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1. Introduction

Systemic risk threatens financial stability and the functioning of financial markets due to shocks on liquidity, reduced
market confidence and willingness of risk taking. A growing body of literature discusses macroprudential risk management
approaches to study systemic risk with two goals: ensuring financial stability and quantifying a risk charge proportional to
the relative systemic contribution. Both goals are targeted to inject additional capital into the financial system to make it
more resilient. However, as pointed out by Bluhm and Krahnen (2014) macroprudential monitoring is still at a very early
stage, quantifying the magnitude of systemic risk and identifying systemically relevant contributors need more scientific
analysis. Without such effort, the supervisory authorities face difficulties either to set proper capital requirements as a risk
buffer against adverse shocks for every financial institution or to calculate additional risk charges for SIFIs for their extra
negative externalities on the financial system.

In order to understand the interconnectedness among SIFIs from a system-wide perspective, one has to study the
measure, the degree, and asymmetric nature of systemic risk. To do so we propose a quantitative and system-wide
framework based on a topological network methodology. Network analysis is quite capable of portraying the interplay
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among financial institutions and measuring their interconnectedness (see Diebold and Yılmaz (2014) and Barigozzi and
Brownlees (2015)). Summarizing their arguments, interconnectedness of financial institutions on the interbank market is
an absolute key to understanding systemic risk. Interconnectedness captures the situations when financial distress in one
institution subsequently raises the likelihood of financial distress in other institutions because of their network of contractual
relations and interbank lending among them, leading to a ‘‘too-interconnected-to-fail’’ situation. The complexity of the
connections brings challenges to researchers, a tailored network structure representing the interconnections of a large panel
as a graph or an adjacency matrix though provides insight into the mechanics of financial distress.

This study proposes modern network techniques for the analysis of the network effect on the tail events in five aspects.
First, we concentrate on the network of SIFIs due to their systemic relevance. The interconnectedness of SIFIs shall be
quantified and keptmonitored. Second, we propose and argue that a network (or ‘‘adjacencymatrix’’) should be based on tail
event related profiles. The adjacency matrix is constructed by the similarity of risk profiles of node pairs. The network being
built from a risk profile comprising of various tail event variables is more capable to portray stress related structure and to
represent diverse risk contents. The tail event risk profiles are conventionally allocated into contagion and diversification
baskets, leading to a positive adjacency matrix A+ and a negative one A−. The positive (negative) network factor is therefore
constructed through the estimated A+ (A−). A joint spacings variance ratio (SVR) test verifies the significance of similarities
in an asymmetric neighborhood of zero and can provide additional evidence in favor of two adjacency matrices.

Third, the SIFIs identified by the Financial Stability Board (FSB) are allocated to different buckets depending on their scores
of policy measures proposed by Basel Committee on Banking Supervision (BCBS) to admit that each SIFI potentially creates
different degrees of contagion. The five buckets correspond to the additional loss absorption capacities from 1% to 3.5% to
ensure the sufficiency of their common equities in case of the default. However, themethodology proposed by BCBS depends
very much on the choice of policy measures and threshold of scores. Therefore, we present a parsimonious and intuitive
metric for the ‘‘aggregate risk’’ in a network, the resulting systemic risk scores can be used tomonitor systemic vulnerability.
The risk decomposition of the aggregate systemic risk quantifies the risk contribution of each SIFI. For a supervisory purpose,
a SIFI with a high degree of connectedness may thus be monitored more carefully for higher risk increments. In a nutshell,
this analytic decomposition enables identifying the source of systemic vulnerabilities.

Fourth, the responses/outputs at the network vertices constitute an ultrahigh dimensional vector, that is, the returns of
the defined SIFIs. The interest of our analysis lies in the extremes or higher moments, see Härdle et al. (2016) and Fan et al.
(2016). Given an adjacencymatrix one is interested in how a stress impulse on one node (or a collection of these) propagates
through a network. A basic idea is seeded in the CoVaR concept of Adrian and Brunnermeier (2016) but the situation we look
at requires an extension to a dynamic framework. In order to study such tail event risk transmission in a dynamic context we
propose the Tail Event driven Network Quantile Regression (TENQR) model, extending the variation about the mean analysis
of Zhu et al. (2017). The technique presented here is similar to Zhu et al. (2018), but different in the concrete construction
of the adjacency matrix as we will see later. In a TENQR framework the SIFI returns given a range of quantile levels or τ
values can be governed by the network factor as an indicator of the degree of connectedness in the system. Furthermore,
we control for the autoregressive impact and the market-wide covariates, while the individual node-specific features are
captured by employing the fixed-effects panel data framework. The TENQR model does reflect the nature of systemic risk
that has (i) large impact, particular in the downside constituting an asymmetric reaction; (ii) widespread coverage that can
be examined through a panel or stack model; (iii) a ripple effect being detected by an intertemporal investigation.

Fifth, we analyze the geographic variation with respect to systemic risk. For this purpose we take the panel quantile
regressions for the SIFIs from the US, Europe and Asia. In doing so, one may detect which region is more sensitive to the
network factor. Some regionsmay turn out to be risk transmitters, while others are risk recipients. Having established TENQR
one contributes to a ‘‘manageable’’ systemic risk: the supervisors are able to rank the systemic importance for each SIFIs,
to measure the resulting connectedness in a system, and to evaluate the impact of network on the conditional quantile of a
response.

The empirical evidence can be summarized as follows. The negative similarities based on adverse movements of the risk
profiles can be observed when pairing any SIFI in the US or EU with one in Asia. Hence, the Asian region contributes to risk
diversification documented also in the risk decomposition analysis and are indeed themajor active elements of the negative
network factor. A joint SVR test supports the design of adjacency in this study by proving the statistical significance of the
discrepancy between the binary elements. The quantile curve w.r.t. the positive network factor exhibits a downward slope
(in EU and in the US), or a U-shape (in Asia) indicating a tail-event based contagion. However, for the case of the negative
network factor, the monotonic increasing quantile curves document a less gain from the risk diversification in the lower tail
than in the upper tail.

The paper is structured as follows. In thenext sectionwediscuss the construction of the adjacencymatrix and its relevance
for the systemic risk score. Section 3 contains the details for the TENQR network quantile regression. Section 4 concludes.

