
Universität Augsburg

KABCROMUNGSHO0

Combining Decomposition and

Unfolding for STG Synthesis

Victor Khomenko and Mark Schaefer

Report 2007-01 January 2007

Institut für Informatik
D-86135 Augsburg

Copyright c© Victor Khomenko and Mark Schaefer
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Combining Decomposition and Unfolding

for STG Synthesis

Victor Khomenko1 and Mark Schaefer2

1School of Computing Science, Newcastle University, UK.

victor.khomenko@ncl.ac.uk

2Institute of Computer Science, University of Augsburg, Germany

mark.schaefer@informatik.uni-augsburg.de

Abstract

For synthesising efficient asynchronous circuits one has to deal with the state space explosion
problem. In this paper, we present a combined approach to alleviate it, based on using Petri net
unfoldings and decomposition. The experimental results show significant improvement in terms of
runtime compared with other existing methods.

Keywords: Asynchronous circuit, STG, Petri net, decomposition, unfolding, state space explo-
sion.

1 Introduction

Asynchronous circuits are a promising type of digital circuits. They have lower power consumption and
electro-magnetic emission, no problems with clock skew and related subtle issues, and are fundamentally
more tolerant of voltage, temperature and manufacturing process variations. The International Tech-
nology Roadmap for Semiconductors report on Design [ITR05] predicts that 22% of the designs will be
driven by handshake clocking (i.e., asynchronous) in 2013, and this percentage will raise up to 40% in
2020.

Signal Transition Graphs, or STGs [Chu87,CKK+02], are widely used for specifying the behaviour of
asynchronous control circuits. They are interpreted Petri nets in which transitions are labelled with the
rising and falling edges of circuit signals. An STG specifies which outputs should be performed at a given
state and, at the same time, it describes assumptions about the environment, which can send an input
only if it is allowed by the STG. We use the speed-independent model with the following properties:

• Input and outputs edges can occur in an arbitrary order.

• Wires are considered to have no delay, i.e., a signal edge is received immediately by all listeners.

• The circuit must work properly according to its formal description under arbitrary delays of each
gate.

Synthesis based on STGs involves: (a) checking sufficient conditions for the implementability of the STG
by a logic circuit; (b) modifying, if necessary, the initial STG to make it implementable; and (c) finding
appropriate Boolean next-state functions for non-input signals.

A commonly used tool, Petrify [CKK+97], performs all these steps automatically, after first con-
structing the reachability graph of the initial STG specification. To gain efficiency, it uses symbolic
(BDD-based [Bry86]) techniques to represent the STG’s reachable state space. While this state-space
based approach is relatively simple and well-studied, the issue of computational complexity for highly
concurrent STGs is quite serious due to the state space explosion problem [Val98]; that is, even a relatively
small STG can (and often does) yield a very large state space. This puts practical bounds on the size
of control circuits that can be synthesised using such techniques, which are often restrictive (e.g., Pet-
rify often fails to synthesise circuits with more that 25–30 signals), especially if the STG models are
not constructed manually by a designer but rather generated automatically from high-level hardware
descriptions, such as Balsa [EB02] or Tangram [Ber93].

1

In order to alleviate this problem, Petri net analysis techniques based on causal partial order semantics,
in the form of Petri net unfoldings, were applied to circuit synthesis. Since in practice STGs usually
exhibit a lot of concurrency, but have rather few choice points, their complete unfolding prefixes are often
exponentially smaller than the corresponding state graphs; in fact, in many of the experiments conducted
in [Kho03,KKY04] they are just slightly bigger then the original STGs themselves. Therefore, unfolding
prefixes are well-suited for both visualisation of an STG’s behaviour and alleviating the state space
explosion problem. The papers [KKY04,KKY06,MBKY03] present a complete design flow for complex-
gate logic synthesis based on Petri net unfoldings, which completely avoids generating the state graph,
and hence has significant advantage both in memory consumption and in runtime, without affecting the
quality of the solutions. Moreover, unfoldings are much more visual than state graphs (the latter are hard
to understand due to their large sizes and the tendency to obscure causal relationships and concurrency
between the events), which enhances the interaction with the user.

The unfolding-based approach can often synthesise specifications which are by orders of magnitude
larger than those which can be synthesised by the state-space based techniques. However, this is still not
enough for practical circuits. Hence, we combine the unfolding approach with decomposition. Intuitively,
a large STG can be decomposed into several smaller ones, whose joint behaviour is the same as that of
the original STG. Then these smaller components can be synthesised, one by one, using the unfolding-
based approach. STG decomposition was first presented in [Chu87] for live and safe free-choice nets with
injective labelling, and then generalised to STGs with arbitrary structure in [VW02,VK05].

This combined framework can cope with quite large specifications. It has been implemented using a
number of tools:

Punf — a tool for building unfolding prefixes of Petri nets [Kho03].

Mpsat — a tool for verification and synthesis of asynchronous circuits [KKY04, KKY06]; it uses un-
folding prefixes built by Punf.

DesiJ — a tool for decomposing an STG into smaller components [VW02,VK05,SVWK06]. It imple-
ments also the techniques of combining decomposition and unfolding presented in this paper and
uses Punf and Mpsat for synthesis of final components and for verification of some properties
during decomposition.

2 Basic Definitions

In this section, we first present basic definitions concerning Petri nets and STGs, and then recall notions
related to unfolding prefixes (see also [ERV02,Kho03,Mur89]).

2.1 Petri nets

A net is a triple N
df

= (P, T, W) such that P and T are disjoint sets of respectively places and transitions,
and W : (P × T) ∪ (T × P) → N = {0, 1, 2, . . .} is a weight function. A marking M of N is a multiset of
places, i.e., M : P → N. We adopt the standard rules about drawing nets, viz. places are represented as
circles, transitions as boxes, the weight function by arcs, and markings are shown by placing tokens within
circles. In addition, the following short-hand notation is used: a transition can be connected directly to
another transition if the place ‘in the middle of the arc’ has exactly one incoming and one outgoing arc

(see, e.g., Figs. 1(a)). As usual, •z
df

= {y | W (y, z) > 0} and z•
df

= {y | W (z, y) > 0} denote the pre- and

postset of z ∈ P ∪ T , and we define •Z
df

=
⋃

z∈Z
•z and Z• df

=
⋃

z∈Z z•, for all Z ⊆ P ∪ T . We will assume
that •t 6= ∅, for every t ∈ T . N is finite if P ∪ T is finite, and infinite otherwise. A net system or Petri

net is a tuple Σ
df

= (P, T, W, M0) where (P, T, W) is a finite net and M0 is an initial marking.
A transition t ∈ T is enabled at a marking M , denoted M [t〉, if, for every p ∈ •t, M(p) ≥ W (p, t).

Such a transition can be fired, leading to the marking M ′ with M ′(p)
df

= M(p) − W (p, t) + W (t, p). We
denote this by M [t〉M ′. A finite or infinite sequence σ = t1t2t3 . . . of transitions is a firing sequence of
a marking M , denoted M [σ〉, if M [t1〉M ′ and σ′ = t2t3 . . . is a firing sequence of M ′. Moreover, σ is a
firing sequence of Σ if M0[σ〉. If σ is finite, M [σ〉M ′ denotes that σ is a firing sequence of M reaching
the marking M ′. A marking M ′ is reachable from M if M [σ〉M ′ for some firing sequence σ. M is called
reachable if it is reachable from M0; [M0〉 denotes the set of all reachable markings of Σ. Two transitions

2

t1 and t2 are in (dynamic) conflict if there is a reachable marking M , such that M [t1〉, M [t2〉 but for some
place p, W (p, t1) + W (p, t2) > M(p). A dynamic conflict implies a structural conflict, i.e. •t1 ∩ •t2 6= ∅.

A transition is dead if no reachable marking enables it. A transition is live if any reachable marking M
enables a firing sequence containing it. (Note that being live is a stronger property than being non-dead.)
A net system is called live if every of its transition is live; it is called reversible if the initial marking is
reachable from every reachable marking.

A net system Σ is k-bounded if, for every reachable marking M and every place p ∈ P , M(p) ≤ k,
safe if it is 1-bounded, and bounded if it is k-bounded for some k ∈ N. The set of reachable markings of
Σ is finite iff Σ is bounded.

