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Abstract. Algebraic logic compacts many small steps of general logi-
cal derivation into large steps of equational reasoning. We illustrate this
by representing epistemic logic and game logic in modal semirings and
modal Kleene algebras. For epistemics we treat some classical examples
like the wise men and muddy children puzzles; we also show how to
handle knowledge update and revision algebraically. For games, we gen-
eralise the well-known connection between game logic and dynamic logic
to modal semirings and link it to predicate transformer semantics, in par-
ticular to demonic refinement algebra. The study provides evidence that
modal semirings will be able to handle a wide variety of (multi-)modal
logics in a uniform algebraic fashion well suited to machine assistance.

1 Introduction

Algebraic logic strives to compact many small steps of general logical derivation
into large steps of equational reasoning. On the semantic side, it attempts to
replace tedious model-theoretic argumentation by more abstract reasoning.

An algebraic structure that has been found very useful there are (left) semi-
rings that abstract the fundamental operations of choice and sequential compo-
sition, written as addition + and multiplication · . The qualifier left means that
multiplication needs to distribute over addition only in its left argument; this
structure is at the heart of game and process algebra. Semirings with idempotent
choice have a natural approximation order that corresponds to implication, so
that implicational inference is replaced by inequational reasoning.

Modal (left) semirings add diamond and box operators and are more general
than Kripke structures, since the access between possible worlds need not be
described by relations, but e.g. by sets of computation paths or even by compu-
tation trees. Adding finite and infinite iteration yields (left) modal Kleene and
omega algebras which admit algebraic semantics of PDL, LTL and CTL; the sub-
class of left Boolean quantales can even handle full CTL∗ and the propositional
µ-calculus. Many further applications have been developed in the past few years.

In the present paper we show that modal semirings also lead to uniform
and useful algebraisations of epistemic and game logics. For the former we treat
some classical examples like the wise men and muddy children puzzles; we also
show how knowledge update and revision operators can be defined algebraically.
For the latter we extend the well-known connection with PDL to the more gen-
eral case of modal semirings and link it to predicate transformer semantics, in
particular to demonic refinement algebra.



The paper is organised as follows. Part I deals with an algebraisation of epis-
temic logic. This logic is recapitulated in Section 2 and illustrated with a variant
of the Wise Men Puzzle. Section 3 defines modal (left) semirings and Kleene
algebras and lists the most essential properties of the box and diamond opera-
tors. They are applied in Section 4 to represent the usual epistemic operators
of multiagent systems algebraically. The laws these inherit from the general al-
gebraic framework are used in Section 5 for a concise solution of the Wise Men
Puzzle. Section 6 shows further use of the algebra in modelling certain aspects
like preference relations between possible worlds and knowledge revision.

Part II treats games and predicate transformers. Section 7 provides a brief
recapitulation of games and their algebra, in particular, of their representation as
predicate transformers. These are analysed in a general fashion in Section 8, and
a connection to Parikh’s iteration operators for games is set up. Section 9 extends
the left semiring of predicate transformers to a modal one and relates the box
and diamond operators there to the enabledness and termination operators of
demonic refinement algebra. Section 10 provides a brief conclusion and outlook.

Part I: Knowledge

We first model epistemic logic in modal semirings. As our running example we
use a particular version of the Wise Men puzzle.

2 The Wise Men Puzzle and Epistemic Modal Logic

A king wants to test the wisdom of his three wise men. They have to sit on three
chairs behind each other, all facing the same direction. The king puts a hat on
each head, either red or black, in such a way that no one can see their own hat,
only the hats of the men before him. Then the king announces that at least one
hat is red. He asks the wise man in the back if he knows his hat colour, but that
one denies. Then he asks the middle one who denies, too. Finally he says to the
front one: “If you are really wise, you should now know the colour of your hat.”

To treat the puzzle in epistemic logic, one uses formulas of the shapes Kjϕ
(man j knows that ϕ is true, individual knowledge), Eϕ (everyone knows ϕ) or
Cϕ (everyone knows that everyone knows that . . . that everyone knows ϕ, i.e., ϕ
is common knowledge).

