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Emotion-specific Dichotomous Classification and Feature-level Fusion of
Multichannel Biosignals for Automatic Emotion Recognition

Jonghwa Kim and Elisabeth André

Abstract—Endowing the computer with the ability to recog-
nize human emotional states is the most important prerequisites
for realizing an affect-sensitive human-computer interaction. In
this paper, we deal with all the essential stages of an automatic
emotion recognition system using multichannel physiological
measures, from data collection to the classification process.
Particularly we develop two different classification methods,
feature-level fusion and emotion-specific classification scheme.
Four-channel biosensors were used to measure electromyo-
gram, electrocardiogram, skin conductivity, and respiration
changes while subjects were listening to music. A wide range
of physiological features from various analysis domains is
proposed to correlate them with emotional states. Classification
of four musical emotions is performed by using feature-level
fusion combined with an extended linear discriminant analysis
(pLDA). Furthermore, by exploiting a dichotomic property
of the 2D emotion model, we developed a novel scheme of
emotion-specific multilevel dichotomous classification (EMDC)
and compare its performance with direct multiclass classifica-
tion using the pLDA feature-level fusion. Improved recognition
accuracy of 95% and 70% for subject-dependent and subject-
independent classification, respectively, is achieved by using the
EMDC scheme.

I. INTRODUCTION

Emotional intelligence (understanding and expression of
emotions) is indispensable in human communication and
facilitates successful interpersonal social interaction. To ap-
proach this in human-computer interaction (HCI), the first
step is to equip machines with the means to interpret and
understand human emotions without the input of a user’s
translated intention. Hence, one of the most important pre-
requisites for realizing such affect-sensitive HCI is a reliable
emotion recognition system which guarantees acceptable
recognition accuracy, robustness against any artifacts, and
adaptability to practical applications.

Recently, many works on engineering approaches to au-
tomatic emotion recognition have been reported. For an
overview we refer to [?]. In particular, many efforts have
been deployed to recognize human emotions using audiovi-
sual channels of emotion expression, i.e. facial expressions,
speech, and gestures. Little attention, however, has been
paid so far to using physiological measures, as opposed
to audiovisual emotion channels. This is due to some sig-
nificant limitations that come with the use of multichannel
biosignals for emotion recognition. The main difficulty lies
in the fact that it is a very hard task to uniquely map
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physiological patterns onto specific emotional states. As an
emotion is a function of time, context, space, culture, and
person, physiological patterns may widely differ from user
to user and from situation to situation. When using multiple
biosensors at the same time, analyzing biosignals is itself
a complex multivariate task and requires broad insight into
biological processes related to neuropsychological functions.
To classify the multichannel variables, we first need to
design fusion method for multichannel sensory data and to
develop an emotion-specific classification scheme. Most of
machine learning algorithms are generalized method based
on statistics or linear regression of given data and most
suitable for binary classification problems. Therefore they
might not be able to capture characteristics of input variables
in order to efficiently solve multiclass problems.

In this paper, we deal with all the essential stages of an
automatic emotion recognition system, from data collection
to the classification, based on four-channel physiological
signals: electromyogram (EMG), electrocardiogram (ECG),
skin conductivity (SC), and respiration changes (RSP). Gen-
erally, fusion of multisensory data can be performed at
least at three levels: data, feature, and decision level. When
observations are of same type, the data-level fusion might
be probably the most appropriate way where we simply
combine raw multisensory data. Decision-level fusion is
the approach applied most often for multimodal sensory
data containing time scale differences between modalities.
Since, in this paper, we use multichannel biosignals that
are measured in synchronized time scale and unique di-
mension, feature-level fusion is the most convincing way
to classify by single classifier. Furthermore we develop a
novel scheme of emotion-specific multilevel dichotomous
classification (EMDC) and compared its performance with
direct multiclass classification.

Throughout the paper, we try to provide a focused spec-
trum for each processing stage with selected methods suitable
for handling the nature of physiological changes, instead of
conducting a comparison study based on a large number of
pattern recognition methods.

