): High status, according to Johnstone,
is gained by outstaring the interlocutor and if a person
breaks eye contact and does not look back (Johnstone
1979). The dominant gaze behavior consists of main-
taining eye contact while speaking and randomly chang-
ing from gazing to averting while listening. More pre-
cisely, the character establishes and holds eye contact
when speaking (see Fig. 8, 1©), and after speaking, imme-
diately looks away. When listening, the character estab-
lishes eye contact after 0-3 sec., then holds it for 4.5-7.5
(see Fig. 8, 2©).

• Submissive (Sub): Low status, according to Johnstone,
means being outstared by the interlocutor or by break-
ing eye contact and looking back. The submissive gaze
behavior makes a character only look briefly every now
and then and immediately avert the gaze again. In the
submissive gaze mode, a character establishes eye con-
tact when starting to talk but averts his gaze immediately
after eye contact. His gaze remains averted for 3-4 sec
(see Fig. 8, 3©). He then establishes eye contact again and
looks away immediately. During listening, the pattern is
the same with the difference that the character holds eye
contact for 1.8-2.8 sec (see Fig. 8, 4©). The submissive
avert behavior consists of a head movement away from
the user (5◦ while speaking, 8◦ while listening) and 15◦
downward.

A major improvement provided by the Visual Scene-
Maker is the possibility to verify and alter the timing specifi-
cations directly during run-time. This enabled us to carefully
adjust the time of a specific gaze aspect in order to achieve
an overall compelling result.

On a conceptual level, reactive behavior patterns can be
realized as global concurrent Sceneflows or as local concur-
rent Supernodes that are executed by fork edges at a specific
location of a master Sceneflow. Such Supernodes can easily
be reused.

3.2 AI Poker - Playing Poker with two Virtual
Characters

In the AI Poker, we investigate how modern ECA technolo-
gies can help to improve the process of creating computer
games with interactive expressive virtual characters. Based
on the experience of a computer game company, we identi-
fied four main challenges in creating computer games:

• Fast creation of game demonstrators. In order to com-
pete with other game companies the implementation of
demonstrators has to be fast and reliable.

• Localization of game content. To sell games in other
countries content has to be translated into the respective
language. The more dialogs a game contains, the higher
the costs for the translation.

• Intuitive interaction. The success of a game is tremen-
dously related to an easy interaction concept.

• Consistent quality. The quality of audio and visual pre-
sentation should be consistent for the whole game. Every
exception lowers its acceptance.

The AI Poker application reuses the gaze control supern-
odes from the IGaze project. These are extended by two con-
current supernodes, one for automatic camera pan and an-
other for the game interaction control that also controls the
two 3d Virtual Characters Sam and Max (see Fig 11), which
are in the role of two poker teammates. Sam is a cartoon-
like character, whereas Max is a mean, terminator-like robot
character. A human user acts as the card dealer and also par-
ticipates as a regular player.

Figure 9: AI Poker’s Game Model using hierarchical con-
current supernodes

By using real poker cards with unique RFID tags, a user
can play draw poker against Sam and Max. The charac-
ters rely on the MARY expressive speech synthesizer us-
ing HMM-based and unit-selection-based speech synthesis
approaches and the ALMA model for the simulation of af-
fect (Gebhard et al. 2008). It simulates three affect types
(emotions, moods, and personality) as they occur in human
beings. Based on game events, the affect of each character
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is computed in real-time and expressed through speech and
body. Both characters are rendered by a 3d visualization en-
gine based on Horde3D (Augsburg University ). In order to
support Sam’s and Max’s individual character style, differ-
ent poker algorithms (realized as separate software modules)
are used. Sam relies on a rule based algorithm, whereas Max
relies on a brute-force algorithm that estimates a value for
each of the 2.58 million possible combinations of five poker
cards. The Visual SceneMaker as a central component al-
lows to control of all these techniques and enables the char-
acters to show a consistent emotional expressive behavior
that enhances the naturalness of interaction in the game.

Similar to the gaze behavior in the IGaze project, we real-
ized an automatic camera pan that takes into account the af-
fective state (see Fig 11, left side). While a character speaks,
the camera shows its upper body. If no character speaks, both
characters are shown. Generally, the camera angle is tilted
according to the speaker’s affective state. If the character
is in a positive affective state, the camera shows the upper
body with an ascending angle giving the impression that the
character appears slightly bigger. In negative affective states,
the camera shows the upper body with an descending an-
gle giving the impression that the character appears slightly
smaller.