2.2 Signal Transition Graphs

A Signal Transition Graph (STG) is a triple Γ
df

= (Σ, Z, ℓ) such that Σ is a net system, Z is a finite set of

signals, generating the finite alphabet Z± df

= Z ×{+,−} of signal transition labels, and ℓ : T → Z± ∪ {λ}
is a labelling function. The signal transition labels are of the form z+ or z−, and denote a transition of a
signal z ∈ Z from 0 to 1 (rising edge), or from 1 to 0 (falling edge), respectively. We will use the notation
z± to denote a transition of signal z if we are not particularly interested in its direction. Γ inherits the
operational semantics of its underlying net system Σ, including the notions of transition enabling and
firing sequences, reachable markings and firing sequences.

We lift the notion of enabledness and firing to transition labels: M [ℓ(t)〉〉M ′ if M [σ〉M ′. This is
extended to sequences as usual – deleting λ-labels automatically since λ is the empty word. A sequence
ω of elements of Z± is called a trace of a marking M of Γ if M [ω〉〉, and a trace of Γ if it is a trace of
M0. The language of Γ is the set of all traces of Γ and denoted by L(Γ). Γ has a (dynamic) auto-conflict
if two transitions t1 and t2 with ℓ(t1) = ℓ(t2) 6= λ can be in a dynamic conflict.

An STG may initially contain transitions labelled with λ called dummy transitions. They are a design
simplification and describe no physical reality. Moreover, during the decomposition, certain transitions are
labelled with λ at intermediate stages; this relabelling of a transition is called lambdarising a transition,
and delambdarising means to change the label back to the initial value. The set of transitions labelled
with a certain signal is frequently identified with the signal itself, e.g., lambdarising signal z means to
change the label of all transitions labelled with z± to λ.

We associate with the initial marking of Γ a binary vector v0 df

= (v0
1 , . . . , v0

|Z|) ∈ {0, 1}|Z|, where each

v0
i corresponds to the signal zi ∈ Z; this vector contains the initial value of each signal. Moreover, with

any finite firing sequence σ of Γ we associate an integer signal change vector vσ df

= (vσ
1 , vσ

2 , . . . , vσ
|Z|) ∈ Z

|Z|,

so that each vσ
i is the difference between the number of the occurrences of z+

i –labelled and z−i –labelled
transitions in σ.

Γ is consistent1 if, for every reachable marking M , all firing sequences σ from M0 to M have the
same encoding vector Code(M) equal to v0 + vσ, and this vector is binary, i.e., Code(M) ∈ {0, 1}|Z|.
Such a property guarantees that, for every signal z ∈ Z, the STG satisfies the following two conditions:
(i) the first occurrence of z in the labelling of any firing sequence of Γ starting from M0 has the same
sign (either rising of falling); and (ii) the transitions corresponding to the rising and falling edges of z
alternate in any firing sequence of Γ. In this paper it is assumed that all the STGs considered are
consistent. (The consistency of an STG can easily be checked during the process of building its finite and
complete prefix [Sem97].) We will denote by Codez(M) the component of Code(M) corresponding to a
signal z ∈ Z.

The state graph of Γ is a tuple SGΓ
df

= (S, A, M0,Code) such that: S
df

= [M0〉 is the set of states ;

A
df

= {M
ℓ(t)
−→ M ′ | M ∈ [M0〉 ∧ M [t〉M ′} is the set of state transitions ; M0 is the initial state; and

Code : S → {0, 1}|Z| is the state assignment function, as defined above for markings.
The signals in Z are partitioned into input signals, ZI , and output signals, ZO (the latter may also

include internal signals). Input signals are assumed to be generated by the environment, while output
signals are produced by the logic gates of the circuit. For each signal z ∈ ZO we define

Outz(M)
df

=

{

1 if M [z±〉〉
0 otherwise.

1This is a somewhat simplified notion of consistency; see [Sem97] for a more elaborated one, dealing also with certain
pathological cases, which are not interesting in practice.

3

dtack−
dsr+

lds−

d−ldtack−

ldtack+

lds+ dtack+ dsr−d+

1M

10110 10110

e4

e9

lds+ d+ dtack+ d−dsr+ ldtack+

core

dsr+

lds+C 1

(c)

(b)(a)

dsr−

csc+

csc−

lds−

ldtack−

dtack−

01111
11111

10111

ldtack+

2M

10100

dsr+dtack−

dtack−
1001000010

01000

01010

10000
00000

lds− lds−

ldtack−ldtack−

lds−
dtack−

ldtack−
dsr+

d+
d− dsr− dtack+

lds+

dsr+

0011001110

conflict

e

CSC

1 e2 e5 e6e3

e8 e10

12e

2C

e7

e11

[lds] = csc · (ldtack · dsr + lds) + d
[dtack] = d

[d] = lds · csc · ldtack + d · dsr
[csc] = d + lds · csc

(d)

inputs: dsr , ldtack ; outputs: lds, d , dtack ; internal: csc

Figure 1: VME bus controller: the STG for the read cycle (a), its state graph showing a CSC conflict (b),
its unfolding prefix with the corresponding conflict core, and a way to resolve it by adding a new signal
csc (c), and a complex-gate implementation (d). The signal order in binary encodings is: dsr, dtack, lds,
ldtack, d.

Logic synthesis derives for each output signal z ∈ ZO a Boolean next-state function Nxtz defined for
every reachable state M of Γ as follows:

Nxtz(M)
df

= Codez(M) ⊕ Outz(M) ,

where ⊕ is the ‘exclusive or’ operation.
The value of this function must be determined without ambiguity by the encoding of each reachable

state, i.e., Nxtz(M) should be a function of Code(M) rather than of M , i.e., Nxtz(M) = Fz(Code(M)) for
some function Fz : {0, 1}|Z| → {0, 1} (Fz will eventually be implemented as a logic gate). To capture this,
let M ′ and M ′′ be two distinct states of SGΓ. M ′ and M ′′ are in Complete State Coding (CSC) conflict
if Code(M ′) = Code(M ′′) and Outz(M

′) 6= Outz(M
′′) for some output signal z ∈ ZO. Intuitively, a CSC

conflict arises when semantically different reachable states of an STG have the same binary encoding. Γ
satisfies the CSC property if no two states of SGΓ are in CSC conflict. (Intuitively, this means that each
output signal is implementable as a logic gate.)

An example of an STG for a data read operation in a simple VME bus controller (a standard STG
benchmark, see, e.g., [CKK+02]) is shown in Figure 1(a). Part (b) of this figure shows a CSC conflict
between two different states, M1 and M2, that have the same encoding, 10110, but Nxtd (M1) = 0 6=
Nxtd (M2) = 1 and Nxt lds(M1) = 0 6= Nxt lds(M2) = 1. This means that the values of Fd (1, 0, 1, 1, 0) and
Flds(1, 0, 1, 1, 0) are ill-defined (they should be 0 according to M1 and 1 according to M2), and thus these
signals are not implementable as logic gates.

2.3 Unfolding prefixes

A finite and complete unfolding prefix of an STG Γ is a finite acyclic net which implicitly represents all
the reachable states of Γ together with transitions enabled at those states. Intuitively, it can be obtained
through unfolding Γ, by successive firings of transitions, under the following assumptions: (i) for each
new firing a fresh transition (called an event) is generated; (ii) for each newly produced token a fresh
place (called a condition) is generated.

The unfolding is infinite whenever Γ has an infinite run; however, if Γ has finitely many reachable
states then the unfolding eventually starts to repeat itself and can be truncated (by identifying a set of
cut-off events) without loss of information, yielding a finite and complete prefix. Fig. 1(c) shows a finite
and complete unfolding prefix (with the only cut-off event depicted as a double box) of the STG shown
in Fig. 1(a).

Efficient algorithms exist for building such prefixes [ERV02,Kho03], which ensure that the number of
non-cut-off events in a complete prefix can never exceed the number of reachable states of Γ. However,
complete prefixes are often exponentially smaller than the corresponding state graphs, especially for

4

highly concurrent Petri nets, because they represent concurrency directly rather than by multidimensional
‘diamonds’ as it is done in state graphs. For example, if the original Petri net consists of 100 transitions
which can fire once in parallel, the state graph will be a 100-dimensional hypercube with 2100 vertices,
whereas the complete prefix will coincide with the net itself.

Since practical STGs usually exhibit a lot of concurrency, but have rather few choice points, their
unfolding prefixes are often exponentially smaller than the corresponding state graphs; in fact, in many
of the experiments conducted in [Kho03,KKY04] they were just slightly bigger then the original STGs
themselves. Therefore, unfolding prefixes are well-suited for both visualisation of an STG’s behaviour
and alleviating the state space explosion problem.