II. RELATED RESEARCH

A significant amount of work has been conducted by
Picard and colleagues at MIT Lab showing that certain
affective states may be recognized by using physiological
data including heart rate, skin conductivity, temperature,
muscle activity and respiration velocity [?][?]. Nasoz et
al. [?] used movie clips based on the study by Gross and
Levenson [?] for eliciting target emotions from 29 subjects

                                                                                                                                              



and achieved an emotion classification accuracy of 83% us-
ing the Marquardt Backpropagation algorithm (MBP). More
recently, an interesting user-independent emotion recognition
system was reported by Kim et al. [?]. They developed a
set of recording protocols using multimodal stimuli (audio,
visual, and cognitive) to evoke targeted emotions (sadness,
stress, anger, and surprise) from 175 children aged five to
eight. A classification ratio of 78.43% was achieved for three
emotions (sadness, stress, and anger) and a ratio of 61.76%
for four emotions (sadness, stress, anger, and surprise) by
adopting support vector machines as pattern classifier.

The physiological datasets used in most of the aforemen-
tioned approaches were gathered by using visual elicitation
materials in a lab setting. The subjects then “tried and
felt” or “acted out” the target emotions while looking at
selected photos or watching movie clips that were carefully
prearranged to elicit the emotions. In other words, to put
it bluntly, the recognition results were achieved for specific
users in specific contexts with “forced” emotional states. All
the works used simple feature-level fusion to mix features
from each sensor and then to classify by using common
single classfifier.

III. SETTING OF EXPERIMENT

A. Musical Emotion Induction

To collect a database of physiological signals in which
the targeted emotions corresponding to the four quadrants
in the 2D emotion model (i.e. EQ1, EQ2, EQ3, and EQ4
in Fig.??) can be naturally reflected without any deliberate
expression, we decided to use the musical induction method,
i.e. to record physiological signals while the subjects were
listening to different pieces of music.
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Fig. 1. Reference emotional cues in music based on the 2D emotion model.
EQ1=positive/high arousal, EQ2=negative/high arousal, EQ3=negative/low
arousal, EQ4=positive/low arousal

The subjects were three males aged 25-38 and who
all enjoy listening to music in their everyday life. They
individually handpicked four songs that were intended to
spontaneously evoke emotional memories and certain moods
corresponding to the four target emotions. Figure ??1 shows

1Metaphoric cues for song selection: song1 (positively exciting, energiz-
ing, joyful, exuberant), song2 (noisy, loud, irritating, discord), song3 (melan-
cholic, sad memory), song4 (blissful, pleasurable, slumberous, tender)

the musical emotion model referred to for the selection of
their songs. Generally, emotional responses to music vary
greatly from individual to individual depending on their
unique past experiences. Moreover, cross-cultural compar-
isons in literature suggest that emotional responses can be
quite differentially emphasized by different musical cultures
and training. This is why we advised the subjects to choose
themselves the songs they believed would help them recall
their individual special memories with respect to the target
emotions. Recording schedules were decided by the subjects
themselves and the recordings took place whenever they
felt like listening to music. They were also free to choose
the songs they wanted to listen to. Thus, in contrast to
methods used in other studies, the subjects were not forced
to participate in a lab setting scenario and to use prespecified
stimulation material. During the three months, a total of
360 samples (90 samples for each emotion) from three
subjects were collected. The signal length of each sample
was between 3-5 minutes depending on the duration of the
songs.

B. Used Biosensors

The physiological signals were acquired using the Pro-
comp2 InfinitiTM with four biosensors, electromyogram
(EMG), skin conductivity (SC), electrocardiogram (ECG),
and respiration (RSP). The sampling rates were 32 Hz for
EMG, SC, and RSP, and 256 Hz for ECG. The positions and
typical waveforms of the biosensors we used are illustrated
in Fig. ??.
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Fig. 2. Position and typical waveforms of the biosensors: (a) ECG, (b)
RSP, (c) SC, (d) EMG.

IV. FEATURE EXTRACTION

A. Signal Segmentation

Different types of artifacts were observed in all the four
channel signals, such as transient noise due to movement of
the subjects during the recording, mostly at the beginning and
at the end of each recording. Thus, uniformly for all subjects
and channels, we segmented the signals into final samples
of a 160 seconds each, obtained by taking the middle part
of each signal.