Let the men be numbered in the order of questioning, i.e. from back to front,
and let ri mean that i’s hat is red. Then we have the following assertions about
common knowledge, since everyone hears what is being said:
– Every man can only see the hats before him, i.e., for j < i,

C(ri → Kjri) and C(¬ri → Kj¬ri).
– At least one hat is red, i.e., C(r1 ∨ r2 ∨ r3).
– After the king’s questions, for i = 1, 2 we have C(¬Kiri) and C(¬Ki¬ri).

Can we infer anything about K3r3 from that?



The aim of Part I is to give an algebraic semantics for the knowledge operators
and to solve the puzzle by (in)equational reasoning.

To prepare the algebraisation we recall the main elements of Kripke semantics
for modal logic (see e.g. [13]). We will use a multiagent setting (each wise man
is an agent) in which each agent has his own box and diamond operators.

A (multimodal) Kripke frame is a pair K = (W,R), where W is a set of
possible worlds and R = (Ri)i∈I , for some index set I, is a family of binary
access relations Ri ⊆ W ×W between worlds.

The satisfaction relation K, w |= ϕ tells whether a formula ϕ holds in world
w in frame K. A formula characterises the subset [[ϕ]] =df {w |K, w |= ϕ} of
possible worlds in which it holds.

The semantics of the modal operators 〈Ri〉 and [Ri] is given by

w ∈ [[〈Ri〉ϕ]] ⇔df ∃ v : Ri(w, v) ∧ v ∈ [[ϕ]],
w ∈ [[[Ri]ϕ]] ⇔df ∀ v : Ri(w, v) ⇒ v ∈ [[ϕ]].

In epistemic logic the worlds accessible from a current world w through Ri are
called the epistemic Ri-neighbours of w. The knowledge of agent i in a world w
consists of the formulas that are true in all epistemic neighbours of w. Therefore
the knowledge operator Ki coincides with [Ri], whereas its de Morgan dual 〈Ri〉
coincides with the possibility operator Pi.

Usually special properties are required of the knowledge operators:

Kiϕ → ϕ if i knows ϕ then ϕ is actually true
Kiϕ → KiKiϕ if i knows ϕ, he knows that (positive introspection)
¬Kiϕ → Ki¬Kiϕ analogous (negative introspection)

We will see in the solution of the puzzle which of these are actually needed.

3 Algebraic Semantics: Modal Semirings

There are already various algebraisations of modal operators, e.g. Boolean alge-
bras with operators [14] and propositional dynamic logic PDL [11]. Moreover, a
partly algebraic treatment of Kripke frames can be given using relation algebra;
the knowledge requirements above correspond to the following relational ones:

Kiϕ → ϕ ∆ ⊆ RI reflexivity
Kiϕ → KiKiϕ Ri ; Ri ⊆ Ri transivity
¬Kiϕ → Ki¬Kiϕ Rĭ ; Ri ⊆ Ri euclidean property

Here, ∆ is the diagonal or identity relation, ; is relational composition and ˘ is
relational converse.

Modal semirings and Kleene algebras provide a very effective combination of
PDL and algebraic operations on the access relations. Additionally, they abstract
from the special case of access relations and allow more general access elements
such as sets of computation paths. The particular subclass of Boolean quantales



allows the incorporation of infinite iteration and µ-calculus-like recursive defi-
nitions, rendering it suitable for handling even full CTL∗ [19]. We recapitulate
some basic definitions.

A left semiring is a structure (S, +, 0, ·, 1) with the following properties:
– The reduct (S, +, 0) is a commutative and idempotent monoid. This induces

the natural order a ≤ b ⇔df a + b = b w.r.t. which 0 is the least element
and a + b is the join of a and b.

– The reduct (S, ·, 1) is a monoid.
– Composition · distributes over + in its left argument and is left-strict, i.e.,

0 · a = 0.
– Composition is ≤-isotone in its right argument.

A weak semiring is a left semiring in which composition is also right-distributive.
A weak semiring with right-strictness is called a full semiring or simply semiring.
All these requirements can be axiomatised equationally.

In most applications these operators are interpreted as follows:
+ ↔ choice, · ↔ sequential composition,
0 ↔ empty choice, 1 ↔ null action,
≤ ↔ increase in information or in choice possibilities.

A prominent full semiring is the set of all binary relations over a set W with
union as + and relational composition as · .