3 Unfolding-based synthesis

Due to its structural properties (such as acyclicity), the reachable states of an STG can be represented us-
ing configurations of its unfolding. A configuration C is a downward-closed set of events (being downward-
closed means that if e ∈ C and f is a causal predecessor of e then f ∈ C) without choices (i.e., for all
distinct events e, f ∈ C, there is no condition c in the unfolding such that the arcs (c, e) and (c, f) are
in the unfolding). Intuitively, a configuration is a partially ordered firing sequence, i.e., a firing sequence
where the order of firing of some of its events (viz. concurrent ones) is not important.

A CSC conflict can be represented in the unfolding prefix as an unordered conflict pair of configura-
tions 〈C1, C2〉 whose final states are in CSC conflict, as shown if Fig. 1(c). It was shown in [KKY04] that
the problem of checking if there is such a conflict pair is reducible to SAT, and an efficient technique for
finding all CSC conflict pairs was proposed.

Let 〈C1, C2〉 be a conflict pair of configurations. The corresponding complementary set CS is defined
as the symmetric set difference of C1 and C2. CS is a core if it cannot be represented as the union of
several disjoint complementary sets. For example, the core corresponding to the conflict pair shown in
Fig. 1(c) is {e4, . . . , e8, e10} (note that if C1 ⊂ C2 then the corresponding complementary set is simply
C2 \ C1).

One can show that every complementary set CS can be partitioned into C1 \ C2 and C2 \ C1, where
〈C1, C2〉 is a conflict pair corresponding to CS. Moreover, if C1 ⊂ C2 then one of these parts is empty,
while the other is CS itself. An important property of complementary sets is that for each signal z ∈ Z,
the differences between the numbers of z+– and z−–labelled events are the same in these two parts
(and are 0 if C1 ⊂ C2). This suggests that a complementary set can be eliminated (resolving thus the
corresponding encoding conflicts), e.g., by introduction of a new internal signal, csc+, and insertion of
its transition into this set, as these would violate the stated property. (Note that the circuit has to
implement this new signal, and so for the purpose of logic synthesis it is regarded as an output, though
it is ignored by the environment.) To preserve the consistency of the STG, the transition’s counterpart,
csc−, must also be inserted outside the core, in such a way that it is neither concurrent to nor in structural
conflict with csc+. Another restriction is that an inserted signal transitions must not trigger an input
signal transition (the reason is that this would impose constraints on the environment which were not
present in the original STG, making it ‘wait’ for the newly inserted signal). Intuitively, insertion of signals
introduces additional memory into the circuit, helping to trace the current state.

The core in Fig. 1(c) can be eliminated by inserting a new signal, csc+, somewhere in the core,
e.g., concurrently to e5 and e6 between e4 and e7, and by inserting its complement outside the core,
e.g., concurrently to e11 between e9 and e12. (Note that the concurrent insertion of these two transitions
avoids an increase in the latency of the circuit, where each transition is assumed to contribute a unit
delay.) After transferring this signal into the STG, it satisfies the CSC property.

It is often the case that cores overlap. In order to minimise the number of performed transformations,
and thus the area and latency of the circuit, it is advantageous to perform such a transformation that
as many cores as possible are eliminated by it. That is, a transformation should be performed in the
intersection of several cores whenever possible.

This idea can be implemented by means of a height map showing the quantitative distribution of the
cores. Each event in the prefix is assigned an altitude, i.e., the number of cores it belongs to. (The analogy
with a topographical map showing the altitudes may be helpful here.) ‘Peaks’ with the highest altitude
are good candidates for insertion, since they correspond to the intersection of maximum number of cores.
This unfolding-based method for the resolution of encoding conflicts was presented in [MBKY03].

Once the CSC conflicts are resolved, one can derive equations for logic gates of the circuit, as illustrated

5

in Fig. 1(d). An unfolding-based approach to this problem has been presented in [KKY06]. The main
idea of this approach was to generate the truth table for each such equation as a projection of a set of
reachable encodings to some chosen support, which can be accomplished with the help of the incremental
SAT technique, and then applying the usual Boolean minimisation to this table.

The results in [KKY04,MBKY03,KKY06] form a complete design flow for complex-gate synthesis of
asynchronous circuits based on STG unfoldings rather than state graphs, and the experimental results
conducted there show that it has significant advantage both in memory consumption and in runtime,
without affecting the quality of the solutions.

4 STG Decomposition

In this section, the STG decomposition algorithm of [VW02,VK05] is outlined, in order to understand
the new contributions properly.

Synthesis with STG decomposition works roughly as follows. Given a consistent STG Γ, an initial
partition (Ini, Outi)i∈I of its signals is chosen, satisfying the following properties.

• If two output signals x1, x2 are in structural conflict in Γ, then they have to be in the same Outi.

• If there are t, t′ ∈ T with t′ ∈ (t•)• (t is called syntactical trigger of t′), then ℓ(t′) ∈ Outi implies
ℓ(t) ∈ Ini ∪ Outi.

Then the algorithm decomposes Γ into component STGs, one for each set in this partition, together
implementing Γ. Each component is obtained from the original STG by lambdarising the signals which
are not in the corresponding partition, and then contracting the corresponding transitions (some other
net reductions are also applied — see below). Then, from each component a circuit is synthesised, and
these circuits together implement the original specification.

Of course, the decomposition must preserve the behaviour of the specification in some sense. In [VW02,
VK05,SV05], the correctness was defined as a variation of bisimulation, tailored to the specific needs of
asynchronous circuits, called STG-bisimulation.

Typically, the computational effort (in terms of memory consumption and runtime) needed to syn-
thesise a circuit from an STG Γ is exponential in the size of Γ. Hence, if the components produced by
the decomposition algorithm are smaller than Γ, the decomposition can be seen as successful.

We now describe the operations which the algorithm applies to an initial component until no more
λ-labelled transitions remain.

Contraction of a λ-labelled transition. Transition contraction can be applied to a λ-labelled tran-
sition t if •t ∩ t• = ∅ and for all place p W (t, p), W (p, t) ≤ 1; it is illustrated in Figure 2. Intuitively, t is
removed from the net, together with its surrounding places •t∪ t•, and the new places, corresponding to
the elements of •t × t•, are added to the net. Each new place (p, q) ∈ •t× t• inherits the connectivity of
both p and q (except that t is no longer in the net), and its initial marking is the total number of tokens
which were initially present in p and q. (The formal definition of transition contraction can be found in
the appendix.)

The contraction is called secure if either (•t)
• ⊆ {t} (type-1 secure) or •(t•) = {t} and M0(p) = 0

for some p ∈ t• (type-2 secure). It is shown in [VW02, VK05] that secure contractions of λ-labelled
transitions preserve the language of the STG.

Deletion of an implicit place. It is often the case that after a transition contraction implicit places
(i.e., places which can be removed without changing the firing sequences of the net) are produced. Such
places may prevent further transition contractions, and should be deleted before the algorithm proceeds.

Deletion of a redundant transition. There are two kinds of redundant transitions. First, if there
are two transitions with the same label which are connected to every place in the same way, one of them
can be deleted without changing the traces of the STG. Second, a λ-labelled transition t with •t = t•

can also be deleted, since its firing does not change the marking and is not visible on the level of traces;
observe, that this is valid for any marking of the adjacent places.

6

p1 p2

p3 p4

t1 t2

t3 t

t4 t5

(a)

p1p3

p1p4

p2p3

p2p4

t1 t2

t3 t4 t5

(b)

Figure 2: Transition contraction: the initial net (a), and the net after contraction of t (b).

Backtracking. As it was already mentioned, not every λ-labelled transition can be contracted by the
decomposition algorithm. There are three reasons for this:

• The contractions is not defined (e.g., because •t ∩ t• 6= ∅).

• The contraction is not secure (then the language of the STG might change).

• The contraction introduces a new auto-conflict (i.e., a new potential source of non-determinism
which was not present in the specification is introduced; this is interpreted that the component has
not enough information (viz. input signals) to properly produce its outputs).

If none of the described reduction operations are applicable, but the component still has some λ-
labelled transitions, backtracking is applied, i.e., one of these λ-labelled transitions is chosen and the
corresponding signal is delambdarised, i.e., this input is added to the initial partition and the new cor-
responding initial component is derived and reduced from the beginning. This cycle of reduction and
backtracking is repeated until all λ-labelled transitions of the initial component can be contracted. This
means that backtracking is only needed to detect these additional input signals; if they are known in
advance, one can perform decomposition completely without backtracking. (In the worst case, all the
lambdarised signals are delambdarised.)

The described decomposition algorithm is non-deterministic, i.e., it can apply the net reductions in
any order; the result has been proven to be always correct. In [SVWK06], different ways to determinise
it are described. One of them was tree decomposition, which greatly improves the overall efficiency of
decomposition process by re-using intermediate results. Since it is the base for CSC-aware decomposition
introduced below, we describe it briefly.