2This is an 8 channel multi-modal Biofeedback system with 14 bit resolu-
tion and a fiber optic cable connection to the computer. www.MindMedia.nl

                                                                                                                                              



B. Measured Features

From the four channel signals we calculated a total of 110
features from various analysis domains including conven-
tional statistics in time series, frequency domain, geometric
analysis, multiscale sample entropy, subband spectra, etc. For
the signals with non-periodic characteristics, such as EMG
and SC, we focused on capturing the amplitude variance and
localizing the occurrences (number of transient changes) in
the signals.
1) Electrocardiogram (ECG): To obtain the subband

spectrum of the ECG signal we used the typical 1024
points fast Fourier transform (FFT) and partitioned the
coefficients within the frequency range 0-10 Hz into eight
non-overlapping subbands with equal bandwidth. First, as
features, power mean values of each subband and funda-
mental frequency (F0) are calculated by finding maximum
magnitude in the spectrum within the range 0-3 Hz. To
capture peaks and their locations in subbands, subband
spectral entropy (SSE) is computed for each subband. To
compute the SSE, it is necessary to convert each spectrum
into a probability mass function (PMF) like form. Eq. ?? is
used for the normalization of the spectrum.

xi =
Xi∑N
i=1 Xi

, for i = 1 . . .N (1)

where Xi is the energy of ith frequency component of the
spectrum and x̃ = {x1 . . . xN} is to be considered as the
PMF of the spectrum. In each subband the SSE is computed
from x̃ by

Hsub = −
N∑

i=1

xi · log2 xi (2)

By packing the eight subbands into two bands, i.e., subbands
1-3 as the low frequency (LF) band and subbands 4-8 as the
high frequency (HF) band, the ratios of the LF/HF bands are
calculated from the power mean values and the SSEs.

To obtain the HRV (heart rate variability) from the con-
tinuous ECG signal, each QRS complex is detected and
the RR intervals (all intervals between adjacent R waves)
or the normal-to-normal (NN) intervals (all intervals be-
tween adjacent QRS complexes resulting from sinus node
depolarization) are determined. We used the QRS detection
algorithm of Pan and Tompkins [?] in order to obtain the
HRV time series. Figure ?? shows examples of R wave
detection and interpolated HRV time series, referring to the
increases and decreases over time in the NN intervals.

In the time-domain of the HRV time series, we calculated
statistical features including mean value, standard deviation
of all NN intervals (SDNN), standard deviation of the first
difference of the HRV, the number of pairs of successive NN
intervals differing by more than 50 ms (NN50), the propor-
tion derived by dividing NN50 by the total number of NN
intervals. By calculating the standard deviations in different
distances of RR interbeats, we also added Poincaré geometry
in the feature set to capture the nature of interbeat interval
fluctuations. Poincaré plot geometry is a graph of each

RR interval plotted against the next interval and provides
quantitative information of the heart activity by calculating
the standard deviations of the distances of R−R(i) to lines
y = x and y = −x+2∗R−Rm, where R−Rm is the mean
of all R − R(i), [?]. Figure ??.(e) shows an example plot
of the Poincaré geometry. The standard deviations SD1 and
SD2 refer to the fast beat-to-beat variability and longer-term
variability of R − R(i) respectively.
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Fig. 3. Example of ECG Analysis: (a) raw ECG signal with respiration
artifacts, (b) detrended signal, (c) detected RR interbeats, (d) interpolated
HRV time series using RR intervals, (e) Poincaré plot of the HRV time
series.

Entropy-based features from the HRV time series were
also considered. Based on the so-called approximate en-
tropy and sample entropy proposed in [?], a multiscale
sample entropy (MSE) was introduced [?] and successfully
applied to physiological data, especially for analysis of
short and noisy biosignal [?]. Given a time series {Xi} =
{x1, x2, ..., xN} of length N , the number (n(m)

i ) of similar
m-dimensional vectors y(m)(j) for each sequence vectors
y(m)(i) = {xi, xi+1, ..., xi+m−1} is determined by measur-
ing their respective distances. The relative frequency to find
the vector y(m)(j) within a tolerance level δ is defined by

C
(m)
i (δ) =

n
(m)
i

N − m + 1
(3)

The approximate entropy, hA(δ, m), and the sample entropy,
hS(δ, m) are defined as

hA(δ, m) = lim
N→∞

[H(m]
N (δ) − H

(m+1)
N (δ)], (4)

hS(δ, m) = lim
N→∞

− ln
C(m+1)(δ)
C(m)(δ)

, (5)

where

H
(m)
N (δ) =

1
N − m + 1

N−m+1∑
i=1

ln C
(m)
i (δ), (6)

Because it has the advantage of being less dependent on
the time series length N , we applied the sample entropy hS

to coarse-grained versions (y(τ)
j ) of the original HRV time

series {Xi},

yj(τ) =
1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ, τ = 1, 2, 3, ...