2. Adjacency matrix and systemic risk score

2.1. Financial characteristics of SIFIs

As institutions grow in size, interconnectedness and complexity, they profit by lower funding cost and economy of scale.
However, the moral-hazard problems or so called ‘‘negative externalities’’ subsequently raise because governments have
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Table 1
The overview of SIFIs.
Index Name of SIFI Firm size Debt ratio Bucket Country

1 JP MORGAN CHASE 21.506 0.261 4 U.S.
2 BANK OF AMERICA 21.446 0.302 2 U.S.
3 BANK OF NEW YORK MELLON 19.499 0.095 1 U.S.
4 CITIGROUP 21.359 0.300 3 U.S.
5 GOLDMAN SACHS 20.624 0.509 2 U.S.
6 MORGAN STANLEY 20.501 0.417 2 U.S.
7 STATE STREET 19.106 0.153 1 U.S.
8 WELLS FARGO 20.980 0.183 1 U.S.
9 ROYAL BANK OF SCTL 21.588 0.252 1 U.K.
10 BARCLAYS 21.604 0.286 3 U.K.
11 HSBC 21.682 0.127 4 U.K.
12 STANDARD CHARTERED 20.136 0.187 1 U.K.
13 BNP PARIBAS 21.684 0.136 3 France
14 CREDIT AGRICOLE 21.489 0.211 1 France
15 SOCIETE GENERALE 21.184 0.139 1 France
16 DEUTSCHE BANK 21.630 0.200 3 Germany
17 UNICREDIT 20.929 0.360 1 Italy
18 ING GROEP 21.156 0.103 1 Netherlands
19 SANTANDER 21.158 0.368 1 Spain
20 NORDEA BANK 20.476 0.326 1 Sweden
21 CREDIT SUISSE GROUP N 20.744 0.339 2 Switzerland
22 UBS GROUP 21.008 0.251 1 Switzerland
23 BANK OF CHINA 21.200 0.160 1 China
24 ICBC 21.508 0.089 1 China
25 CHINA CON.BANK 21.281 0.092 1 China
26 MITSUBISHI UFJ 21.533 0.159 2 Japan
27 MIZUHO 21.247 0.233 1 Japan
28 SUMITOMO.MITSUI 21.044 0.125 1 Japan

Note: Debt ratio, a ratio of total debt to total asset, and bank size, as log value of total assets denominated in the US dollar, are shown as their mean value
during sample period (2007–2015). The buckets assigned by BCBS correspond to required level of additional common equity loss absorbency as a percentage
of risk-weighted assets from 3.5% (Bucket 5), 2.5% (Bucket 4), 2.0% (Bucket 3), 1.5% (Bucket 2) to 1% (Bucket 1).

been forced to use public funds to support distressed financial institutions, leading to a ‘‘too-interconnected-to-fail’’ or ‘‘too-
big-to-fail’’ situation. Due to the importance of SIFIs formarket stability the analysis of interconnectedness and identification
of major risk contributors are important issues. Here, we analyze 28 global SIFIs (or called G-SIB) listed and updated in
Nov. 2015 by FSB, but disregard the Agriculture Bank of China and Banque Populaire CE, due to their relative meager data
availability. Daily data has been collected ranging from Jan. 2007 to Dec. 2015.

In Table 1, we list the names of the SIFIs with the corresponding index numbers assigned in this research, and summarize
the bank-specific attributes such as debt ratio, firm size, country where the headquarter is located and the buckets assigned
by the Basel Committee on Banking Supervision (BCBS). Debt ratio, a ratio of total debt to total asset, captures the fragility of
a bank, while the size, as total assets, proxies for the bank being too big to fail. In particular, size risk is themost determinant
standalone bank risk in relation to systemic risk (Laeven et al., 2015).

2.2. Similarity matrix

Graph theory is very useful to represent and visualize complexity of interactions. A graph is comprised of a series of
nodes/vertices and the edges, referring to connect or join two nodes i, j. In this study, each node is represented as a particular
SIFI, while the edge between two nodes indicates their dependence. The properties of a graph can be expressed by its
adjacency matrix A, a square matrix comprising the elements of aij with value equal to one if an edge connects to node i
and j and zero otherwise. In social networks such as Facebook or Twitter, a friendship can be naturally defined as it could
be for example a follower–followee relationship. However, for institutional networks, defining an adjacency matrix is not
as intuitive or trivial as what can be done in individual networks. One may need additional prior knowledge regarding
counterparty linkages such as their contractual obligations, interbank lending and the assets they hold mutually, which
are relatively hard to be gathered in time and are of very low-frequency data type. Therefore, Diebold and Yılmaz (2014)
proposed to use daily stock returns for its forward-looking assessment advantage and being able to reflect the health of SIFI
in time. The mapping to a network comes via variance decomposition of volatility. Concentration on volatility though falls
short when quantifying the dynamics of tail event related measures in a more general non-Gaussian context.

We therefore propose to construct an adjacencymatrix from risk profiles. As risk profilewe take the vectors of conditional
(marginal) Expected Shortfalls (CoES). This is consistent with Basel committee’s recommendations and can be seen as an
extension of the CoVaR concept of Adrian and Brunnermeier (2016), Härdle et al. (2016) and Hautsch et al. (2014). The CoES
of the SIFI i conditional on the VaR exceedance of the SIFI j at α level is defined as:

CoESij,t (α) = E[Yi,t |Yj,t < VaRj,t (α)]. (1)
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Each SIFI i is characterized at every time point t by a N = 28 dimensional risk profile vector Xi,t = {CoESij,t}j=1,...,N . To be
specific, Xi,t contains N − 1 expected shortfalls conditional on the stress from N − 1 counterparts and the expected shortfall
itself while i = j. CoESij,t (α) and VaRj,t at 95% level are estimated respectively by the (conditional) mean and the sample
quantile of the return series Yj,t−h, . . . , Yj,t .

Unlike the CoVaR, the CoES takes into account all possible losses that exceed the severity level corresponding to the VaR
of the counterpart. Besides satisfying a coherent risk measure, the CoES is continuous w.r.t α regardless of the underlying
distribution. Therefore, it is not sensitive to small changes in α.

A pair of SIFIs is similar if their risk profiles share a certain degree of closeness. Take the risk profile vector comprised of
CoES risk covariates and calculate the cosine similarity at each time point t:

ρij,t =
X⊤

i,tXj,t

∥Xi,t∥∥Xj,t∥
for j ̸= i, i = 1, . . . ,N, t = 1, . . . , T , (2)

The risk profile similarity in (2) is analogous to the Pearson correlation coefficient, and is the dot (scalar or inner) product
of the normalized and centered risk profile vectors. For any pair (i, j), as long as the normalized risk vectorsmove to the same
direction, the cosine of the angle between them shall be very small, therefore, ρij,t will approach one (analogous to positive
∆CoVaR or positive tail dependence). Likewise, moving to reverse directions will result in a larger angle and a smaller or
even negative ρij,t if the angle is higher thanπ/2 (analogous to negative∆CoVaR or negative tail dependence). The appealing
feature is that it covers a wide range of tail risks.