When a user initiates a game, Sam and Max let the user
welcome and explain the game setup and as well the general
rules (see Fig 10, right side) before the poker game emerges.
The use of History nodes at several positions in the Inter-
action supernode has reduced the complexity of the scene
graph by reducing the amount of nodes and edges. As the
example shows, the scene "NextGame" is played, if the
PlayGame supernode is executed again, skipping the Wel-
come and Explain nodes and the connected scenes.

Figure 10: The AI Poker demonstrator at the CeBit exhibi-
tion.

The use of previously created gaze supernodes and the
basic use of history nodes allowed us to create the AIPoker
game in 3 months in total. Technically, the content of the
poker game consists of 335 scenes organized in 73 groups.
The final demonstrator application has been exposed at the
CeBit exhibition and was extremely well attended by the vis-
itors of the exhibition, as shown in Figure 10.

3.3 INTAKT - Multiple Interactive Virtual
Characters as Shopping Assistants

This project investigates for an future grocery store approach
the use of Virtual Characters in two different roles: 1) per-
sonal shopping assistant and 2) expert consultant (Kröner et
al. 2009). The latter resides in a special display at every shelf
and freezer. These characters’ purpose is to explain details of
food and provide navigation hints for a faster product local-
isation. Personal shopping assistants resides in a shopping
cart display. They guide a user through the grocery store
helping her/him to gather all goods of the provided shopping
list.

The used dialog and interaction Sceneflow model reuses
several Supernodes from the AI Poker Sceneflow model.
Necessary was a slight revision of the camera control Su-
pernodes due to the fact that the Virtual Shopping Assistants
do not have any affect. However, the camera zooms at the
speaking character showing his upper body.

Figure 11: Reuse and extension of hierarchical concurrent
Supernodes to model interaction with Virtual Shopping As-
sistants

Carts and shelves/freezers are equipped with a display
showing (different) Virtual Characters that communicate via
natural language and natural conversational behaviour with
a user and between each other. In addition, the cart display
shows a user’s shopping list. The characters react every time
a product is taken or placed.

The role of the cart character is to guide the user through
the shopping list by making suggestions about products to
buy (relying on the personal profile, e.g. user prefers eco-
logical products). It serves as a personal advisor that checks
every product that is placed in the card against individual
needs and individual interests. Therefore, the content of the
DPM of each product is used to reason about conflicts with
the personality profile. Emerging conflicts are addressed via
natural language by the cart character in a low voice - re-
specting the privacy. Additional information is presented on
a display that is attached at the cart. In addition, the cart
character may ask the shelf character with a loud (public)
voice for help, e.g., if there is a product alternative.

The shelf character provides help by giving in shelf navi-
gation hints for a faster product localisation. In addition, the
character provides general information (like price, producer
...) in a natural conversational style.
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The user becomes part of this dialog between the char-
acters. Knowledge retrieved from the DPM of the involved
products helps to create the illusion that Virtual Characters
reacting intelligent to the consumer’s interaction with the
product.

3.4 SOAP: Modeling Multi-Party Dialogues for
an Interactive Storytelling Application

The development of interactive digital storytelling sys-
tems has been a growing topic of research over the past
years. They have been applied for applications in educa-
tion and training (Marsella, Johnson, and Labore 2003;
Si, Marsella, and Pynadath 2005; Swartout et al. 2006) as
well as in entertainment and art (Mateas and Stern 2003;
Riedl, Saretto, and Young 2003; Cavazza, Charles, and
Mead 2001). While some of these systems explore user in-
teraction by putting the user into the role of an observer that
can change the world as the story progresses, the majority of
them pursues a dialogue-based interaction approach. Such
systems focus on creating a dramatic experience by offering
a selection of dialogue situations in which the user is able to
influence the progress and the outcome of the story through
interactions.

For the development of interactive storytelling applica-
tions it is indispensable to provide authoring software that
can be used by non-experts such as artists and screenwrit-
ers in order to create highly interactive and consistent multi-
party dialogues with the virtual actors. These authoring tools
need to have concepts to face challenges such as the continu-
ous real-time processing and context-sensitive interpretation
of user interactions, an adequate contemporary reactions to
the user’s discourse acts and the resumption and revision of
dialogue content after unexpected interruptions.