(7)

                                                                                                                                              



The time series {Xi} is first divided into N/τ segments
by non-overlapped windowing with length of scale factor
τ and then the mean value of each segment is calculated.
Note that for scale one yj(1) = xj . From the scaled time
series yj(τ) we obtain the m-dimensional sequence vectors
y(m)(i, τ). Finally, we calculate the sample entropy hS for
each sequence vector yj(τ). In our analysis we used m = 2
and fixed δ = 0.2σ for all scales, where σ is the standard
deviation of the original time series xi.

In the frequency-domain of the HRV time series, three fre-
quency bands are of general interest: the very-low frequency
(VLF) band (0.003-0.04 Hz), the low frequency (LF) band
(0.04-0.15 Hz), and the high frequency (HF) band (0.15-0.4
Hz). From these subband spectra, we computed the dominant
frequency and power of each band by integrating the power
spectral densities (PSD) obtained by using Welch’s algo-
rithm, as well as the ratio of power within the low-frequency
band to that within the high-frequency band (LF/HF).
2) Respiration (RSP): Including the typical statistics of

the raw RSP signal, we calculated similar types of fea-
tures, such as the ECG features, the power mean values of
three subbands (obtained by dividing the Fourier coefficients
within the range 0-0.8 Hz into non-overlapped three sub-
bands with equal bandwidth), and the set of subband spectral
entropies (SSE).

In order to investigate inherent correlation between res-
piration rate and heart rate, we considered a novel feature
content for the RSP signal. Since an RSP signal exhibits a
quasi periodic waveform with sinusoidal properties, it does
not seem unreasonable to conduct an HRV-like analysis for
the RSP signal, i.e. analysis of breathing rate variability
(BRV). After detrending using the mean value of the entire
signal and lowpass filtering, we calculated the BRV time
series, referring to the increases and decreases over time in
the peak-to-peak (PP) intervals, by detecting the peaks in the
signal using the maxima ranks within each zero-crossing.
From the BRV time series, we calculated the mean value,
SD, SD of the first difference, MSE, Poincaré analysis, etc.
In the spectrum of the BRV, peak frequency, power of the two
subbands, the low-frequency band (0-0.03Hz) and the high-
frequency band (0.03-0.15 Hz), and the ratio of the power
within the two bands (LF/HF) were calculated.
3) Skin Conductivity (SC): The mean value, standard

deviation, and mean of first and second derivations were
extracted as features from the normalized SC signal and
the low-passed SC signal using a cutoff frequency of 0.2
Hz. To obtain a detrended SCR waveform without DC-level
components, we removed the continuous, piecewise linear
trend in the two low-passed signals, i.e., the very low-passed
(VLP) and the low-passed (LP) signal with a cutoff frequency
of 0.08 Hz and 0.2 Hz, respectively (see Fig. ?? (a)-(e)).

The baseline of the SC signal was calculated and sub-
tracted to consider only relative amplitudes. By finding two
consecutive zero-crossings and the maximum value between
them, we calculated the number of SCR occurrences within
100 seconds from each LP and VLP signal, the mean of
the amplitudes of all occurrences, and the ratio of the SCR

occurrences within the low-passed signals (VLP/LP).
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Fig. 4. Analysis Examples of SC and EMG signals

4) Electromyography (EMG): For the EMG signal, we
calculated types of features similar to those of the SC signal.
The mean value of the entire signal, the mean of the first and
second derivations, and the standard deviation were extracted
as features from the normalized and low-passed signals. The
occurrence number of myo-responses and the ratio of that
within VLP and LP signals were also added to the feature set
and were determined in the same way as the SCR occurrence
but using cutoff frequencies with 0.08 Hz (VLP) and 0.3 Hz
(LP) (see Fig. ??.(f)-(j)).
In the end, we obtained a total of 110 features from the

4-channel biosignals; 53 (ECG) + 37 (RSP) + 10 (SC) + 10
(EMG).