4.1 Tree Decomposition

In our experiments, it turned out that in most cases some initial components have many lambdarised
signals in common. Therefore, the decomposition algorithm can save time by building an intermediate
STG C′, from which these components can be derived: instead of reducing both initial components
independently, it is sufficient to generate C′ only once and to proceed separately with each component
afterwards, thus saving a lot of work.

Tree decomposition tries to generate a plan which minimises the total amount of work using the
described idea. We introduce it by means of an example in Figure 3. Let Γ be an STG with the signal
set {1, 2, 3, 4, 5}. Furthermore, let there be three components C1, C2, C3, and let {1, 2, 3}, {2, 3, 4},
{3, 4, 5} be the signals which are lambdarised initially in these components. We build a tree guiding
the decomposition process, such that its leafs correspond to the final components, and every node u is
labelled with the set of signals s(u) to be contracted.

In (a) the initial situation is depicted. There are three independent leaves labelled with the signals
which should be contracted to get the corresponding final component. A possible intermediate STG C′

for C1 and C2 would be the STG in which signals 2 and 3 have been contracted. In (b), C′ is introduced
as an common intermediate result for C1 and C2; the signals 2 and 3 no longer have to be contracted in
C1 and C2 (they appear in brackets) and the leaves are labelled with {1} and {4}, respectively. In (c), a

7

(a) (b) (c)

2, 3, 41, 2, 3 3, 4, 5 3, 4, 5

2, 3

1 (2, 3) (2, 3) 4 1 (2, 3) (2, 3) 4 (3) 4, 5

3

2 (3)

Figure 3: Building of a simple decomposition tree for three components and five signals. Leafs from
the left: components C1, C2, C3. (a) the initial situation; (b) two components merged; (c) the final
decomposition tree.

common intermediate result for C′ and C3 with the label {3} is added, yielding the final decomposition
tree.

From this use of a decomposition tree, it is clear that in an optimal decomposition tree the sum of
all |s(u)| should be minimal. Decomposition trees are very similar to preset trees in [KK01]; there it
is shown that computing an optimal preset tree is NP-complete, and a heuristic algorithm is described
which performs reasonably well. We use this algorithm for the automatic calculation of decomposition
trees.

The decomposition algorithm guided by such a decomposition tree traverses it in the depth-first order.
It enters the root node with the initial STG Γ containing no lambdarised signals. Upon entering a node u
with an STG Γu, the algorithm lambdarises and contracts the signals s(u) in Γu (and performs other
possible reductions) and enters each child node with its own copy of the resulting STG.2 If u is a leaf,
the resulting STG is a final component.3

4.2 CSC-Aware decomposition

On the basis of tree decomposition, we now introduce CSC-aware decomposition. Our aim is to reduce
the number of CSC conflicts in the components generated by the decomposition algorithm. Ideally, if the
original specification is free from CSC conflicts then this should be the case also for the components.

During its execution the algorithm has to determine if an STG has CSC conflicts. This is checked
externally with the tools Punf and Mpsat [Kho03,KKY04]. It works essentially as tree decomposition,
with the following differences, cf. Figure 4. When a leaf is reached, we check whether the corresponding
final component has CSC conflicts. If no, the component is saved as the final result. Otherwise, for each
detected CSC core a constituting pair of firing sequences leading to the conflicting states is stored in the
parent of the leaf.

When the algorithm returns to this parent node, it checks whether this CSC conflict is still present in
the local intermediate STG. However, using Mpsat may be expensive at this point, as the corresponding
STG is larger than the final component. Instead, we map the stored firing sequences from the final
component to this STG using the inverse projections introduced below, and check if they still lead to
states which are in a CSC conflict. For every conflict which is not destroyed, this results in a new pair of
firing sequences which is propagated upwards in the tree, and so on. On the other hand, if the conflict
disappears, these inverse projections are analysed as described below, and signals which helped to resolve
the conflict are determined and delambdarised in the corresponding child node, and the algorithm tries
to process it again. If no CSC conflicts remain in the final component (due to the delambdarised signals),
it is saved as the final result.

When all pairs of firing sequences corresponding to CSC conflicts are considered, the algorithm pro-
ceeds with the next child of the current node. If there are no more children left, it goes up to the parent
of the current node and deals with the corresponding firing sequences. Eventually, the algorithm reaches
the root node for the last time and terminates.

This algorithm is complete, i.e., it guarantees for a specification with CSC that each component has
CSC, too. This is due to the fact that a pair of firing sequences corresponding to a CSC conflict in a

2As an important technical improvement, the intermediate result of a component is not copied for each child. Instead,
throughout the decomposition, a single STG is used, and an undo stack is used to restore the ‘parent’ STG whenever the
algorithm returns to the parent node. This is much faster and uses far less memory than keeping multiple (and potentially
large) STGs.

3There are some twists in this setting considering backtracking, which is handled a bit different in contrast to ‘ordinary’
decomposition; in particular, the decomposition tree can be modified during the decomposition process, cf. [SVWK06].

8

component can be moved up to the root node (via a sequence of inverse projections), where CSC is given
initially. In practice, one can stop moving up a pair of firing sequences after several iterations and try
to resolve CSC conflicts with new internal signals instead. Therefore, the algorithm is still applicable to
specifications which have CSC conflicts initially.

The inverse projection of a firing sequence is defined as follows. Let Γ and Γ′ be two STGs such that
Γ′ is obtained from Γ by a secure contraction of some transition t. If σ′ is a firing sequence of Γ′, we call
a firing sequence σ of Γ an inverse projection of σ′ if σ′ is the projection of σ on the transitions of Γ′.

Since the contraction of t was secure, the inverse projection can be calculated easily: it is enough to
fire the transitions of σ′ in Γ, one by one, while possible. If, at some point, a transition of σ′ cannot
be fired then t is fired (it is guaranteed to be enabled in such a case). This process is continued until
all the transitions of σ′ are fired, yielding σ. One can see that though the inverse projection of a given
firing sequence is generally not unique, the shortest inverse projection is unique, and it is precisely the
one computed by the described procedure. If Γ′ is obtained from Γ by a sequence of secure contractions,
its firing sequences can still be inversely projected to Γ by computing a sequence of inverse projections
for each individual contraction.

If Γ′ has a CSC conflict, there is a corresponding pair of firing sequences (σ′
1, σ

′
2) such that the

corresponding signal change vectors vσ′

1 and vσ′

2 coincide. If the inverse projection (σ1, σ2) of this pair is
such that vσ1 6= vσ2 then the corresponding conflict is likely to be destroyed by delambdarising the signal
corresponding to the contracted transition.

1. contract signals

2. go down to child node

3. contract signals

4. go down to child node

5. contract signals

6. check CSC

6a. fulfiled, output component

6b. not fulfiled, save firirng sequences in parent

7. go up and restore intermediate STG

9. go down to next child

10. eventually, go up and restore intermdiate STG

LEAF

NODE

NODE

8. handle firing sequences from children, possibly move them up to parent

other children

other children

Figure 4: Outline for CSC-aware decomposition. Step 8 is repeated every time a node is entered from a
child, step 9 includes contraction and detection of CSC.

5 Combining Decomposition and Unfolding Techniques

In this section we describe how our unfolding and decomposition tools can be used to combine their ad-
vantages and to compensate for each other’s shortcomings. Punf and Mpsat can perform logic synthesis,
but not for very large STGs. On the other hand, DesiJ can handle very large STGs quite efficiently be-
cause it performs only local structural operations, but it has to make conservative assumptions frequently
to guarantee correctness.

The strategy we adopted is as follows. While the STGs are large, only structural conservative checks
are made, as it may be computationally very expensive to perform the exact tests. After some reductions
have been performed, it becomes feasible to check exact reachability-like properties using Punf and
Mpsat (logic synthesis is still not feasible at this stage). Eventually, when the components are small
enough, logic synthesis is performed.

While DesiJ can handle and produce non-safe nets, Punf and Mpsat need safe nets. Therefore,
we accept only safe nets as specifications (which is no serious restriction) and perform only safeness-
preserving contractions during decomposition. They are discussed in the following subsection.

9

During the decomposition process the decomposition algorithm checks from time to time the following
reachability-like properties:

• The decomposition algorithm should backtrack if a new dynamic auto-conflict is produced. The
corresponding conservative test is the presence of a new structural auto-conflict.