In order to understand the situations in which circumstance the similarity ρij,t will be negative, let us consider a simple
case of a mean zero multivariate Normal distribution with standard normal marginals so that the covariance matrix equals
to the correlation matrix {ϱij} with i, j = 1, . . . ,N . The CoES vector for SIFI i is E[Yi,t |Yj,t ≤ Φ−1(α)], j = 1, . . . ,N . In this
case, for i = j we obtain the well known formula, see Borak et al. (2013):

E[Yi,t |Yi,t ≤ Φ−1(α)] =
−1

1 − α
ϕ{Φ−1(α)}, (3)

where ϕ andΦ are pdf and cdf of the standard normal distribution. For i ̸= j, there is no simple analytical formula available
like (3) although the risk profile is easy to estimate empirically (at least at the 5% confidence level that we use). The reason
is that for the joint cdf FYi,Yj of two random variables (Yi, Yj) the expected value of Yi conditional on Yj lower than a certain
quantity is

E[Yi|Yj ≤ yj] =

∫
∞

0

1 − FYi,Yj (yi, yj)

FYj (yj)
dyi −

∫ 0

−∞

FYi,Yj (yi, yj)

FYj (yj)
dyi (4)

cannot be simplified easily even in the bivariate normal case. More insight is possible if we pick up the idea of Adrian and
Brunnermeier (2016) and only look at E[Yi|Yj = yj]. Further simplification is feasible in the multivariate normal case since
then the conditional distribution of Yi given Yj = yj will be N(ϱij, 1 − ϱ2

ij). The similarity thus can be simply calculated from
the risk profile vector

E[Yi|Yj = Φ−1(α)] = ϱi,jΦ
−1(α).

If we refer to the similarity defined in (2), we find

ρij =

N∑
k=1

ϱi,kϱk,j{Φ
−1(α)}2

The illustration based on the Gaussian and Adrian and Brunnermeier (2016) framework sheds some insights in (2), that is,
in what the extent the pairwise ρij can be negative, although the CoES lacks an analytical expression for the non-Gaussian
case.

For the purpose of visualization, we snapshot eight situations of the cosine similarity in (2) at every 250-day and display
them in Fig. 1. The colors used to represent the degree of similarity vary from negative (blue) to positive correlation (yellow)
in the grids. Through 2007–2009, one observes the similarity moving to a wide coverage of yellow color to signal an
increasing (decreasing) interdependence on positive (negative) side. During the severest time of system stress, most of
financial institutions are tightly tail connected except for the Asian SIFIs. As the tension for crisis has graduallymitigated, one
sees a reduced connectedness in 2010. The European debt crisis in 2011–2012 boosted the similarities again, particularly
for the European SIFIs (nodes 11–22). Fig. 1 shows that the similarity matrix indeed varies over time. The incorporation of
this dynamic effect is left for further research. To promptly capture an approximate dynamics of risk similarity, the CoES are
estimated during a given window size. A 250-day horizon h = 250 is employed to estimate CoES in (1).

2.3. Adjacency matrix

By its very construction the pairwise similarities (2) do not reveal equal severity: some are profound but some are not. It
is not advisable to take all pairwise similarities into account if they are not beyond a certain threshold, an observation also
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Fig. 1. Similarity matrix.

made by Härdle et al. (2016), Hautsch et al. (2014) and Barigozzi and Brownlees (2015). Therefore, to achieve manageable
and interpretable structures, dimension reduction techniques are employed.
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The simplest network structure is based on binary weights representing the links between the nodes, with one (zero)
used to represent a link (isolation). Systemic risk, however, is induced by positive interdependencies, whereas the negative
ones are benefiting from a risk diversification. Thereby, the instability indeed is caused by positive rather than negative
interdependence, suggesting an asymmetric impact. The necessity to treat positive and negative correlations (the entries of
the similarity matrix) differently makes therefore such a breakdown into a simple binary structure infeasible. We therefore
propose an asymmetric breakpoint approach between positive and negative correlation to fulfill the need of creating more
groups with distinguishable positive and negative linkages.

2.3.1. Asymmetric breakpoint approach
The question is how to determine the adjacency relation among the SIFIs from the similarity profile containing concurrent

(positive) or disparate (negative) risk profile correlation. For this purpose, we partition the correlations into three groups:
the positive, the negative and zero correlation. Therefore, a direct application of the technique of Ng (2006) is not possible.
Thus we treat large negative correlations and large positive correlations asymmetrically. ‘‘Large’’ here means a manifest
magnitude of estimated correlation. Mathematically speaking, their values must exceed the estimated threshold.

The assignment of the correlations to one of three groups is based on a breakpoint technique. Algebraically, let ρ =

(ρ1, ρ2, . . . , ρn)
⊤ to be the vector of ordered similarities in (2) and ρ1 < ρ2 < · · · < ρn where n = N(N−1)/2. Extending Ng

(2006), we first divide the vector of ordered similarities into the positive vector ρ+
=

(
ρ+

1 , ρ
+

2 , . . . , ρ
+
n1

)⊤ and the negative
vector ρ−

=
(
ρ−

1 , ρ
−

2 , . . . , ρ
−
n2

)⊤, and n1 + n2 = n. In our sample n1 > n2 is the common case. Fig. 6 displays the proportion

n2/n as a time-series 2008–2015. One sees that only about 20% of the SIFI pairs exhibit negative correlations.
We exploit the uniform spacings to address the number, homogeneity and magnitude of positive v.s. negative correlated

pairs. Applying the cdf of standard normal distributionΦ to ordered correlations for approximate uniformity, we have

φ+
= (φ+

1 , φ
+

2 , . . . , φ
+

n1 )
⊤

= (Φ(
√
Nρ+

1 ), . . . ,Φ(
√
Nρ+

n1 ))
⊤,

φ−
= (φ−

1 , φ
−

2 , . . . , φ
−

n2 )
⊤

= (Φ(
√
Nρ−

1 ), . . . ,Φ(
√
Nρ−

n2 ))
⊤,

Since ρ+

k ∈ [0, 1] and ρ−

k ∈ [−1, 0], it follows that φ+
∈ [0.5, 1] and φ−

∈ [0, 0.5].
The edges of the network are constructed based on large spacings between two subsequent correlations to indicate a

largemean-shift in the original correlations or a slope shift in the transformed values. We therefore denote∆+

k = φ+

k −φ+

k−1
and∆−

k = φ−

k − φ−

k−1 as the positive spacings and the negative ones, respectively. The basic idea is to split the sequence of
spacings into three subsets using a cluster approach. Let θ− be the fraction of spacings which corresponds to highly negative
correlations; θ+ be the fraction of spacings which separates highly positive correlations. For the spacings in the positive
group, a minimization of the total sum of squared residuals in small positive S+ v.s. large positive L+ results in:

θ̂+
= argmin

θ+∈[θ,θ̄ ]

[θ+n1]∑
k=1

(∆+

k − µ+

S )
2
+

n1∑
k=[θ+n1]+1

(∆+

k − µ+

L )
2 (5)

with µ+

S =
1

[θ+n1]

∑[θ+n1]

k=1 ∆+

k and µ+

L =
1

n1−[θ+n1]

∑n1
k=[θ+n1]+1∆

+

k . For the spacings in the negative group, optimization of
the total sum of squared residuals in small negative S− v.s. large negative L− is:

θ̂−
= argmin

θ−∈[θ,θ̄ ]

[θ−n2]∑
k=1

(∆−

k − µ−

S )
2
+

n2∑
k=[θ−n2]+1

(∆−

k − µ−

L )
2 (6)

with µ−

S =
1

[θ−n2]

∑[θ−n2]

k=1 ∆−

k and µ−

L =
1

n2−[θ−n2]

∑n2
k=[θ−n2]+1∆

−

k

where∆k are ordered spacings and [θn] is the integer part of θn. We have taken θ = 0.1 = 1− θ̄ and found stable results for
this choice.We obtain the optimal break fractions θ̂+ resulting in aminimum total sum of variances from positive subgroups
to make the correlations in a given group as homogeneous as possible. Analogously, the optimal break fraction θ̂− leads to
a minimum total sum of variances from negative subgroups.

Having estimated the break fractions θ̂+, θ̂− at each time point, we define the adjacency matrix, A, with the elements:

aij =

⎧⎪⎨⎪⎩
1 if ρ+

v+(i,j) > ρ+

θ̂+

−1 if ρ−

v−(i,j) < ρ−

θ̂−

0 otherwise,
(7)

where v+(i, j) and v−(i, j) are mappings which assign to each pair (i, j) of SIFIs the index of the ordered positive or negative
correlations. ρ+

θ̂+
and ρ−

θ̂−
are the correlations which correspond to the breaking points.

To distinguish betweendirect comovement of riskmeasures,weak comovement and adverse comovement, (7) represents
the pairwise and symmetric adjacencies. The first group contains pairs of SIFIs with a very strong positive dependence. The
corresponding cells of A are coded with ones indicating active links in Fig. 2, i.e. aij = 1 (white) standing for highly positive
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Fig. 2. Adjacency Matrix. Note: the highly positive correlation (in white), the highly negative correlation (in black) and the weak correlation (in gray) are
shown in each of calender years. The diagonal cells show a trivial relation and in gray as a default color.

correlations. The 2nd group contains the pairs with highly negative correlation and is coded with aij = −1 (black). The
elements of the adjacency matrix for the 3rd group are set to 0 (gray) reflecting weak or inactive linkages.
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Fig. 3. The adjacency matrices A+ and A− averaged over time (2007–2015).

Fig. 4. Network visualization for A+ (left) and A− (right) for 2012. Green nodes indicate EU, red — US, and blue — the Asian SIFIs. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

A sequence of snapshots can be merged into the averages of adjacency as shown in Fig. 3. Particularly, we separate the
positive adjacencies into matrix A+ from the negative into matrix A−. One can therefore observe from the average of A+ that
the risk contagion emerges geographically in the form of four black blocks along the diagonal line, while the average of A−

illustrates that the Asian SIFIs are the major contributors of risk diversification in the world.
Note that the magnitudes of θ̂+ and θ̂− are not necessarily symmetric. As the SIFIs are belonging the same sector, by

nature they tend to move concurrently toward the same direction. In our investigation, a tendency of rising θ̂+ in the crisis
period along with a relatively lower n2 (or higher n1 since n = n1 + n2) is observed. For the case of n2 = 0, the asymmetric
breakpoint approach will coincide with the Ng (2006) approach.

The network in Fig. 4 visualizes one of the adjacency matrices of Fig. 2, e.g. the snapshot in 2012. We used an extended
version of the force-directed layout suggested in Fruchterman and Reingold (1991) by minimizing the Euclidian distance
between the nodes in the two networks. A highly connected A+ network corresponds to a global contagion, whereas the
sparse A− network reveals scarce risk diversification. Interestingly, five of eight US SIFIs (node 1, 3, 5, 7, 8) are highly and
negatively connected to Mitsubishi (node 26), showing a diversification benefit from Mitsubishi.

2.3.2. Testing the joint correlations in the positive and negative groups
The optimal break fractions determined in the previous section are of key importance for the construction of the adjacency

matrix. The approach does not rely on the statistical properties of the spacing, but is mainly a clustering technique aimed
to find the largest break in ordered positive or negative correlations. Further analysis of the spacings can reveal however
additional insights into the correlation structure of the established groups from a statistical perspective. A natural question
is to ask if the correlations ρ+

v+(i,j) < ρ+

θ̂+
and ρ−

v−(i,j) > ρ−

θ̂−
are simultaneously different from zero. If this is the case we can
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conclude that the correlations exceeding the thresholds are also different from zero. A direct comparison of the correlations
using spacings is not reasonable, since if all correlations are high and equal then the spacings are zero and render infeasible
results. The following lemma summarizes several useful properties of the spacings (see Ng (2006), and Pyke (1965)).

Lemma 1. Let ui ∼ U[0, 1] be iid for i = 1, . . . , n. Let ∆i = u[i] − u[i−1] be the ordered uniform spacings of order 1. Then
E(∆i) = 1/(n + 1), Var(∆i) = n/(n + 1)2(n + 2) and Cov(∆i,∆j) = −1/(n + 1)2(n + 2) implying Corr(∆i,∆j) = −1/n for
i ̸= j.

The joint distribution of spacings and further important properties can be found in Pyke (1965) and Arnold et al. (1992).
Letm1 be the number of positive correlation between zero and ρ+

θ̂+
andm2 the number of negative correlations between

ρ−

θ̂−
and zero, i.e. m1 = argmaxk {ρ+

k < ρ+

θ̂+
} and similarly for m2. Under the null of zero correlation we argue that

the transformed correlations follow asymptotically half-uniform distribution with φ+

i ∼ U[0.5, 1] for i = 1, . . . ,m1
and φ−

i ∼ U[0, 0.5] for i = 1, . . . ,m2. Relying on Lemma 1 and noting that ∆+

k are spacings on [0.5, 1] we obtain
E(∆+

k ) = 0.5/(m1+1) andVar(∆+

k ) =
1
4m1/(m1+1)2(m1+2) and similarly for∆−

k .Moreover, the spacings are asymptotically
uncorrelated. From this we can conclude that under the null of zero correlations it holds

Var(∆+

k +∆+

k−1)/2 = Var(∆+

k ).