V. CLASSIFICATION RESULT

A. pLDA Feature-level Fusion
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Fig. 5. Feature-level fusion for four-channel biosensor data, combined with
SBS and pLDA

Fig. ?? shows the feature-level fusion model for multi-
channel biosensor data. For classification we used the pseu-
doinverse linear discriminant analysis (pLDA) [?], combined
with the sequential backward selection (SBS) [?] to select
significant feature subset. The pLDA is a natural extension of
classical LDA by applying eigenvalue decomposition to the
scatter matrices, in order to deal with the sigularity problem
of LDA.

Table ?? with confusion matrix presents the correct clas-
sification ratio (CCR) of subject-dependent (Subject A, B,
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and C) and subject-independent (All) classification where
the features of all the subjects are simply merged and
normalized. We used leave-one-out cross-validation where
a single observation taken from the entire samples is used
as the test data and the remaining observations are used
for training the classifier. This is repeated such that each
observation in the samples is used once as the test data.

TABLE I

RECOGNITION RESULTS IN RATES (error 0.00 = CCR 100%) ACHIEVED

BY USING PLDA WITH SBS AND LEAVE-ONE-OUT CROSS VALIDATION.

# OF SAMPLES: 120 FOR EACH SUBJECT AND 360 FOR ALL

Subject A (CCR % = 81%)
EQ1 EQ2 EQ3 EQ4 total* error

EQ1 22 4 1 3 30 0.27
EQ2 3 26 1 0 30 0.13
EQ3 1 2 23 4 30 0.23
EQ4 3 0 1 26 30 0.13

Subject B (CCR % = 91%)
EQ1 EQ2 EQ3 EQ4 total* error

EQ1 27 3 0 0 30 0.10
EQ2 3 25 1 1 30 0.17
EQ3 0 2 28 0 30 0.07
EQ4 0 1 0 29 30 0.03

Subject C (CCR % = 89%)
EQ1 EQ2 EQ3 EQ4 total* error

EQ1 28 0 2 0 30 0.07
EQ2 0 30 0 0 30 0.00
EQ3 0 0 24 6 30 0.20
EQ4 0 0 5 25 30 0.17

All: Subject-independent (CCR % = 65%)
EQ1 EQ2 EQ3 EQ4 total* error

EQ1 62 9 8 11 90 0.31
EQ2 15 57 13 5 90 0.37
EQ3 9 6 58 17 90 0.36
EQ4 8 5 21 56 90 0.38

*: Actual total # of samples

The table shows that the CCR varies from subject to
subject. For example, the best accuracy was 91% for subject
B and the lowest was 81% for subject A. Not only does
the overall accuracy differ from one subject to the next, but
the CCR of the single emotions varies as well. For example,
EQ2 was perfectly recognized for subject C while it caused
the highest error rate for subject B. It was three times mixed
up with EQ1 which is characterized by opposite valence. As
the confusion matrix shows, the difficulty in valence differ-
entiation can be observed for all subjects. Most classification
errors for Subject A and B lie in false classification between
EQ1 and EQ2 while an extreme uncertainty can be observed

in the differentiation between EQ3 and EQ4 for Subject
C. On the other hand, it is very meaningful that relatively
robust recognition accuracy is achieved for the classification
of emotions that are reciprocal in the diagonal quadrants of
the 2D emotion model, i.e., EQ1 vs. EQ3 and EQ2 vs. EQ4.
Moreover, the accuracy is much better than that of arousal
classification.

We also tried to differentiate the emotions based on the
two axes, arousal and valence, in the 2D emotion model. The
samples of four emotions were divided into groups of neg-
ative valence (EQ2+EQ3) and positive valence (EQ1+EQ4)
and into groups of high arousal (EQ1+EQ2) and low arousal
(EQ3+EQ4). By using the same methods, we then performed
a two-class classification of the divided samples for arousal
and valence separately. It turned out that emotion-relevant
ANS specificity can be observed more conspicuously in the
arousal axis regardless of subject-dependent or independent
cases. Classification of arousal achieved an acceptable CCR
of 97-99% for the subject-dependent recognition and 89%
for the subject-independent recognition, while the results for
valence were 88-94% and 77%, respectively.

B. Emotion-specific Multilevel Dichotomous Classification

By taking advantage of supervised classification (where
we know in advance which emotion types have to be recog-
nized) we developed an emotion-specific multilevel dichoto-
mous classification (EMDC) scheme. This scheme exploits
the property of the dichotomous categorization in the 2D
emotion model and the fact that arousal classification yields
higher CCR than valence classification or direct multiclass
classification. This proves true in almost all previous works
and according to our results as well. Figure ?? illustrates
the EMDC scheme and provides an example of the dyadic
decomposition for an eight-class problem.