• It is also helpful to remove implicit places. The corresponding conservative test looks for redundant
places [Ber87]; they are defined by a system of linear inequalities. Checking this condition with a
linear programm solver is also quite expensive, and therefore DesiJ looks only for a subset called
shortcut places [SVJ05].

• In order to apply Mpsat, the STG must be safe. In general, a transition contraction can transform
a safe STG into an non-safe (2-bounded) one. The corresponding conservative structural conditions
guaranteeing that a contraction preserves safeness are developed below.

All of the mentioned dynamic properties can be checked with a reachability analysis, which can be
performed by Mpsat. Since we only consider safe nets here, reachability-like properties can be expressed
as Boolean expressions over the places of the net. For example, the property p1 ∧ p2 ∧¬p3 holds iff some
reachable marking has a token on p1 and p2 and no token on p3. (Such properties can be checked by
Mpsat.) Below we give Boolean expressions and the corresponding conservative tests for the properties
listed above. All the necessary proofs can be found in the appendix.

Safeness-preserving contractions

A transition contraction preserves boundedness, but, in general, it can turn a safe net into a non-safe
one, as well as introduce duplicate (weighted) arcs. However, since unfolding techniques are not very
efficient for non-safe net, we assume that the initial STG is safe, and perform only safeness-preserving
contractions, i.e., ones which guarantee that if the initial STG was safe then the transformed one is also
safe. (Note that the transitions with duplicate (weighted) arcs must be dead in a safe Petri net, and so
we can assume that the initial and all the intermediate STGs contain no such arcs.)

We now give a sufficient structural condition for a contraction being safeness-preserving. Then we
will show how this can be checked with a partial reachability analysis and also how a single unfolding
prefix can be used for checking if each contraction in a sequence of contractions is safeness-preserving.

Theorem 5.1 (Structural safeness-preservation)
A secure contraction of a transition t in a net Γ is safeness-preserving if

1) |•t| = 1 or

2) |t•| = 1, •(t•) = {t} and

a) Γ is live and reversible
or

b) M0(p) = 0 with t• = {p}

Figure 5 shows two counterexamples: the leftmost net violates the condition that either the pre- or
postset of t has to contain a single place; one can see that, the contraction of t generates an non-safe net.
The net in the middle violates the condition •(t•) = {t} in the second case in Theorem 5.1 (i.e., that the
place in the postset of t must not have incoming arcs other than from t); the rightmost net is obtained
by contracting t in the net in the middle.

In practice, the decomposition algorithm checks the condition 2b) which makes no assumptions about
the net which are difficult to verify. This is important since there exist STGs which are neither live nor
reversible, e.g., ones which have some initialisation part which is executed only once in the beginning.

If the specification is guaranteed to be live and reversible, it is also possible to use condition 2a); then
the following lemma is needed to apply such contractions repeatedly.

Proposition 5.2
Secure transition contractions and implicit place deletions preserve liveness and reversibility.

So far, we only considered structural conditions for a contraction to be safeness-preserving; now we
describe the dynamic conditions.

10

t

t

2

Figure 5: Examples of non-safeness-preserving contractions.

Theorem 5.3
Let Γ be a safe STG and t ∈ T such that the contraction of t is secure. The contraction of t is safeness-
preserving iff the following property does not hold:

(

∨

p∈•t

p

)

∧

(

∨

p∈t•

p

)

.

To check these reachability properties with Mpsat one has to generate the unfolding prefix with
Punf first, which can take considerable time. It is therefore impractical to generate it for checking the
safeness-preservation of a single contraction. Instead, our algorithm uses a single unfolding prefix to
check if a sequence of several subsequent contractions is safeness-preserving. This technique is explained
in the appendix.

Implicit Places

As it was already mentioned, the deletion of implicit places is important for the success of the decompo-
sition. As a conservative condition, DesiJ looks for shortcut places. On the other hand, unfolding-based
reachability analysis makes it possible to check exactly whether a place is implicit: a place p is implicit
iff the following property does not hold:

¬p ∧

∨

t∈p•

∧

q∈•t\{p}

q

 .

It is possible to detect all implicit place of a net with a single unfolding. Observe first, that the
deletion of an implicit place cannot turn an non-implicit place into an implicit one. Indeed, suppose
p1 is implicit and deleted in Σ, yielding Σ1, and p2 is implicit and deleted in Σ1, yielding Σ2. Then
FS(Σ) = FS(Σ1) = FS(Σ2) by definition of implicit places, where FS(Σ) denotes the set of all firing
sequences of Σ. Suppose now that p2 is deleted first in Σ, yielding Σ′

1, and p1 is deleted in Σ′
1, yielding

Σ2 again. Then FS(Σ) ⊆ FS(Σ′
1) ⊆ FS(Σ2) = FS(Σ), since deleting places can only increase the set

of firing sequences. Therefore FS(Σ) = FS(Σ′
1) = FS(Σ2), which shows that p2 is implicit in Σ. It is

therefore sufficient to iterate once over all places and to delete every implicit one.
Furthermore, the unfolding of a net in which an implicit places was deleted can be obtained from the

original unfolding by deleting all occurrences of this place. For the above reachability analysis we get the
same effect automatically, because deleted places will not occur in the corresponding property.

Dynamic Auto-Conflicts

A conservative test for the presence of an auto-conflict is the presence of two transitions with the same
label (distinct from λ) and overlapping presets. Unfolding-based reachability analysis makes it possible
to check exactly for the presence of an auto-conflict as follows.

In a safe STG distinct transitions t1 and t2 such that •t1 ∩ •t2 6= ∅ are in dynamic conflict iff the
following property holds:

∧

p∈•t1∪•t2

p .

11

Using this exact test can reduce the number of times the decomposition algorithm has to backtrack,
which ultimately can result in the improved runtime and smaller final components.

6 Results

We applied the described combined approach to several benchmark examples with and without CSC
conflicts, and compared the results with the stand-alone synthesis with Mpsat and Petrify. (The tool
for CSC conflict resolution and decomposition described in [CC06, Car03] was not available from the
authors.) In the tables, all times are given as (minutes:)seconds. The benchmarks were performed on a
Pentium 4 HT with 3GHz and 2GB RAM.

We worked with two types of benchmarks. The first group are pipelines which have CSC initially.
As expected, the new approach produces components without CSC conflicts, i.e., the signals which are
necessary for preventing CSC conflicts are kept in the components (the original approach of [VW02,
VK05,SVWK06] would have contracted some of them).

Our combined approach decomposes and synthesises these benchmarks (Table 1) quite quickly com-
pared with Petrify (aborted after 5 minutes). However, Mpsat alone is much faster for these examples
and needs less than a second for any of them. This is because these benchmarks are relatively small, with
up to 257 nodes and up to 43 signals.

Benchmark DesiJ Petrify

2pp.arb.nch.03.csc 1 1
2pp.arb.nch.06.csc 2 14
2pp.arb.nch.09.csc 4 1:54
2pp.arb.nch.12.csc 10 32:55

2pp-wk.03.csc 1 1
2pp-wk.06.csc 2 9
2pp-wk.09.csc 3 31
2pp-wk.12.csc 18 24:36

3pp.arb.nch.03.csc 1 4
3pp.arb.nch.06.csc 3 2:14
3pp.arb.nch.09.csc 7 84:17
3pp.arb.nch.12.csc 22 ≥ 360:00

3pp-wk.03.csc 1 1
3pp-wk.06.csc 3 31
3pp-wk.09.csc 7 34:08
3pp-wk.12.csc 22 ≥ 360:00

Table 1: Results of the pipeline benchmarks.

The second group of benchmarks are newly generated; they are STGs derived from Balsa specifi-
cations. These kind of benchmarks was used before by [CC06]. The benchmark SeqParTree(21,10)
from there is nearly the same as SeqParTree-05 here; the difference is that we did not hide the internal
handshake signals. However, this is also possible for our approach and will most likely lead to further
speedups, as discussed in Section 7.

These examples are generated out of two basic Balsa handshake components (see [EB02]): the 2-
way sequencer, which performs two subsequent handshakes on its two ‘child’ ports when activated on its
‘parent’ port, and the 2-way paralleliser, which performs two parallel handshakes on its two ‘child’ ports
when activated on its ‘parent’ port; either can be described by a simple STG. The benchmark examples
SeqParTree-N are complete binary trees with alternating levels of sequencers and parallelisers, as
illustrated in Figure 6 (N is the height of the tree), which are generated by the parallel composition
of the elementary STGs corresponding to the individual sequencers and parallelisers in the tree. We
also worked with other benchmarks made of handshake components (e.g., trees of parallelisers only); the
results did not differ much, so we considered exemplarily only SeqParTree-N.