Therefore the variance ratio test of Cochrane (1988) is a convenient tool to test the autocorrelations of the spacings. The
simplest version considers the ratio of the sample variance of 2-spacings ∆+

k + ∆+

k−1 = φ+

k − φ+

k−2 to the sample variance
of simple spacings.

SVR+
=

1
2 V̂ar(∆

+

k +∆+

k−1)
V̂ar(∆+

k )
− 1

=

1
2(m1−3)

∑m1−1
j=2

{
∆+

k +∆+

k−1 −
1

m1−2

∑m1−1
ℓ=2 (∆+

(ℓ) +∆+

(ℓ−1))
}2

1
m1−1

∑m1−1
k=1

{
∆+

k −
1

m1−1

∑m1
ℓ=2∆

+

(ℓ)

}2 − 1.

Similarly, we can define SVR− with m1 replaced by m2 and∆+ by∆−.

Lemma 2. Under the null ρ+

k = 0 for k = 1, . . . ,m1 and ρ−

k = 0 for k = 1, . . . ,m2 it holds that
√
m1SVR+

L
→ N(0, 1) as

m1 → ∞,
√
m2SVR−

L
→ N(0, 1) as m2 → ∞ and they are asymptotically uncorrelated.

The uncorrelatedness follows from the asymptotically diminishing correlations in Lemma 1. Relying on the last lemma
we can consider theWald type test for the null hypothesis thatm1 smallest positive andm2 largest negative correlations are
zeros:

m1[SVR+
]
2
+ m2[SVR−

]
2

∼ χ2
2 . (8)

If the hypothesis is rejected, we can conclude that the smaller as well as larger correlations are both different from zero.
If the null hypothesis is not rejected, we can apply a similar test to positive correlations lying in [ρ+

θ̂+
, 1] and for negative

correlations lying in [−1, ρ−

θ̂−
]. Again rejecting the null here leads us to the conclusion that the larger correlations (either in

[ρ+

θ̂+
, 1] or in [−1, ρ−

θ̂−
]) are significant.

Fig. 5 displays the p-values of the Wald test in (8) for the S+, S− and the L+, L− sets, respectively. The p-values of S+, S−

greater than 0.05 are themajority, showing that the small (in absolute value) correlations neither from the positive nor from
the negative correlations reject the null hypothesis that they are jointly zero. A few exceptions are observed in the European
crisis period, say 2012–2013.

A necessary investigation applied to the L+, L− sets reveals the statistical significance of risk profile correlations. The
p-value constellations as given in Fig. 5 thus support our definition (7) of the adjacency structure.

2.4. Systemic risk score and risk decomposition

In social networks onemight consider nodes/personswithmany connections to be important or central. Several concepts
exist that identify centrality e.g. eigenvector centrality, etc. In the situation that we study here though, one wants to identify
nodes which contribute most to systemic risk. This is then informative for the supervisory authority for deciding capital
requirements and systemic risk charges. The risk decomposition proposed below conveys information of the contribution
of each SIFI, which can be ideally be seen as a complement of the bucket approach proposed by BCBS.

In addition to the notion of interconnectedness, node characteristics, e.g. size of bank or risk level of bank are also decisive.
A bankwith biggermarket capitalization ismore capable of offering interbank loans to other financial institutions, describing
the situation of ‘‘too-big-to-fail’’. It is understood that the risk in a connected network is provoked by either the compromise
level of nodes or the degree of their connectedness, or even both.
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Fig. 5. p-values of the Wald test (8) for the correlations close to zero.

Motivated by Das (2016) who proposes a parsimonious way of quantifying aggregate risk in a network comprised of
related entities, we combine adjacency matrix A together with a compromise loading (Fig. 2). The compromise level, e.g. the
size, the capital allocation or characteristics used tomeasure the nodal risk (e.g. debt ratio, credit rating, probability of default,
etc.) will be touching the issue of too-big-to-fail and Basel III regulation. Defining the level of compromises as nodal market
capitalization C = (C1, . . . , CN )⊤ ∈ RN , we calculate the systemic risk score, S:

S(C, A) = C⊤AC (9)

The aggregate risk score S(C, A) is now decomposed into individual nodal contribution Si, such that S =
∑N

i=1 Si. S(C, A)
is linear homogeneous in C:

S =

N∑
i=1

Si =
∂S
∂C1

C1 +
∂S
∂C2

C2 + · · · +
∂S
∂CN

CN (10)

The aggregate systemic risk score in (10) now allows ranking of nodal contributions. One can focus on the nodes with
risk contributions arising from its connectedness since ∂S

∂Ci
= 2

∑N
j=1 aijCj. Using (7), the contribution is positive (negative) if

other nodes are positively (negatively) adjacent to node i. For a regulatory purpose, the node with a wide range of positive
connectedness measured shall be prioritized and highly supervised as it has higher risk increment, while the nodes with
more negative connectedness to others are very unlikely to trigger a system-wise risk.

Table 2 summarizes the results of risk decomposition of each node on annual basis ranging from 2007 to 2015. The
aggregate systemic risk score rises in 2008 due to the outbreak of the US subprime crisis. During the EU crisis in 2012, one
sees that the nodes 9–22 suffered in terms of their higher systemic risk contributions. The overall systemic risk score in a one
year rolling window is shown in Fig. 6. Interestingly, S(C, A) reaches several peaks as the number of negative correlations,
n2, turns to zero, indicating non-negative risk similarities among SIFIs and consequent higher systemic risk. The aggregate
systemic risk score increased again in 2015 as the consequence of the Chinese stock market crash in summer 2015 caused
by insolvent shadow banks, bursting asset bubbles and indebted local governments. Evidently, the aggregate risk score is an
ideal measure to quantify overall systemic risk and its variations over time.

Through (10), one may attribute a high risk node as the one with a greater magnitude of compromise or high
interconnectedness, or both. Such critical nodes need attention from regulators. One can e.g. find the node 11 (HSBC) as
an important node in 2008, 2011 and 2013. To validate the results, we compare the identified important SIFIs in this study
with the SIFIs assigned to Bucket 4 (highest loss absorbency group) reported in FSB Nov. 2015. We observe that the risk
decomposition analysis yields a comparable list for this bucket but adds more quantitative insights.

A geographic analysis based on Table 2 documents towhich extent systemic risk is attributed to a particular regionwhere
the headquarters of SIFIs are located. In general, the average scores in Europe are slightly larger than that of the US due to the
fact that European banks build the majority of SIFIs. European banks are the largest geographic group within the 50 biggest
global banks (21 banks from eight different European countries), while the US only contributes 7 banks. The Asian SIFIs
‘‘negatively’’ contribute to systemic risk score, which can be justified by their negative adjacencies with others, see Fig. 2. It
documents that having Asian SIFIs in the system stabilizes the financial systems in terms of its role of risk diversification.
However, this benefit becomes moderate during the distressed periods such as 2008, 2011.
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Fig. 6. Systemic risk score and ratio of negative correlation.