First, the entire training patterns are grouped into two
opposing “superclasses” (on the basis of valence or arousal),
C̄ consisting of all patterns in some subset of the class
categories and C as all remaining patterns, i.e., C̄ ∩C = {}.
This dyadic decomposition using one of the two axes is
serially performed until one subset contains only two classes.
The grouping axis can be different from each dichotomous
level. Then multiple binary classifiers for each level are
trained from the corresponding dyadic patterns. Therefore,
the EMDC scheme is obviously emotion-specific and effec-
tive for a 2D emotion model. Note that the performance of

                                                                                                                                              



the EMDC scheme is limited by a maximum CCR of first
level classification and makes sense only if the CCR for
one of the two superclasses is higher than that for direct
multiclass classification (theoretically this always holds true).
Because we used four emotion classes in our experiment,
we needed a two-level classification based on arousal and
valence grouping for both superclasses in parallel.

TABLE II

RESULTS USING EMDC SCHEME WITH THE BEST FEATURES

Subject A (CCR % = 94%, 113/120)
EQ1 & EQ2 EQ3 & EQ4

58
EQ1 & EQ1 EQ2

EQ2 EQ1 27 1
2

EQ2 1 29
58

EQ3 & EQ3 EQ4
EQ4

2
EQ3 29 0
EQ4 1 28

Subject B (CCR % = 98%, 117/120)
EQ1 & EQ2 EQ3 & EQ4

60
EQ1 & EQ1 EQ2

EQ2 EQ1 30 0
0

EQ2 0 30
59

EQ3 & EQ3 EQ4
EQ4

1
EQ3 29 1
EQ4 1 28

Subject C (CCR % = 94%, 113/120)
EQ1 & EQ2 EQ3 & EQ4

60
EQ1 & EQ1 EQ2

EQ2 EQ1 30 0
0

EQ2 0 30
59

EQ3 & EQ3 EQ4
EQ4

1
EQ3 27 2
EQ4 4 26

Subject All (CCR % = 70%, 251/360)
EQ1 & EQ2 EQ3 & EQ4

155
EQ1 & EQ1 EQ2

EQ2 EQ1 62 13
25

EQ2 15 65
164

EQ3 & EQ3 EQ4
EQ4

16
EQ3 64 19
EQ4 21 60

TABLE III

CCR COMPARISON BETWEEN PLDA AND EMDC

Subj. A Subj. B Subj. C Subj. All Average (ABC)
pLDA 81% 91% 89% 65% 87%
EMDC 94% 98% 94% 70% 95%

Table ?? shows the dichotomous contingency table of
recognition results by using the novel EMDC scheme. As
expected, the CCRs significantly improved for all class prob-
lems. For the classification of four emotions, we obtained an
average CCR of 95% for subject-dependent and 70% for
subject-independent classification. Compared to the results
obtained for pLDA, the EMDC scheme achieved an overall
CCR improvement of about 5%-13% in each class problem
(see Table ??).

VI. CONCLUSION

In this paper, we dealt with all the essential stages of
an automatic emotion recognition system using multichannel

physiological measures, from data collection to the classifi-
cation process. By analyzing a wide range of physiological
features from various analysis domains, we found that SC
and EMG are linearly correlated with arousal change in emo-
tional ANS activities, and that the features in ECG and RSP
are dominant for valence differentiation. Particularly, the
HRV/BRV analysis revealed the cross-correlation between
heart rate and respiration.

By fusing the multichannel features at the feature-level,
we achieved an average recognition accuracy of 98%, 91%,
and 87% for arousal, valence, and four emotion classes
respectively. In order to further improve the accuracy of
the four emotion classes, we developed a new classification
scheme (EMDC). Although this new scheme is based on a
very simple idea, it significantly improves the recognition ac-
curacy obtained by common feature-level fusion. We actually
achieved an average recognition accuracy of 95% improved
which also connotes more than a prima facie evidence that
there are some ANS differences among emotions. Moreover,
the accuracy is higher than that in the previous works
reviewed in this paper, even when considering the different
experimental settings in the works, such as the number of
target classes, number of subjects, naturalness of dataset, etc.
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