A proper left semiring structure is at the core of process algebra frameworks
(see e.g. [5]): the set of equivalence classes of processes under simulation equiva-
lence forms a model. The associated natural order is the union of all simulation
relations (see e.g. [27]). The role of 0 is played by the deadlock or inaction element
δ (also called nil or STOP). The neutral element 1 for multiplication is the empty
process or termination constant ε (also called SKIP). For further discussion of
the connections see [18].

We now describe how to model predicates algebraically. A test is a subidentity
p ≤ 1 that has a complement ¬p relative to 1, i.e., p · ¬p = 0 = ¬p · p and
p + ¬p = 1. The set of all tests of S is denoted by test(S).

In the relation semiring, the tests are the subidentities of the form ∆V =df

{(x, x) |x ∈ V } for subsets V ⊆ W . So ∆V can represent V as a relation and
hence model the predicate characterising V .

The above definition of tests deviates slightly from that in [16] in that it does
not allow an arbitrary Boolean algebra of subidentities as test(S) but only the
maximal complemented one. The reason is that the axiomatisation of box to be
presented below forces this maximality anyway (see [7]).

Straightforward calculations show that test(S) forms a Boolean algebra with
+ as join, · as meet and 0 and 1 as its least and greatest elements. We will
consistently write a, b, c . . . for arbitrary semiring elements and p, q, r, . . . for
tests. When tests are viewed as predicates over a set W of possible worlds, the
semiring operators play the following roles:



0 / 1 ↔ false (empty set) / true (full set W ),
+ / · ↔ disjunction (union) / conjunction (intersection),
≤ ↔ implication (subsethood),

p · a / a · p ↔ input / output restriction of a by p,
p · a · q ↔ the part of a taking p-elements to q-elements.

To ease reading, we will write ∧ and ∨ instead of · and + when both of their
arguments are tests. Also, we will freely use the standard Boolean operations on
test(S), for instance implication p → q = ¬p∨ q and relative complementation
p− q = p∧¬q, with their usual laws.

We now axiomatise a box operator [ ] : S → (test(S) → test(S)) by [7]

p ≤ [a]q ⇔ p · a · ¬q ≤ 0 , (1)
[a · b]p = [a][b]p . (2)

Axiom (1) means that all p-worlds satisfy [a]q iff there is no a-connection
from p-worlds to ¬q-worlds. The diamond is just the de Morgan dual of box:

〈a〉p =df ¬[a]¬p .

A (left/weak) semiring with box (and hence diamond) is called modal.
The operators are unique if they exist. They coincide with the corresponding

ones in PDL; the difference is that in PDL the first arguments a of the box do not
carry algebraic structure themselves. Moreover, box is the abstract counterpart
of the wlp predicate transformer [10].

An equivalent purely equational axiomatisation via a domain operator has
been presented in [7] for the case of a full semiring. In [18] it has been shown
that it carries over to left semirings.

We list some useful properties. De Morgan duality gives the swapping rule

〈a〉[b]p ≤ [c]p ⇔ 〈c〉p ≤ [a]〈b〉p . (3)

Box is anti-disjunctive and diamond is disjunctive in the first argument:

[a + b]p = [a]p∧[b]p , 〈a + b〉p = 〈a〉p∨〈b〉p . (4)

Hence box is antitone and diamond is isotone in the first argument: if a ≤ b then
[a]p ≥ [b]p , 〈a〉p ≤ 〈b〉p .

To understand the antitony, recall that the implication order a ≤ b expresses
that b offers at least as much transition possibilities as a. Now, if more choices
are offered, one can only guarantee less, which is expressed by [b]p ≤ [a]p.

Moreover, both operators are isotone in their second arguments: if p ≤ q then

[a]p ≤ [a]q , 〈a〉p ≤ 〈a〉q .

By (2), also diamond is well-behaved w.r.t. composition:

〈a · b〉p = 〈a〉〈b〉p . (5)

Finally, for test elements box and diamond can be given explicitly:

[p]q = p → q , 〈p〉q = p∧ q . (6)



This agrees with the behaviour of the test operation p? in PDL.
We conclude this section by describing finite iteration. A (left/weak) Kleene

algebra [15] is a structure (S, +, 0, ·, 1,∗ ) such that the reduct (S, +, 0, ·, 1) is a
(left/weak) semiring and the star ∗ satisfies the left unfold and induction axioms

1 + a · a∗ ≤ a∗ , b + a · c ≤ c ⇒ a∗ · b ≤ c .