Figure 12: The social game setting in the Virtual Beergarden.

We address these challenges in the social game scenario
SOAP by using Scenemaker for the dialogue- and interaction
management. These ideas have been realized in a demon-
strator located in a Virtual Beergarden scenario, shown in
Figure 12. In the soap-like story, the user and the virtual
characters are involved in a romantic conflict. The user, who

is represented by an avatar (Figure 12 1©), meets a group of
girls (Figure 12 2©) and a group of guys (Figure 12 3©) as
well as a waitress (Figure 12 4©). The user can approach the
focus groups, listen to their conversations and contribute to
the story and thus, influence the progress and outcome of the
story.

Figure 13: SOAP’s component-based system architecture.

The system architecture can be found in Figure 13. The
different components are embedded in three independent
layers: (1) A representation layer, containing knowledge
base and models specifying the scenario content. (2) The
control layer, handling the processing of user input and
the computation of system output and (3) the application
layer enfolding the user interface. Vertically, the compo-
nents can be categorized into (1) dialogue and interaction
management, (2) natural language interpretation and (3) au-
tonomous behavior control, described in the following:

Dialogue and Interaction Management: The behavior
modeling as well as the dialog and interaction management
of the virtual characters is realized with our modeling tool.
An author can specify dialog- and behavior content in a sce-
nescript (Figure 13 5©) and model the logic of behavior and
dialog with a sceneflow (Figure 13 4©). An interpreter soft-
ware executes the model and is, thus, controlling the virtual
characters in the game (Figure 13 8©).

Figure 14 shows a part of the modeled sceneflow. Each fo-
cus group, the user avatar and other game objects are mod-
eled in separate concurrent automata. We also recursively
make use of parallel automata in order to model the be-
havior of individual characters and their behavioral aspects.
This procedure reduces the modeling effort and increases the
clarity of the model because it prevents the state explosion
of the model, which could be observed if we modeled the
whole scenario with a simple flat statechart. Furthermore, it
allows us to change the behavior of individual focus groups
or characters in isolation.

A major requirement in this application was to allow the
user to change the focus group, or initiate and terminate a
conversation respectivly, at any time. Therefore, each dia-
logue situation had to be contemporarily interruptible. To
create a coherent storytelling experience an interrupted di-
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Figure 14: Part of the sceneflow from Soap.

alogue situation had to be consistently resumed after reen-
tering the target group. For these reasons, a highly interac-
tive dialogue structure was modeled and the runtime history
was used in order to keep track of previous interactions and
the progress of the dialogue. Ongoing dialogues are inter-
rupted whenever the user leaves a focus group and resumed
whenever the user reenters the focus group (Figure 14 1©).
Consistent resumption or reopening of a previous dialogue is
guaranteed by a recursive use of the runtime interaction his-
tory (Figure 14 3©). Context-sensitive reaction to the user’s
interaction is modeled by branching the dialogue structure
dependent on the current state of the dialogue and the user’s
dialogue act provided by the NLU pipeline (Figure 14 2©).

Figure 15: User input processing and control.

To factor out the logic for the detection and the processing
of user interactions, we modeled a separate parallel automa-
ton, as shown in Figure 15. This reduces the effort of model-
ing such logics within the automata for the individual dialog
situations to a minimal amount, again effectively increasing
the clarity of the model.

Natural Language Interpretation: Our natural language
recognition and interpretation pipeline includes a spell
checker and the semantic parser Spin (Engel 2005) (Fig-
ure 13 6©) which translates the user’s typed-text input into
abstract dialogue-acts based on the DAMSL coding scheme
(Core and Allen 1997). The underlying semantic rules are
specified in a set of dictionaries (Figure 13 1©) specify-
ing knowledge about the dialogue content. Figure 16 exem-
plifies a set of rules, syntactic and semantic categories as
well as preprocessing steps. The example rule (Figure 16
3©) states that if the user’s input contains one of the words

”how”, ”do” or ”what” in correlation with the word ”you”
and any word belonging to the semantic category location,
the abstract speech act ask-location is triggered. The seman-
tic category location (Figure 16 4©) contains the words ”lo-
cation”, ”place”, ”beergarden”, ”here” and ”party”. Thus,
different user utterances (Figure 16 5©) are parsed into the
same dialogue-act. In addition, word stems (Figure 16 2©)
and other pre-processing steps can be defined (Figure 16 1©)
such as summarizing negations.