12

||

; ;

||

; ;

;

Figure 6: SeqParTree-03. Filled dots denote active handshake ports (they can start a handshake),
blank nodes denote passive ones. Each port is implemented by two signals, an input and an output. If
two ports are connected the parallel composition merges these four signals into two outputs.

These benchmarks have CSC conflicts initially, and Mpsat was used in the end to resolve them in
each component separately. The experimental results in Table 2 show the real power of our method. The
corresponding STGs are very large, and we consider it as a important achievement that the proposed
combined approach could synthesise them so quickly. As one can see, an STG with more than 4000 signals
is synthesised in less than 70 minutes. Petrify and Mpsat alone need more than 12 hours (aborted)
for either of these benchmarks.

Size Signals Combined

Benchmark |P | – |T | |In| – |Out| Deco. Synthesis Σ

SeqParTree-05 382 – 252 33 – 93 2 1 3

SeqParTree-06 798 – 508 65 – 189 4 2 6

SeqParTree-07 1566 – 1020 129 – 381 10 4 14

SeqParTree-08 3230 – 2044 257 – 765 48 10 57

SeqParTree-09 6302 – 4092 513 – 1533 4:55 24 5:19

SeqParTree-10 12958 – 8188 1025 – 3069 68:09 1:39 69:48

Table 2: Results of the handshake benchmarks.

In contrast to the decomposition method of [CC03,CC06] we allow components with more than output.
This was utilised here: the initial partition was chosen such that each component of the decomposition
corresponds to one handshake component. Other partitions of the outputs might lead to further speedups.

7 Conclusion

The purely structural decomposition approach of [VW02,VK05,SVWK06] can handle large specifications,
but it does not take into account the properties of STGs related to synthesisability, such as the presence
of CSC conflicts. In contrast, Mpsat can resolve CSC conflicts and perform logic synthesis, but it
is inefficient for large specifications. In this paper, we demonstrated how these two methods can be
combined to synthesise large STGs very efficiently.

One of the main technical contributions was to preserve the safeness of the STGs throughout the
decomposition, because Mpsat can only deal with safe STGs. This is not just an implementation issue
or a compensation for a missing Mpsat feature, but it is also far more efficient than working with non-safe
nets, for which unfolding techniques seem to be inefficient. We also showed how dynamic properties like
implicitness and auto-conflicts can be checked with unfoldings and how these checks can be combined
with cheaper conservative structural conditions.

Future research is required for the calculation of the decomposition tree, the size of which is cubic
in the number of signals and exceeds the memory usage for decomposition and synthesis by far. Here,
heuristics are needed which explore the tradeoff between the quality of the decomposition tree and the
amount of memory needed for its calculation.

13

Furthermore, we consider the handling of handshake based STGs as very important. Handshake
circuits allow to synthesise very large specifications at the expense of a heavy overencoding of the resulting
circuit, i.e., they have a lot of unnecessary state-holding elements, which increase the circuit area and
latency. Decomposition can help here in the following way: instead of synthesising each handshake
component separately, one can combine several such components, e.g., as it was done for SeqParTree-
N, hide the internal communication signals and synthesise one circuit implementing the combination of
the components using the proposed combined approach.

Acknowledgements

We would like to thank Dominic Wist for helping us with generating the benchmarks. This research was
supported by DFG-projects ’STG-Dekomposition’ Vo615/7-1 and Wo814/1-1, and the Royal Academy
of Engineering/Epsrc grant EP/C53400X/1 (Davac).

14

References

[Ber87] G. Berthelot. Transformations and decompositions of nets. In W. Brauer et al., editors, Petri
Nets: Central Models and Their Properties, Lect. Notes Comp. Sci. 254, 359–376. Springer,
1987.

[Ber93] K. v. Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI Programming.
International Series on Parallel Computation, 5, 1993.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers, C-35-8:677–691, 1986.

[Car03] Josep Carmona. Structural Methods for the Synthesis of Well-Formed Concurrent Specifica-
tions. PhD thesis, Universitat Politècnica de Catalunya, 2003.

[CC03] J. Carmona and J. Cortadella. ILP models for the synthesis of asynchronous control circuits.
In Proc. of the IEEE/ACM International Conference on Computer Aided Design, pages 818–
825, 2003.

[CC06] J. Carmona and J. Cortadella. State encoding of large asynchronous controllers. In DAC
2006, pages 939–944, 2006.

[Chu87] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications. PhD
thesis, MIT, 1987.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a tool
for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE
Trans. Information and Systems, E80-D, 3:315–325, 1997.

[CKK+02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic Synthesis
of Asynchronous Controllers and Interfaces. Springer, 2002.

[EB02] D. Edwards and A. Bardsley. Balsa: an Asynchronous Hardware Synthesis Language. The
Computer Journal, 45(1):12–18, 2002.

[ERV02] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design, 20(3):285–310, 2002.

[ITR05] International technology roadmap for semiconductors: Design, 2005.
URL: www.itrs.net/Links/2005ITRS/Design2005.pdf.

[Kho03] V. Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD thesis, School
of Computing Science, University of Newcastle upon Tyne, 2003.

[KK01] V. Khomenko and M. Koutny. Towards an efficient algorithm for unfolding Petri nets. In
K.G. Larsen and M. Nielsen, editors, CONCUR 2001, Lect. Notes Comp. Sci. 2154, 2001.

[KKY04] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting state coding conflicts in STG unfold-
ings using SAT. Fundamenta Informaticae, 62(2):1–21, 2004.

[KKY06] V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asynchronous circuits based
on Petri net unfoldings and incremental SAT. Fundamenta Informaticae, 70(1–2):49–73, 2006.

[MBKY03] A. Madalinski, A. Bystrov, V. Khomenko, and A. Yakovlev. Visualization and Resolution
of Coding Conflicts in Asynchronous Circuit Design. IEE Proceedings: Computers & Digital
Techniques, 150(5):285–293, 2003.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE, 77(4):541–
580, 1989.

[Sem97] A Semenov. Verification and Synthesis of Asynchronous Control Circuits Using Petri Net
Unfolding. PhD thesis, University of Necastle upon Tyne, 1997.

15

[SV05] M. Schaefer and W. Vogler. Component refinement and CSC solving for STG decomposi-
tion. In Vladimiro Sassone, editor, FOSSACS 05, Lect. Notes Comp. Sci. 3441, pp. 348–363.
Springer, 2005.

[SVJ05] M. Schaefer, W. Vogler, and P. Jančar. Determinate STG decomposition of marked graphs.
In G. Ciardo and P. Darondeau, editors, ATPN 05, Lect. Notes Comp. Sci. 3536, 365–384.
Springer, 2005.

[SVWK06] M. Schaefer, W. Vogler, R. Wollowski, and V. Khomenko. Strategies for optimised STG
decomposition. In Proceedings of ACSD, 2006.

[Val98] A. Valmari. Lectures on Petri Nets I: Basic Models, volume 1491 of Lect. Notes Comp. Sci.,
chapter The State Explosion Problem, pages 429–528. Springer-Verlag, 1998.

[VK05] W. Vogler and B. Kangsah. Improved decomposition of signal transition graphs. In ACSD
2005, pages 244–253, 2005.

[VW02] W. Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In J. Cortadella
et al., editors, Concurrency and Hardware Design, Lect. Notes Comp. Sci. 2549, 152 – 190.
Springer, 2002.

16

Appendix

A The proofs

In this section we give the formal proofs of the results in this paper. Also, we provide some auxiliary
definitions and results needed in these proofs. Throughout this section, we talk about net systems
with labelling. Formally this is only defined for STGs, but all of the results here (and the ones cited
from [VW02, VK05]) are also true for arbitrary net systems with arbitrary labelling, which is actually
used for some proofs.

We start with the formal definition of a transition contraction.

Definition A.1 (Transition Contraction)
Let Γ be an STG and t ∈ T with ℓ(t) = λ. If •t ∩ t• = ∅ and for all p ∈ P : W (p, t), W (t, p) ≤ 1, the
contraction of t results in the net Γ′ with the same signals and:

T ′ df

= T − {t}

P ′ df

= {(p, ⋆) | p ∈ P − (•t ∪ t•)} + •t × t•

W ′((p, q), t)
df

= W (p, t) + W (q, t) with W (⋆, t)
df

= 0

W ′(t, (p, q))
df

= W (t, p) + W (t, q) with W (t, ⋆)
df

= 0

M ′
0((p1, p2))

df

= M(p1) + M(p2) with M(⋆)
df

= 0

ℓ′
df

= ℓ|T ′ ,

where ⋆ /∈ P is a new (abstract) element. 3

Definition A.2 (Simulation)
A simulation from Γ to Γ′ is a relation S between the reachable markings of Γ and Γ′ such that (M0, M

′
0) ∈

S and for all (M1, M2) ∈ S and M1[t〉M ′
1 there is some M ′

2 with M2[ℓ1(t)〉〉M ′
2 and (M ′

1, M
′
2) ∈ S. 3

If such a simulation exists, then Γ′ can go on simulating all signals of Γ forever.
Below we define a similar concept.