Table 2
Systemic risk decomposition. The largest systemic risk contributions are shown in red and the negative contributions in blue.

SIFI 2007 2008 2009 2010 2011 2012 2013 2014 2015

1 JP MORGAN 153 189 134 152 98 189 79 153 98
2 BANK OF AMERICA 152 207 134 152 116 198 147 280 117
3 BANK OF NEW YORK MELLON 73 164 123 148 90 181 −10 115 74
4 CITIGROUP 152 197 133 206 152 197 215 143 162
5 GOLDMAN SACHS 147 208 94 147 69 191 173 87 51
6 MORGAN STANLEY 146 198 93 138 77 190 165 120 77
7 STATE STREET 96 161 128 121 56 169 22 104 80
8 WELLS FARGO 141 70 131 158 141 176 33 140 61
9 ROYAL BANK OF SCTL 38 209 191 145 163 199 84 154 108
10 BARCLAYS 55 227 182 209 165 190 120 163 108
11 HSBC −11 228 172 145 201 191 246 118 101
12 STANDARD CHARTERED 16 212 152 179 121 178 126 101 103
13 BNP PARIBAS 108 219 182 202 192 182 121 172 110
14 CREDIT AGRICOLE 73 218 199 154 173 198 111 172 54
15 SOCIETE GENERALE 90 214 187 187 195 152 110 196 90
16 DEUTSCHE BANK 118 227 144 153 163 190 129 136 146
17 UNICREDIT 107 212 149 150 151 176 82 167 29
18 ING GROEP 115 223 168 169 195 186 153 205 144
19 SANTANDER 107 223 196 197 135 195 180 168 99
20 NORDEA BANK 119 207 154 207 146 181 198 181 63
21 CREDIT SUISSE GROUP N 148 209 157 219 201 183 133 174 104
22 UBS GROUP 159 185 158 159 169 203 187 169 114
23 BANK OF CHINA 51 161 −96 98 −43 63 180 37 108
24 ICBC 61 173 −70 135 −7 64 139 56 109
25 CHINA CON.BANK 42 189 −115 152 −25 151 102 19 117
26 MITSUBISHI UFJ −162 182 20 −19 128 64 62 −72 0
27 MIZUHO −133 135 −7 −28 29 54 24 −107 9
28 SUMITOMO.MITSUI −149 −17 −24 −9 117 45 33 1 36

Systemic Risk Score 2012 5232 3069 4028 3367 4536 3343 3253 2471
Average score (US) 132 174 121 153 100 186 103 130 90
Average score (Europe) 89 215 171 177 169 186 141 163 98
Average score (Asia) −148 100 −4 −19 91 54 40 −59 15

3. Tail event driven network quantile regression

The previous section provided a descriptive analysis of the SIFI and quantified the connectedness via adjacency matrices.
In this section we present three issues on the network dynamics. First, it is of interest to relate the response of individual
node at a given time point to the quantified connectedness at the previous time point. Second, it is very likely that the return
of an individual SIFI asymmetrically responses to the network factors, that is, the node responses strongly to a network
factor when it is under a stress (extremely negative returns) but may react mildly when it is experiencing an advance. The
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likelihood of simultaneous slumps in the banking industry is potentially greater than that they boom together, which is a
typical feature under systemic risk. Diebold and Yılmaz (2014) andXu et al. (2016) find an increased total interconnectedness
during the crisis period, resulting in more fragile financial markets evidence by high comovement, contagion and spillover.
Recalling that systemic risk is defined through (i) large impact, particular in the downside constituting an asymmetric
reaction; (ii) widespread coverage that can be examined through a panel or stack model; (iii) a ripple effect being detected
by an intertemporal investigation, the TENQRmodel is proposed for accommodating three definitions. This aspect is beyond
the work of Zhu et al. (2018) who focus on the asymptotics of the involved parameters.

Third, for financial assets, it is very likely that their returns are subject to the impact of neighboring assets in the
sample industry or geographic region. Modeling returns for each asset individually revealed, as we show in the next section,
interesting insights into the common behavior of assets from the same geographic region (see Brechmann et al. (2013). For
this reasonwe consider the panel quantile regressions for the SIFIs from the US, Europe and Asia. By doing so, onemay know
which region is more vulnerable with respect to the network factor.

The extant research using the VAR framework requires ex-post analysis of the network structure and may also face the
curse of dimensionality. This observation directs us towards a parsimoniousmodelwhich incorporates tail sensitivity, allows
for an asymmetric impact, establishes an intertemporal framework for investigating a ripple effect and evaluates regional
reactions on network risk and the corresponding impulse response for the network shocks.

3.1. TENQR model

For the aforementioned purposes, we pay particular attention to tail events, like extremes or high level quantiles. A
convenient framework which serves these objectives is the quantile regression. It yields insight into the interplay of the
involved risk factors, and allows the investigator to explore a range of conditional quantile functions that link the dependent
variable and the covariates in a continuous and smoothmanner. However, this triggers problems if the number of covariates
increases. Using a single index as in the work of Adrian and Brunnermeier (2016) is an alternative solution, it lacks though a
systemic network insight as in Härdle et al. (2016). Besides, the financial network coherence is time-varying with different
degree of interconnectedness over time. To tackle this we introduce network factors involving the adjacency matrices to
represent the nodes in a financial system.

The enormous literature on asset pricing proposes numerous explanatory variables for the dynamics of SIFI returns. In the
majority of the cases the model is restricted to linear regression on factors, like market-wide covariates, company-specific
variables or autoregressive components. We partly follow this setting and involve the commonly used explanatory factors.
The dynamics is reflected via the returns Yit of SIFIs. The conditional quantile function of Yit is

Qr,Yit (τ ) = γri + βr0(τ ) + βr1(τ )Yi,t−1 + βr2(τ )Yi,t−2 +

L∑
ℓ=1

β
(w)
rℓ (τ )Wℓ,t−1

+ β+

r (τ )
N∑
j=1

m+

i (Yj,t−1) + β−

r (τ )
N∑
j=1

m−

i (Yj,t−1) for i ∈ Rr , (11)

where t = 1, . . . , T and the setsRr with r = 1, 2, 3, 4 contain the i-indices of SIFIs for each of the regions US (r = 1), Europe
(r = 2), Asia (r = 3) or world (r = 4). m+

i (Yj,t−1) is a function of the positively linked neighboring nodes of node i, while
m−

i (Yj,t−1) is a function of the negatively linked neighboring nodes of node i. The coefficients β+
r (τ ) and β−

r (τ ) respectively
measure the impact of the positive and negative network factors and depend on τ only. Wℓ,t represents the market-wide
covariates. Here the volatility index VIX that serves as a proxy for the perceived market sentiment and the TED rate for the
perceived credit risk are chosen.