Figure 16: Knowledge defined for the semantic parser.

Autonomous Behavior Control: The scene displayed in
the Virtual Beergarden is described by a world model cre-
ated by an artist (Figure 13 3©). While high-level behav-
iors of the virtual characters such as speech and gestures
are specified using the Scenemaker tool, low-level behav-
iors such as positioning, agent orientation and proximity or
inter-agent gazing are handled automatically by the Virtual
Beergarden application. In that manner the author does not
need to take care of them. Animations for virtual characters
are specified in an animation lexicon (Figure 13 2©) includ-
ing over 40 different gestures and postures for each agent.
Following (McNeill 1992), we divide every animation into
preparation, stroke and retraction phases, which are used for
gesture customization. A Bayesian network can be set for
the agents in order to define aspects such as personality or
emotional state that influence the manner in which nonver-
bal behaviors are executed. This has been exemplified for the
phenomena of culture-related differences in behavior (Rehm
et al. 2007).
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3.5 DynaLearn: Modeling Educational Roles for
Teaching Assistants

Embodied conversational agents are widely used in educa-
tional applications such as virtual learning and training en-
vironments (Johnson, Rickel, and Lester 2000). Beside pos-
sible negative effects of virtual characters (Rickenberg and
Reeves 2000), there is empirical evidence that virtual peda-
gogical agents and learning companions can lead to an im-
proved perception of the learning task and increase the learn-
ers’ commitment to the virtual learning experience (Mulken,
André, and Müller 1998). They can promote the learners’
motivation and self-confidence, help to prevent or overcome
negative affective states and minimize undesirable associ-
ations with the learning task, such as frustration, boredom
or fear of failure. Teams of pedagogical agents can help the
learners to classify the conveyed knowledge and allow for a
continuous reinforcement of beliefs (André et al. 2000).

Modeling Different Educational Roles In the framework
of the DynaLearn project, we developed an interactive learn-
ing environment in which learners can express their concep-
tual knowledge through qualitative reasoning models (Bre-
deweg et al. 2009) and enriched the learning experience
with a cast of virtual characters, aiming at increasing learn-
ers’ motivation and learning success. We considered a va-
riety of teaching methods, learning strategies and ways of
knowledge conveyance and verification. These strategies
were realized by modeling different virtual hamsters that
can play different educational roles (Mehlmann et al. 2010;
Bühling et al. 2010). Beside several teachable agents, we
modeled a teacher character and a quizmaster character
and employed them in various teaching sessions. Figure 17
shows the example of a quizmaster (Figure 17 1©) and two
teachable agents (Figure 17 2©) from an educational quiz
session as well as an entity diagram representing conceptual
system knowledge (Figure 17 3©) from which the reason-
ing module generates the questions asked by the quizmaster
during the quiz session.

Figure 17: A quizmaster and teachable agents in a quiz

Creating Scenes with Generated Content The logic and
the dialogue structure of the different teaching methods
were modeled with the Scenemaker authoring tool. There-
fore, we integrated the Scenemaker authoring suite with the
knowledge reasoning engine by providing a set of functions
callable from within the sceneflow model that directly ac-
cesses the application interface of the knowledge reasoning
module. The possibility to parameterize scenes with argu-
ments from within the sceneflow model allowed the creation
of dialogue content consisting both of prescripted content
and generated content retrieved from the knowledge reason-
ing module. Figure 18 shows two examplary scenes (Figure
18 1©, 2©) containing generated content that was beforehand
retrieved from the knowledge reasoning module over one of
the application interface functions (Figure 18 3©).

Figure 18: Hybrid scene creation from generated knowledge

4 Field Tests
Success in building different interactive applications with
virtual characters for entertainment (Gebhard et al. 2008),
education (Mehlmann et al. 2010; Kipp and Gebhard 2008)
and commerce (Kröner et al. 2009) permits very promising
conclusions with respect to the suitability of our approach.
However, mainly computer-experts have been involved in
the development of these applications. For this reason, we
conducted several field tests and practical workshops with
students of different age groups and genders to determine in
how far the approach is suited for non-experts. The partic-
ipating students from various educational levels brought no
specific background skills or previous knowledge.