In the relation semiring, a∗ is the reflexive-transitive closure of a, while a+ =df

a · a∗ is the transitive closure of a.
A (left/weak) Kleene algebra is modal when the underlying left/weak semir-

ing is. In this case the axioms entail box and diamond star and plus induction [7]:

q ≤ p∧[a]q ⇒ q ≤ [a∗]p , p∨〈a〉q ≤ q ⇒ 〈a∗〉p ≤ q (7)
q ≤ [a]p∧[a]q ⇒ q ≤ [a+]p , 〈a〉p∨〈a〉q ≤ q ⇒ 〈a+〉p ≤ q . (8)

Moreover, we have the PDL induction rules (see [20])

[a∗](p → [a]p) ≤ p → [a∗]p , 〈a∗〉 − 1 ≤ 〈a∗〉(〈a〉 − 1) . (9)

4 Knowledge Algebra

Using our modal operators we can now model common knowledge over a left
semiring S as follows. Assume a finite set of agents, represented by an index
set I = {1, . . . , n}, each with an accessibility element ai ∈ S. An agent group
is a subset G ⊆ I. We will introduce two operators for expressing common
knowledge:

– EGp : everyone in group G knows p
– CGp : everyone knows that everyone knows that . . . that p.
Using antidisjunctivity (4) of box we calculate, for G = {k1, . . . , km},

EGp = Kk1p∧ · · · ∧Kkm
p = [ak1 ]p∧ · · · ∧[akm

]p
= [ak1 +· · ·+akm

]p = [aG]p ,

where aG =df ak1 + · · ·+ akm
.

Likewise, using the composition law (5) and again antidisjunctivity (4) of
box, we obtain (semi-formally, since general infinite products and sums need not
exist in the underlying semiring)

CGp = EGp ∧ EGEGp ∧ EGEGEGp ∧ · · ·
= [aG]p ∧ [aG][aG]p ∧ [aG][aG][aG]p ∧ · · ·
= [aG]p ∧ [aG · aG]p ∧ [aG · aG · aG]p ∧ · · ·
= [aG + a2

G + a3
G · · · ]p ,

and can define CGp =df [a+
G]p if the underlying semiring is a Kleene algebra.

In this way we have obtained an algebraic counterpart of the multiagent logic
KT45n (see e.g. [13]) and dynamic epistemic logic [3].



As immediate consequences of antitony of box in its first argument we get,
since akj

≤ aG ≤ a+
G,

CGp ≤ EGp ≤ Kkj
p CGp ≤ CGKkj

p . (10)

If all Ki are reflexive then so is EG and hence CG coincides with [a∗G]. There-
fore the general induction rule (9) specialises to the knowledge induction rule

CG(p → EGp) ≤ p → CGp .

As another application of the algebra we show that negative introspection is
preserved under transitive closure (for positive introspection this is trivial, since
that property is equivalent to transitivity, so that transitive closure does not add
anything). To this end we use the equivalent formulations

NI(a) ⇔df ∀ p . 〈a〉[a]p ≤ [a]p ⇔ ∀ p . 〈a〉p ≤ [a]〈a〉p

of that property to ease use of the above-mentioned (co-)induction rules.

Lemma 4.1 NI(a) ⇒ NI(a+).

Proof . 〈a+〉[a+]p ≤ 〈a+〉p
⇐ 〈a〉[a+]p∨〈a〉[a+]p ≤ 〈a+〉p induction (8)
⇔ 〈a〉[a+]p ≤ 〈a+〉p idempotence of ∨
⇔ 〈a+〉p ≤ [a]〈a+〉p swapping rule (3)
⇐ 〈a〉p∨〈a〉[a]〈a+〉p ≤ [a]〈a+〉p induction (8)
⇔ 〈a〉p ≤ [a]〈a+〉p ∧ 〈a〉[a]〈a+〉p ≤ [a]〈a+〉p

The second of these conjuncts holds by NI(a). For the first one we continue
〈a〉p ≤ [a]〈a+〉p

⇔ 〈a〉p ≤ [a]〈a〉〈a∗〉p definition of a+ and composition rule (5)
⇐ NI(a) ∧ p ≤ 〈a∗〉p ,

and we are done, since the second conjunct follows from 1 ≤ a∗ and 〈1〉p = p. ut
The above proof could be compacted even more by using a point-free style;

e.g., NI(a) is equivalent to 〈a〉 ◦ [a] ≤ 〈a〉 where ≤ is now the pointwise lifting of
the semiring order to predicate transformers.