Definition A.3 (Transition Simulation)
Let Γ and Γ′ be with T ′ ⊆ T . A relation S between the reachable markings of Γ and Γ′ is a transition
simulation between Γ and Γ′ if:

1. (M0, M
′
0) ∈ S;

2. (M, M ′) ∈ S and M [v〉M1 with v ∈ T ∗ implies M ′[v|T ′〉M ′
1 and (M1, M

′
1) ∈ S.

A relation S′ between the reachable markings of Γ′ and Γ is a transition simulation between Γ′ and Γ if:

1. (M ′
0, M0) ∈ S′;

2. (M ′, M) ∈ S′ and M ′[v′〉M ′
1 with v′ ∈ T ′∗ imply that M [v〉M ′

1 with v|T ′ = v′ and (M ′
1, M1) ∈ S′.3

The following lemma is kind of folklore. We provide and prove it anyway, because it is slightly
extended.

Lemma A.4 (Transitivity of Simulations)
Let Γ, Γ1 and Γ2 be nets. If S1 is a transition simulation between Γ and Γ1, S2 between Γ1 and Γ2,

S′
1 ⊆ S−1

1 between Γ1 and Γ and S′
2 ⊆ S−1

2 between Γ2 and Γ1, then S
df

= S1 ◦S2 is a transition simulation

between Γ and Γ2 and S′ df

= S′
2 ◦ S

′
1 is one between Γ2 and Γ with S′ ⊆ S−1 (cf. the figure below).

Γ Γ1 Γ2

S1 S2

S′
1 ⊆ S−1

1 S′
2 ⊆ S−1

2

S
df

= S1 ◦ S2

S′ df

= S′
2 ◦ S

′
1 ⊆ S−1

17

Proof. Obviously, T2 ⊆ T1 ⊆ T . Furthermore, (M0, M1) ∈ S1 and (M1, M2) ∈ S2 implies (M0, M2) ∈ S.
Let now (M, M ′′) ∈ S. Hence, there is some M ′ such that (M, M ′) ∈ S1 and (M ′, M ′′) ∈ S2.

Then, M [v〉M1 implies M ′[v|T1
〉M ′

1 with (M1, M
′
1) ∈ S1; this implies M ′′[v|T2

〉M ′′
1 with (M ′

1, M
′′
1) ∈ S2.

Therefore, (M1, M
′′
1) ∈ S. With analogous reasoning, S′ is a transition simulation between Γ2 and Γ.

Furthermore, S′ = S′
2 ◦ S

′
1 ⊆ S−1

2 ◦ S′
1 ⊆ S−1

2 ◦ S−1
1 = (S1 ◦ S2)

−1 = S−1.

Definition A.5 (Marking equality)
Let Γ′ be an STG obtained from an STG Γ by the contraction of some transition. We say that a
marking M of Γ and M ′ of Γ′ satisfy the marking equality if for every place (p1, p2) of Γ′: M ′((p1, p2)) =
M(p1) + M(p2). 3

The following proposition repeats some properties of secure transition contractions from [VW02,
VK05].

Proposition A.6 (Contraction and Simulation)
Let Γ be a net with an arbitrary labelling and let Γ′ be obtained from Γ by secure contraction of some

transition. Then the relation S
df

= {(M, M ′) | M and M ′ satisfy the marking equality} is a simulation
between Γ and Γ′ and there is a simulation S′ ⊆ S−1 between Γ′ and Γ.

We can also apply Proposition A.6 on the transition level.

Proposition A.7 (Contraction and Transition Simulation)

Let Γ be a net and let Γ′ be obtained from Γ by the contraction of some transition t. Then S
df

= {(M, M ′) |
M and M ′ satisfy
the marking equality} is a transition simulation between Γ and Γ′ and there is a transition simulation
S′ ⊆ S−1 between Γ′ and Γ.

Proof. Follows from Proposition A.6 for the following labelling ℓ of Γ and Γ′.

ℓ(t′) =

{

t′ for t′ 6= t
λ for t′ = t

Lemma A.8
Let Γ be a safe net and let Γ′ be obtained from Γ by the secure contraction of a transition t. Then all
places which are not generated by the contraction are safe (i.e. all places from P ′ − •t × t•).

Proof. Let S be the corresponding transition simulation. Let M ′ be an arbitrary reachable marking
with M ′

0[v
′〉M ′. Therefore M0[v〉M with v′ = v|T ′ and (M, M ′) ∈ S. If p′ ∈ P ′ is not generated by

the contraction, it is of the form (p, ⋆) for some p ∈ P . The marking equality implies then M ′(p′) =
M ′((p, ⋆)) = M(p) + M(⋆) ≤ 1.

Theorem 5.1 (Structural safeness-preservation). A secure contraction of a transition t in a net Γ
is safeness-preserving if

1) |•t| = 1 or

2) |t•| = 1, •(t•) = {t} and

a) Γ is live and reversible
or

b) M0(p) = 0 with t• = {p}

Proof. Let S and S′ ⊆ S be the corresponding transition simulations from Proposition A.7. Observe that
a transition contraction can turn a safe net in a 2-bounded one.

1) |•t| = 1: Let •t = {p}. If Γ is safe but Γ′ not, one of the places generated during contraction is
non-safe (Lemma A.8), e.g., (p, q) with q ∈ t•. Hence, a marking M ′ of Γ′ exists with M ′

0[u〉M
′ with

M ′((p, q)) = 2. Proposition A.7 implies that there is a marking M of Γ with (M ′, M) ∈ S′. Hence
M(p) + M(q) = 2, and so due to the safeness of Γ, M(p) = M(q) = 1. Therefore t is enabled due to
M(p) = 1, and firing it puts a token on q which already containes a token, contradicting the safeness of
Γ.

18

2) |t•| = 1 and •(t•) = {t}: Observe, that the case |t•| = 0 is not possible, since the contraction would
not be secure. When we talk about the markings M1, M2 and M3 of Γ shown in the figure below, we
always mean markings that look locally like these markings; this applies also to notational variations like
M ′

1.
Let Γ be safe and Γ′ be non-safe, and let t• = {p}. Analogously to the first case, Lemma A.8 implies

that there is a reachable marking M1 of Γ such that M1(q) = M1(p) = 1 for some place q ∈ •t (cf. the
picture below).

q . . .

p

t

M1

q . . .

p

t

M2

q . . .

p

t

M3

If a) holds, i.e., Γ is live, there must be a reachable marking M2 which enables t; since Γ is safe, M2

puts exactly one token in every place in •t and no token on p. The marking M3 which is reachable from
M2 by firing t puts one token in p and no tokens in the places in •t. Since Γ is reversible, M1 is reachable
from M3. If b) holds, i.e., p is initially unmarked, M1 can only be reached via markings M2 and M3,
since only t can put a token on p.

In both cases there are transition sequences v1 and v2 such that M0[v1〉M2[t〉M3[v2〉M1. Moreover,
without loss of generality, one can assume that v2 does not contain t; indeed, if v2 = v′2tv

′′
2 with v′′2 not

containing t, one can build a firing sequence M0[v1tv
′
2〉M

′
2[t〉M

′
3[v

′′
2 〉M1 with similar properties.

Since v2 does not contain t, the token on p cannot be removed by the transitions in v2 because only t
can put it there again. Hence M2[v2〉M with M(q) = 2, because the firing of v2 increases the marking of
q by 1. This contradicts Γ being safe.

Proposition 5.2. Secure transition contractions and implicit place deletions preserve liveness and re-
versibility.

Proof. The claim is obviously true for an implicit place deletion, since the resulting STG has an isomorphic
state graph.