4.1 Nano Camp 2009: School Students Creating
Flirting Embodied Conversational Agents

The Scenemaker authoring tool was exposed to a challeng-
ing field test in June 2009 at the German Research Center
for Artificial Intelligence (DFKI) with secondary and gram-
mar school students (age 12-17). The European broadcasting
company 3sat had invited students from all over Germany
to a one-week science camp for hands-on experience with
scientific topics. In this context, 12 students were to try out
Scenemaker to create an interactive scenario in only 1.5 hrs
without prior knowledge or experience. To make this pos-
sible, we created a sample scenario where two agents are
engaged in a flirt dialogue. Interactivity was given by be-
ing able to change the one agent’s ”flirting strategy” (careful
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vs. aggressive). The 12 students were grouped into 6 teams
of two people each. After a short introduction (10 mins) in-
cluding a sample dialogue, the students had some time for
brainstorming and sketching the dialogue (40-60 mins). Af-
terwards, they implemented the sceneflow with minimal as-
sistance (20-40 mins). Every team had to be finished in 1.5
hrs maximum. All 6 teams finished and gave positive feed-
back about the authoring experience. The resulting scenarios
were viewed in the whole group.

4.2 Girls’ Day 2010: Teenage Girls Creating a
Family Sitcom with Virtual Hamster
Characters

A second field test was conducted in the context of Ger-
many’s nationwide Girls’ Day program (Endrass et al.
2010). This initiative is geared exclusively to female mid-
dle school students (age 12-15) and aims at encouraging the
students to pursue a career in the natural sciences. Augsburg
University invited 9 middle school students to their com-
puter science institute. The students used the Scenemaker
tool to create a social game scenario with virtual hamster
characters. The 9 students were grouped into 3 teams of
three people each and all decided to create some kind of fam-
ily sitcom episode of about 5 minutes. After a short introduc-
tion (20 mins) into the concepts of Scenemaker’s modeling
approach and the handling of the graphical user interface,
the students had some time for brainstorming and sketch-
ing the dialogue (40 mins). Afterwards, they modelled the
sceneflow with minimal assistance (40 mins), as shown in
Figure 19. All 3 teams finished in time and the remarkable
resulting scenarios were viewed by the whole group. The
students were asked to fill out an evaluation sheet in which
they gave positive feedback about the authoring experience.

Figure 19: Pictures from the Girls’ Day Authoring Session.

4.3 MMP 2011: College Students Creating an
Interactive Game with a Virtual Opponent

A third field test was conducted in the context of the mul-
timedia project workshop at the computer science institute

of Augsburg University. College students (5th semester) had
to model the logic of an interactive battleship game with a
virtual opponent (see Figure 20) and the narrative structure
of dialogues with the Scenemaker authoring tool. The 9 stu-
dents were grouped into 2 teams of four people each. The
students had been introduced to the modeling concepts of
Scenemaker’s modeling approach and the handling of the
graphical user interface in one lecture session. Most remark-
able was, that these students made extensive use of parallel
automata for the specification of the virtual opponent’s be-
havior. Each group modeled an automaton simulating the
emotional state of the virtual opponent dependend on its
success in the game. They synchronized the emotional state
with several parallel automata specifying the expressive be-
havior of the virtual opponent, e.g. for facial expressions and
gestures. This showed that the students completely under-
stood and applied Scenemaker’s concepts of modularity and
compositionality. Already having some previous knowledge
in programming, the students claimed that they would have
needed much more time and effort to implement the game
logic and the agents behavior in a higher programming lan-
guage, such as Java. They especially praised the intuitive
way of creating and synchronizing several concurrent pro-
cesses, compared with the difficulty they would have had
with multi-threading models.

Figure 20: Pictures from the Battleship Game.

4.4 Conclusion
The participants of the field tests were able to quickly pick
up most of our concepts for modeling interactive narrative
with statecharts and writing scenescripts was promptly and
completely understood. This comprehension was directly
transfered into the creation of vivid interactive scenarios
with virtual characters.