The construction ofmi-function relies on the two adjacency matrices A+ and A− with the elements given as follows:

a+

ij =

{
1, ρ̂v+(i,j) > ρ̂+

θ̂+

0, else
and a−

ij =

{
1, ρ̂v−(i,j) < ρ̂−

θ̂−

0, else.
(12)

Each row i of the matrix A+ collects the SIFIs which exhibit strong positive correlation with the ith SIFI, while the
corresponding row of the matrix A− selects the SIFIs with strong negative dependence. The threshold values, ρ̂+

θ̂+
and ρ̂−

θ̂−

are defined and estimated in (5) and (6). This approach allows not only identifying for each time t the significant adjacencies
but also disentangling the positive from the negative adjacencies. The resulting positive and negative network factors are
defined as:

f +

i,t−1 =

N∑
j=1

m+

i (Yj,t−1) =

∑N
j=1 a

+

ij,t−1Yj,t−1∑N
j=1 a

+

ij,t−1

. (13)

f −

i,t−1 =

N∑
j=1

m−

i (Yj,t−1) =

∑N
j=1 a

−

ij,t−1Yj,t−1∑N
j=1 a

−

ij,t−1

. (14)
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The factors f + and f − in (13) and (14) measure the average impact from ith node. They quantify the average of its connected
nodes in the system and specify their contribution to the next day return. Empirically, f +

i,t−1 and f +

i,t−1 are estimated at each
time point by using a 250-day backward horizon.

In a financial perspective, the positive network factor measures the likelihood of triggering the risk contagion, whereas
the negative network factor reflects the aim of risk diversification. The cutoff approach in (12) has advantages compared to
full vector (quantile)-regressions since in larger networks a serious dimensionality problem surfaces. An extension to time-
varying parameters is technically demanding and certainly requires specific assumptions on the data generating process. In
the setup advocated here the relations within the network are treated as exogenous. The TENQR is estimated byminimizing:

min
γr ,βr (τ )

q∑
k=1

T∑
t=1

∑
i∈Rr

ρτk

{
Yit − γri − βr0(τk) − βr1(τk)Yi,t−1 − βr2(τk)Yi,t−2

−

L∑
ℓ=1

β
(w)
rℓ (τ )Wℓ,t−1 − β+

r (τk)f +

i,t−1 − β−

r (τk)f −

i,t−1

}
+ λ

∑
i∈Rr

|γri|, (15)

where τk for k = 1, . . . , q is a grid of the quantile levels of interest. It is possible to consider a weighted version of (15) if
some quantiles are seen as more important for the analysis. Here ρτ (u) = u · {τ − I(u < 0)} is an asymmetric loss function.

We use here a penalization in order to shrink the fixed-effects towards zero which was originally suggested by Koenker
(2004). The approach is particularly advantageous in larger networks. Large values of λ render smaller fixed effects γri and
thus reduce the importance of node-specific information. On the other hand, small values might deteriorate the estimation
results and inflate the impact of node-specific information. Lamarche (2010) suggests to selectλbyminimizing the estimated
asymptotic variance of the individual effects. The advantage of the approach is that it does not introduce a bias, but decreases
the variance. Generally, λ varies with the number of nodes N , thus we can fix it in a finite network. Technically, the
optimization is in line with the lasso-type linear regression, however, in a longitudinal quantile regression framework.

Algorithms to solve (15) can be found on www.quantlet.de and in Tran et al. (2016). The conditional quantile of Yit is
finally estimated by

Q̂r,Yit (τk) = γ̂ri + β̂r0(τk) + β̂r1(τk)Yi,t−1 + β̂r2(τk)Yi,t−2

+

L∑
ℓ=1

β̂
(w)
rℓ (τk)Wℓ,t−1 + β̂+

r (τk)f +

i,t−1 + β̂−

r (τk)f −

i,t−1 (16)

for an appropriate value of r = 1, 2, 3, 4 and k = 1, . . . , q.
We do not consider any node-specific characteristics in model (11) for two reasons. First, typically such characteristics

include the log firm size and the debt ratio computed as the total debt to assets ratio. However, these variables are computed
at much lower frequency (mainly at annual rate) compared to the daily data on the asset returns. Second, the fixed effects
γri in the panel data model setup collect the sources of variability which are specific for each SIFI and, therefore, reflect the
node-specific information. Note that γri’s do not depend on the quantile level τ .

The role of the two autoregressive components is twofold. First, their objective is to capture the time-persistence of the
returns. The lagged observations have typically little explanatory power, but are still popular factors in predictive models.
Second, standard estimation of panel models with autoregressive part renders biased estimators both for linear models and
in a quantile regression framework. Galvao (2011) tackles this problem and suggests to use Yi,t−2 as an instrument aimed
to reduce the bias in the effect of Yi,t−1. Thus the 2nd order autoregressive element might be seen as a bias-decreasing
instrument here. Note, however, that bias diminishes as T tends to infinity and is obviously a minor issue in our application.
For this reason, we do not employ the two-stage technique of Galvao (2011).

3.2. Estimation results

To estimate the above model we collect daily data on the SIFI returns for the period from 01.01.2007 till 31.12.2015.
The returns Yit exhibit heavy tails; Fig. 7 shows the normal QQ plots of the returns for Citigroup (in the US), Mitsubishi (in
Asia) and HSBC (in Europe), the thick tail distributional property is documented. Let us focus more on the tails: to compare
the distribution of the SIFI returns to the network factors we plot the corresponding QQ-plots in Fig. 8. For Citigroup both
factors possess lighter tails than the SIFI returns, while for the other two companies we have opposite evidence. Particularly,
the negative factor has much heavier tails for EU and Asian SIFIs. To assess the relationship between the extremes and the
network factors we consider the cross-quantilogram suggested by Han et al. (2016).

ϱi(τ1, τ2) =
E[ψτ1 (Yit − F−1

i (τ1))ψτ2 (ft−1 − F−1(τ2))]√
E[ψ2

τ1
(Yit − F−1

i (τ1))] · E[ψ2
τ2
(ft−1 − F−1(τ2))]

,

http://www.quantlet.de
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Fig. 7. QQ plots for the returns of Citigroup, HSBC and Mitsubishi Financial and the Gaussian distribution (full sample estimation).