5 Solving the Wise Men Puzzle

For the results of the present section we assume the underlying left semiring S
to be weak. Then we have the following additional properties:

– Box is conjunctive and diamond is disjunctive:

[a](p∧ q) = [a]p∧[a]q , 〈a〉(p∨ q) = 〈a〉p∨〈a〉q .

– Hence box is normal and diamond is co-normal:

[a](p → q) ≤ [a]p → [a]q , 〈a〉p− 〈a〉q ≤ 〈a〉(p− q) . (11)



– If S is even full then box is co-strict and diamond is strict:

[a]1 = 1 , 〈a〉0 = 0 .

Let us now use the algebra to solve the Wise Men Puzzle. A basic inference
is the Galois connection (shunting rule) p∧ q ≤ r ⇔ p ≤ q → r with the special
case q ≤ r ⇔ 1 ≤ q → r. Let us define, as usual, |= p ⇔df 1 ≤ p. Then the
previous equivalence reads |= q → r ⇔ q ≤ r. Our second reasoning principle
is isotony: If f is an isotone function from tests to tests then p ≤ q ∧ |= f(p) ⇒
|= f(q). Since we have defined E and C as boxes, this principle applies to them
without the need for a separate proof.

Let us first repeat the assumptions about the puzzle from Section 2:

|= C(ri → Kjri) |= C(¬ri → Kj¬ri) (j < i)
|= C(r1 ∨ r2 ∨ r3)
|= C(¬Kiri) |= C(¬Ki¬ri) (i = 1, 2)

Before using isotony we take the contrapositives of the first two clauses to
have simple literals right of → and rewrite the third one into an implication; the
last two remain unchanged:

(a) |= C(¬Kjri → ¬ri) (b) |= C(¬Kj¬ri → ri) (c) |= C(¬r2 ∧¬r3 → r1)
(12)

Now, assuming that all Ki and hence E and C are reflexive, we get

C(¬r2 ∧¬r3 → r1)
≤ K1(¬r2 ∧¬r3 → r1) use of common knowledge (10)
≤ K1(¬r2 ∧¬r3) → K1r1 normality (11)
= ¬K1r1 → ¬K1(¬r2 ∧¬r3) contraposition
= ¬K1r1 → (¬K1¬r2 ∨¬K1¬r3) conjunctivity, de Morgan
≤ ¬K1r1 → (r2 ∨ r3) since (12(b)) and reflexivity

show ¬Kj¬ri ≤ ri

Hence we obtain

C(r1 ∨ r2 ∨ r3)∧C(¬K1r1)
≤ CK1(r1 ∨ r2 ∨ r3)∧C(¬K1r1) use of common knowledge (10)
≤ C(¬K1r1 → (r2 ∨ r3))∧C(¬K1r1) previous derivation
≤ C(r2 ∨ r3) normality (11) and modus ponens

Analogously,

C(r2 ∨ r3)∧C(¬K2r2) ≤ C(r3) ≤ K3(r3) ,

and we are done.
This latter step also shows that the solution easily generalises to n instead of

three wise men. In fact, one can give a closed form of the generalised argument:
for agent groups G and H ⊆ G,

C(∨
j∈G

rj) ∧ C(∧
i∈H

¬Kiri)∧C(∧
i∈H

∧
j∈G−H

rj → Kirj) ≤ C( ∨
j∈G−H

rj) .



Note that we have only used reflexivity of the knowledge modalities in Sec-
tion 2, but neither positive nor negative introspection. Also, it was not necessary
to use full C; the whole derivation goes through when E is used instead. Therefore
the solution also applies to modal systems other than epistemic logic.

This argument can be re-used for puzzles with a similar structure, like the
muddy children [13] or the unexpected hanging paradox [26], because these puz-
zles have a “purely logical”structure. Contrarily, the puzzle about Mr. S and
Mr. P [17] involves a lot of domain knowledge about arithmetic in addition to
mutual knowledge of the agents about each other; therefore the abstract alge-
braic reasoning will cover only the overall structure of the solution, whereas the
arithmetic details will take place within the test set of a particular semiring.