Due to Proposition A.7, there is a transition simulation S between Γ and Γ′ and a transition simulation
S′ ⊆ S−1 between Γ′ and Γ. Let u′ be a firing sequence of Γ′ such that M ′

0[u
′〉M ′

1; then M0[u〉M1 for
some firing sequence u of Γ such that (M ′

1, M1) ∈ S′.
If Γ is reversible then M1[v〉M0 for some transition sequence v of Γ. Therefore, M ′

1[v|T ′〉M ′
2 such that

(M0, M
′
2) ∈ S. By definition of S, M0 and M ′

0 as well as M0 and M ′
2 fulfil the marking equality, i.e., the

following equations hold for each place (p, q) of Γ′:

M ′
0((p, q)) = M0(p) + M0(q)

M ′
2((p, q)) = M0(p) + M0(q) ,

i.e., M ′
0 = M ′

2 and Γ′ is reversible.
To show the liveness of Γ′, suppose that one wants to activate some transition t′ in Γ′ starting from

M ′
1 (note that t′ 6= t since t has been contracted). If Γ is live, one can activate t′ in Γ starting from M1

by some transition sequence w: M1[w〉M2[t
′〉. Since (M1, M

′
1) ∈ S′−1 ⊆ S, M ′

1[w|T ′〉M ′
2[t

′〉, which proves
the liveness of Γ′.

Proposition 5.3. Let Γ be a safe STG and t ∈ T such that the contraction of t is secure. The contraction
of t is safeness-preserving iff the following property does not hold:

(

∨

p∈•t

p

)

∧

(

∨

p∈t•

p

)

.

19

Proof. Let Γ′ be the resulting STG, S be the transition simulation between Γ and Γ′, and S′ ⊆ S−1 be
the transition simulation between Γ′ and Γ.

(⇐) Suppose the opposite, i.e., that Γ′ is safe but there is a reachable marking M of Γ fulfilling the
Boolean expression. Then there are two places p ∈ •t and q ∈ t• with M(p) = M(q) = 1. Since the
contraction is defined, p 6= q. Since M is reachable, M0[v〉M for some firing sequence v of Γ. Due to
Proposition A.7, M ′

0[v|T ′〉M ′ with (M, M ′) ∈ S. Since t was contracted, M ′((p, q)) = M(p) + M(q) = 2,
a contradiction.

(⇒) Suppose now that Γ′ is non-safe due to a place p′. Lemma A.8 implies that p′ is newly generated
by the contraction, i.e. p′ ≡ (p, q) with p ∈ •t and q ∈ t•. Then, the marking equality implies M ′((p, q)) =
M(p) + M(q) > 1. Since Γ is safe, M(p) = M(q) = 1 and M fulfills the Boolean expression.

To check the safeness of a sequence of contractions on a single unfolding, one has to build expressions
over the original net, which are derived from the intermediate nets. For this, we have to consider the
structure of places generated by the contractions.

Definition A.9 (Place Projection)
Let Γ and Γ′ be STGs such that Γ′ was obtained from Γ by a sequence of transition contractions. Every
place p′ of Γ′ is a pair, where each element is another pair etc., down to the level of places from P . The
function ΦΓ′

Γ assigns every place of Γ′ the multiset of places of Γ occurring in p′. We write ΦΓ′

Γ (p′)(p) to

denote the number of occurrences of p within p′. [ΦΓ′

Γ (p′)] denotes the support of ΦΓ′

Γ (p′), i.e., the set of
elements occurring in this multiset. 3

For example, ΦΓ′

Γ (((p1, p2), (p1, p3))) = {2 · p1, p2, p3} and ΦΓ′

Γ (((p1, p3), ⋆)) = {p1, p3}.
As an analogy to the marking equality for a single transition contraction, we show that the extended

marking equality holds after several contractions.

Proposition A.10 (Extended marking equality)
Let Γ be an STG and let Γ′ be obtained from it by a sequence of secure contractions of some transitions.
Then there is a transition simulation S from Γ to Γ′ and a transition simulation S′ ⊆ S−1 from Γ′ to Γ
such that for every (M, M ′) ∈ S and every place p′ of Γ′, M ′(p′) =

∑

p∈P ΦΓ′

Γ (p′)(p) · M(p).

Proof. Let Γ0
df

= Γ, and for 1 ≤ i ≤ n, let Γi be the net after the i-th transition contraction, with Γn
df

= Γ′.
Proposition A.6 implies that there is a transition simulation Si between Γi−1 and Γi and a transition
simulation S′

i ⊆ S−1
i between Γi and Γi−1. Recall that for every (M, M ′) ∈ Si, M and M ′ fulfil the

marking equality. Let now Si df

= S1 ◦S2 ◦ . . . ◦Si. Repeated application of Lemma A.4 gives that for each
i, Si is a transition simulation between Γ and Γi; in particular S = Sn is a transition simulation between
Γ and Γ′, and there is a transition simulation S′ ⊆ S−1 between Γ′ and Γ.

We now show by induction that for each i, if (M, M ′) ∈ Si then for every place p′ of Γi, M ′(p′) =
∑

p∈P ΦΓi

Γ (p′)(p) · M(p). For i = 1, this is directly implied by the marking equality for S1 = S1.

Assume now that the claim is fulfilled for some i. Let M0[v〉M ; then M i
0[v|Ti

〉M ′
i with (M, M ′

i) ∈ Si and
M i+1

0 [v|Ti+1
〉M ′

i+1 with (M, M ′
i+1) ∈ Si+1, where M i

0 denotes the initial marking of Γi. Observe that
(M ′

i , M
′
i+1) ∈ Si+1. For (p1, p2) ∈ Pi+1, we obtain

∑

p∈P

Φ
Γi+1

Γ ((p1, p2))(p) · M(p) =
∑

p∈P

ΦΓi

Γ (p1)(p) · M(p) +
∑

p∈P

ΦΓi

Γ (p2)(p) · M(p) (def. of Φ)

= M ′
i(p1) + M ′

i(p2) (induction)

= M ′
i+1((p1, p2)) (marking equality for Si+1) ,

and the case i = n proves the claim.

Proposition A.11
Let Γ be a safe STG and let Γ′ be an STG obtained from it by a sequence of safeness-preserving transition
contractions. Then the contraction of a transition t in Γ′ is safeness-preserving iff the following property
does not hold:

∨

p∈Φ•t

p

 ∧

∨

p∈Φt•

p

 ,

20

where Φ•t
df

=
⋃

p∈•t[Φ
Γ′

Γ (p)] and Φt•
df

=
⋃

p∈t• [Φ
Γ′

Γ (p)].

Proof. We will show that this equation — denoted (0) — can be fulfilled in Γ if and only if the equation
from Proposition 5.3 — denoted (1) — can be fulfilled in Γ′. Let S be the transition simulation between
Γ and Γ′ and S′ ⊆ S−1 be the transition simulation between Γ′ and Γ, whose existence is implied by
Proposition A.10.

(⇐) Suppose (0) is fulfilled for the marking M reached by some firing sequence v of Γ. Then there
are two places p ∈ Φ•t and q ∈ Φt• with M(p) = M(q) = 1. Moreover, by Proposition A.10, M ′

0[v|T ′〉M ′

with (M, M ′) ∈ S and M ′(s) =
∑

r∈P ΦΓ′

Γ (s)(r) · M(r) for each place s of Γ′. This and safeness of Γ′

imply ∀s′ ∈ P ′.p ∈ [ΦΓ′

Γ (s′)] ⇒ M ′(s′) = 1. In particular this is true for all places s′ ∈ •t, hence there is
a place p′ ∈ •t with M ′(p′) = 1 and analogously there is a place q′ ∈ •t with M(q′) = 1 and therefore (1)
is fulfilled for M ′.

(⇒) Suppose now that (1) is fulfilled for the marking M ′ reached by some firing sequence v′ of Γ.
Then there are two places p′ ∈ •t and q′ ∈ t• with M ′(p′) = M ′(q′) = 1. Also, there exists an firing
sequence v of Γ such that v′ = v|T ′ and M0[v〉M with (M, M ′) ∈ S′. Moreover, by Proposition A.10,
M ′(s) =

∑

r∈P ΦΓ′

Γ (s)(r) · M(r) for each place s of Γ′, and
∑

r∈P ΦΓ′

Γ (p′)(r) · M(r) = 1. Therefore, M

puts a token in some place in [ΦΓ′

Γ (p′)]. Similarly, one can show that M puts a token in some place in

[ΦΓ′

Γ (q′)], and thus (0) is fulfilled for M .

The last proposition makes it possible to use one unfolding to check the safeness of several subsequent
contractions. This works as follows:

1. Starting with Γ, check if the first contraction is safeness-preserving using Proposition 5.3.

2. Perform the contraction resulting in a new STG.

3. To check if the next contraction is safeness-preserving in the new STG, build an expression over Γ
using Proposition A.11.

4. Repeat steps 2 and 3 until all the desired contractions are performed.

Observe that all the new nets are generated and used to build an expression over the original net, thus
the original unfolding prefix can be used.

21