Fig. 8. QQ plots of f +

t and f −

t vs. the returns of Citigroup, HSBC and Mitsubishi Financial.

where f is one of the network factors f + or f − and F−1 is its quantile function. F−1
i denotes the quantile function of the

ith SIFI return and ψa(u) = I{u < 0} − a. The cross-quantilogram can be estimated by replacing the quantile functions
with their sample counterparts. We calculate the first order cross-quantilogram between Yit and the network factors based
on the regional set of the SIFIs. Fig. 9 shows the correlation of different quantiles of the returns for the three selected SIFIs
with the 10%, 50% and 90% quantiles of the network factors defined in (13) and (14). Consider first the lower values of τ1
which correspond to highly negative returns. For Citigroup and HSBC we observe that these returns react more strongly to
the lower quantiles of the negative network factor than of the positive network factor. This is intuitively correct, since the
negative network factor f − cumulates turbulent market situations and renders even smaller SIFI returns. Note that for the
negative factor the curves for τ2 = 0.5 and τ2 = 0.9 are very close implying that the upper quantiles of this factor do not
influence the SIFIs under stress, which is again an economically reasonable observation. If we move to higher τ1 values we
observe an inverse situation with the positive factor becoming more relevant at high quantiles. For the Asian companies, for
example for Mitsubishi, the evidence is mixed. This will be supported below by the results from the quantile regression.

3.2.1. The results from the TENQR
The geographic regions of the SIFIs provide additional information. Given the network factors in (13) and (14) we select

only the dependent variable for SIFIs from a specific region. As before we compare the sensitivity and predictability of these
two network factors at multiple percentiles. By comparing the network effect curves from the geographic regions one may
shed some light on the vulnerability in a geographic perspective.

Let us first concentrate on the positive network factor. Asia displays a U-shape network coefficient curve, indicating a
comparable impact of the network effect on the right- and left-tail of return distribution but a relatively moderate effect on
the center of distribution. However, the EU and the US SIFIs exhibit a monotonic decreasing coefficient curve. In addition,
the Asian SIFIs exhibit the highest sensitivity to the network factor among the three regions. The reason is that for r = 3,
the Asian region, the active cells in f +

i,t are exclusively concentrating on their Asian neighbors. Referring to Figs. 2 and 3, the
Asian SIFIs move tightly together with their Asian neighbors and are different. By contrast, the geographic effect in the EU
or the US is not as strong as in Asia because the positive network effect not only contributes geographically but globally. As
can be seen in Fig. 2, the US SIFIs and the EU SIFIs entail the across-border risk adjacencies.
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Fig. 9. Quantilograms of the return of Citigroup, HSBC and Mitsubishi Financial with the 10%, 50% and 90% quantiles of network factor (full sample
estimation).

For the US and EU, the monotonically downward curves indicate an asymmetric response to the positive network factor
(with a small exception at τ = 0.1). The network factor contributes to the return prediction in the lower quantile of return
distribution more than it can create under the higher quantile situation, showing an asymmetric impact of the positive
network factor over τ values. Economically speaking, the network risk contagion tends to happen at the lower quantile
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Fig. 10. Slopes from the quantile regressions of SIFI returns from different geographic regions on the network factor with adjacency matrices A+ (left) and
A− (right). The colored area shows the 95% pointwise confidence intervals (full sample estimation). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 11. Fixed effects from different geographic regions (full sample estimation) with 95% confidence intervals.

levels. Such an asymmetric impact has also been documented in research on comovement, contagion and spillover in crisis
periods, see Dungey and Gajurel (2015) and Diebold and Yılmaz (2014).

Let us now turn to f −. Recall that theA− matrix collects the adverse riskmovements. Having such adverse riskmovements
in the banking system alleviates the ripple effect and stabilizes its functioning. Surprisingly, the U-shape characteristic in
Asian is no longer existing, but still has a relatively high response curve as compared to the US. This reflects that the Asian
SIFIs are dominating elements in the A− matrix. They are benefiting of higher risk diversification and this benefit is invariant
over τ .

The quantile curves in the EU andworld shift up and exhibit monotonic increasing behavior. From a financial perspective,
thismay be interpreted as risk diversification and itmoves along the τ -axis from right to left, showing that the diversification
gain monotonically decreases. It is understood that duringmarket downturn, the risk profile similarities ascend, resulting in
a limited diversification benefit. The diversification gain in the US SIFIs is very limited since the Asia SIFIs are their exclusive
diversification contributors. The 95% confidence bands in Fig. 10 are actually connected confidence intervals. We took the
liberty to address these as bands though since the asymptotic difference is minor. First, the impact of the network factor
significantly differs from one geographic region to another. Second, the zero value is not covered by the confidence bands
indicating a significant impact factor.

The fixed effect in (11) are documented in Fig. 11. The individual specific effect is very prominent in the US SIFIs with
higher variations in γ̂ri. The heterogeneity among the EU SIFIs is also well evident. By contrast, the Asian SIFIs have less
heterogeneity, implying that a relatively milder individual effect is attributed to the less flexible financial polices in Asia or
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less diversity among banks. The state-owned banks are the majority in China, and their business types somehow are quite
uniform.

In a nutshell, the TENQR method documents the importance of the network factors on the tail distribution, and specify
the distinct impacts from the positive and the negative network factor. The implied vulnerabilities across regions are
in accordance with the results of systemic risk decomposition. Having these efforts, we contribute to a ‘‘manageable’’
systemic risk. The supervisors are able to identify the central SIFIs with higher risk contributions, to measure the resulting
connectedness in a system, and to evaluate the impact of network on the conditional quantile of a response.

4. Conclusion

There is no doubt that systemic risk depends on the interdependence and the joint dynamics of SIFIs in stress situations.
Such tail event driven stress on the financial system is conveniently modeled in a network topology. The possible
overstretching of positions i.e. the likeliness of common tail events is addressed in a panel quantile regression framework
with fixed effect. The choice of the adjacency matrix is based on the similarity of risk profiles. We propose an asymmetric
breakpoint approach to group pairwise correlations into strongly positive, strongly negative and weak ones. A joint SVR
test confirms the competence of the breakpoint approach and the design of adjacency matrices. Employing the positive
and negative network factors, we implement TENQR (Tail Event Network Quantile Regression) in order to capture risk
propagation/diversification in the regional level but also in the global level. The network with adjacency information allows
quantifying the risk contribution of each SIFI.

The network quantile curves vary between the positive v.s. the negative network factor, and change from one region to
another one. The risk contagion effect is concentrating on lower quantiles, whereas the diversification gain is more tangible
at higher quantiles. The TENQR model highlights the network factors and thereby allows investigating the joint dynamics
in a stress situation of the financial system. The methodologies and quantitative techniques in this study are tailored for
network analysis of systemic risk.
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