6 Preferences and Their Upgrade

Let us briefly show how agent algebra can be employed to reason about other
aspects of knowledge and belief. Some agent logics allow expressing preferences
between possible worlds, see e.g. [4].

Since we are completely free in choosing our accessibility elements, we can
also include these. To this end we equip each agent i with his own preference
relation �i. The intention is that [�i]p holds in a world w iff p holds in all worlds
that agent i prefers over w under �i.

Usually one requires that �i be a preorder, modally expressed by

[�i]p ≤ p , [�i]p ≤ [�i][�i]p .

Antisymmetry is not required: if w1 �i w2 ∧ w2 �i w1 then agent i is indifferent
about w1 and w2 .

Using the preference concept, one can e.g. model regret [4]: the formula

Ki¬p ∧ 〈�i〉p

expresses that although agent i knows that p is not true, he would still prefer a
world where it would be.

A preference agent system can be updated in various ways. In belief revision
agents may discard or add links to epistemic neighbour worlds. We model the
two possibilities presented in [4] in our agent algebra.

In a public announcement of property p, denoted !p, one makes sure that all
agents now know p. To this end, all links between p and ¬p worlds are removed.
In [4] this operator is explained in two ways:

– Satisfaction of [!p]q in a frame is defined as satisfaction of q in a modified
frame.

– The semantics is also given in a PDL-like fashion, making the new accessi-
bility relation explicit in the first argument of box.

We can represent the latter approach directly in our setting by defining the
modification of access element ai as

ai!p = p · ai · p + ¬p · ai · ¬p .



The advantage is that we now can just use the same algebraic laws as before
and do not need to invent special inference rules for this operator.

Another change operation is preference upgrade by suggesting that p be ob-
served. This affects the preference relations, not the accessibilities:

p#�i =df p ·�i ·p + ¬p ·�i .

Now agent i no longer prefers ¬p worlds over p ones.
In the literature there are many more logics dealing with knowledge or belief

revision. We are convinced that a large portion of these can be treated uniformly
in the setting of modal semirings; for another approach along our lines see [24].

Part II: Games and Predicate Transformers

In this part we return to the case of general left semirings.

7 Games and Their Algebra

The algebraic description of two-player games dates back at least to [22]; for a
more recent survey see [23]. The idea is to use a predicate transformer semantics
that is variant of (a µ-calculus-like enrichment of) PDL.

The starting point is, however, a slightly different relational model. It does
not use relations of type P(W ×W ), where the set of worlds W consists of the
game positions and P is the power set operator, but rather of type P(W×P(W )).
A pair (s,X) in Relation R models that the player whose turn it is has a strategy
to move from starting position s into a position in set X. To make this well-
defined, R has to be ⊆-isotone in its second argument:

(s,X) ∈ R ∧ X ⊆ Y ⇒ (s, Y ) ∈ R .

Now again, sets of worlds are identified with predicates over worlds. As pointed
out in [22], such a relation R induces an isotone predicate transformer ρ(R) :
P(W ) → P(W ) via ρ(R)(X) =df {s | (s,X) ∈ R}. It is easy to check that the
set of ⊆-isotone relations is isomorphic to that of isotone predicate transformers
(both ordered by relational inclusion).

The basic operations to build up more complex games from atomic ones
(such as single moves) are choice, sequential composition, finite iteration and
tests, which are also basic operations found in left semirings; also the axioms
(see [23]) are exactly those for left semirings. There are no constants 0 and
1; but they could easily be added by the standard extension of semigroups to
monoids. The only operation particular to game construction is dualisation in
which the two players exchange their roles.

As games can be viewed as isotone predicate transformers, we study these
from a bit more abstract viewpoint in the next section. Based on that we will
show that they form a modal left semiring with dualisation, i.e., an abstract
algebraic model of games. We will also show how to add finite iteration.



8 Predicate Transformers

For our purposes, all that matters about P(W ) is its structure as a Boolean
algebra. Therefore, more abstractly, a predicate transformer is a function f :
B → B, where B is an arbitrary Boolean algebra. As in Section 3 we denote
the infimum operator by ∧, the supremum operator by ∨ and complementation
by ¬, the least element by 0 and the greatest one by 1. If p, q ∈ P(W ) and f
satisfies p ≤ q ⇒ f(p) ≤ f(q) then f is isotone. It is disjunctive if f(p∨ q) =
f(p)∨ f(q) and conjunctive if f(p∧ q) = f(p)∧ f(q). It is strict if f(0) = 0
and co-strict if f(1) = 1. Finally, id is the identity transformer and ◦ denotes
function composition.