During the field tests, it has been noticeable that the stu-
dents, with the exception of the college students, in con-
trast to the computer experts, occasionally had difficulties
to apply the more complex concepts of our approach. While
the concept of hierarchical and parallel decomposition was
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fully understood, the students mostly used concurrent pro-
cesses to model completely independent parallel behaviors
while they rarely utilised the synchronization measures of
our language. Furthermore, the history concept was rarely
used, because the dialog structure modelled by the students
was mostly linear or a tree-like branching structure. They
only occasionally had the idea to model dialog situations that
could be resumed or reopened after an interruption by using
the history concept of our approach.

These observations could be be explained with the short
amount of practice time for the students and the schedule of
the workshops. We believe that the more complex modeling
concepts of our approach will also be fully understood by
non-experts after more intensive practice. In the future we
plan to do more field test over a longer period of time in
order to prove our assumption. This would also allow us to
evaluate the quality of the stories and dialogues modeled by
the students.

5 Conclusion and Future Work
In this paper, we described a modeling approach to mixed-
initiative multi-party dialogues with virtual characters. We
presented the integrated authoring tool Scenemaker which
allows an author to model complex dialogue behavior and
interaction management for multiple virtual characters in
a rapid-prototyping style. The statechart language provides
different interaction handling policies for an author to han-
dle continuous real-time interaction. The user can interrupt
a dialogue at any time and expect a contemporary response.
An interaction history allows the author to model reopening
strategies for dialogues. After a dialogue was interrupted, it
can consistently be resumed and previous dialogue topics
can be revised. Our statecharts can be hierarchically refined
to create contexts for the interpretation of user input. Parallel
decomposition allows to model different behavioral aspects,
functions and modalities in isolation. This modular approach
reduces the complexity of the model while improving ex-
tensibility and reusability. Dialogue content can be authored
manually or generated automatically. Blacklisting strategies
allow an easy way to provide variability by avoiding repet-
itive behavior. Autonomous behavior can be specified with-
out the need for an author to explicitly model it.

Success in building different interactive applications with
virtual characters for entertainment (Gebhard et al. 2008),
education (Mehlmann et al. 2010) and commerce (Kröner
et al. 2009) as well as promising feedback from several field
tests (Endrass et al. 2010; Kipp and Gebhard 2008) validates
the usefulness of our approach. In field tests, students were
able to quickly pick up the visual concepts or our UI. In
addition, the concept of finite state based modeling of inter-
active narrative with statecharts as well as the writing sce-
nescripts were promptly and completely understood by the
students. This comprehension was directly transfered into
the creation of vivid interactive scenarios with virtual char-
acters. Regarding the results of the field tests, we conclude
that the Scenemaker software is suitable for rapid prototyp-
ing, even for beginners and may be used as an educational
device.

Our future work refers on the one hand to technical im-
provements of the authoring tool based on the user feedback
we received so far, such as refinements of our modeling ap-
proach, and on the other hand to additional user studies that
explore further issues, such as the quality of the scenarios
generated with Scenemaker.

For the future we plan to integrate our system with other
components, as for example emotion simulation and emo-
tional speech synthesis, nonverbal behavior generation as
well as speech recognition. This implies the use of standard
languages such as FML, BML and EmotionML (Vilhjalms-
son et al. 2007; Kipp et al. 2010; Kopp et al. 2006). Fur-
thermore, we want to integrate a dialog domain knowledge
component to the authoring framework, which allows au-
thors to easily define domain knowledge and rules that can
map utterances to abstract dialog acts dependent on the di-
alog domain. This implies the use of an ISO standard for
dialogue act annotation (Bunt et al. 2010).

Feedback from users in different field tests and projects
has shown that one strength of the modeling approach with
Scenemaker is the reusability of already modeled behavioral
patterns in the form of sub-models, because this can drasti-
cally reduce the modeling effort and complexity. We plan
to factor a library of reactive behavior patterns that can be
reused for an easy creation of different behavioral aspects for
multiple virtual characters. Therefore, one of our main pur-
poses is to identify abstract universal behavioral patterns that
appear in multi-party dialogues with multiple virtual charac-
ters. We want to provide the author with a library of prede-
fined and parameterizable state chart models, implementing
behavioral patterns that can be reused in several projects and
can easily be adjusted to the respective context.
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