Let PT(B), ISO(B), CON(B) and DIS(B) be the set of all, of isotone, of
conjunctive and of disjunctive predicate transformers over B. It is well known
that conjunctivity and disjunctivity imply isotony. Under the pointwise ordering
f ≤ g ⇔df ∀ p . f(p) ≤ g(p), PT forms a lattice where the supremum f ∨ g and
infimum f ∧ g of f and g are the pointwise liftings of ∨ and ∧, resp.:

(f ∨ g)(p) =df f(p)∨ g(p) , (f ∧ g)(p) =df f(p)∧ g(p) .

The least and greatest elements of PT(B) (and ISO(B) and DIS(B)) are the
constant functions

0(p) =df 0 , >(p) =df 1 ,

respectively. Note that 0 and > both are left zeros w.r.t. ◦. The substructure
(ISO,∨,0, ◦, id) is a left semiring; the substructure (DIS(B),∨,0, ◦, id) is even
a weak semiring. Likewise, the structure (CON(B),∧,>, ◦, id) is a weak semi-
ring isomorphic to DIS(B), but with the mirror ordering. The isomorphism is
provided by the duality operator d : PT(B) → PT(B), defined by

fd(p) =df ¬f(¬p).

If B = test(S) for some weak semiring S then the modal operator 〈 〉 provides
a weak semiring homomorphism from S into DIS(B).

If B is a complete Boolean algebra then PT(B) is a complete lattice with
ISO(B), DIS(B) and CON(B) as complete sublattices. Hence we can extend
ISO(B) and DIS(B) by a star operator via a least fixpoint definition:

f∗ =df µ(λg . id ∨ f ◦ g) ,

where µ is the least-fixpoint operator. It has been shown in [18] that this satisfies
the star laws. By passing to the mirror ordering, one sees that also the subalgebra
of conjunctive predicate transformers can be made into a left Kleene algebra;
this is essentially the approach taken in [25] (except for infinite iteration).

A useful consequence of the star induction rule is a corresponding one for the
dual of a star, generalising (7):

h ≤ g ∧ fd ◦ h ⇒ h ≤ (f∗)d ◦ g . (13)



Let us now connect this to game algebra. For a predicate transformer g we
find in [22] the following two definitions concerning iterations (we use different
star and brackets here to distinguish Parikh’s notation from ours):

(a) <g?>p =df µ(λy . x∨ g(y)) , (b) [[[g?]]]p =df ν(λy . x∧ g(y)) , (14)

where ν is the greatest-fixpoint operator. Hence <g?> in Parikh’s notation co-
incides with g∗ in ours. The defining functions of <g?> and [[[g?]]] are de Morgan
duals of each other; therefore we can use the standard law

νf = ¬µfd (15)

to calculate
[[[g?]]](p)

= ν(λy . p∧ g(y)) definition (14(b))
= ¬µ(λy . p∧ g(y))d by (15)
= ¬µ(λy .¬(p∧ g(¬y))) definition dual
= ¬µ(λy .¬p∨¬g(¬y))) de Morgan
= ¬µ(λy .¬p∨ gd(y)) definition dual
= ¬(gd)∗(¬p) definition (14(a))
= ((gd)∗)d(p) . definition dual

Hence [[[g?]]] coincides with ((gd)∗)d. This shows that we can fully represent game
algebra with finite iteration in modal left Kleene algebras; the standard star
axioms for iteration suffice. If desired, one could also axiomatise the dual of
the star using the dualised unfold axiom (f∗)d ≤ 1∧ fd ◦ (f∗)d and (13) as the
induction axiom.

Let us finally set up the connection with termination analysis. In [22] Parikh
states that for concrete access relation R the predicate <[R]?>false characterises
the worlds from which no infinite access paths emanate. Plugging in the defini-
tions for a general access element a we obtain

<[a]?>0 = µ(λy . [a]y) .

This coincides with the halting predicate of the propositional µ-calculus [11]; in
the semiring setting it and its complement have been termed the convergence
and divergence of a and used extensively in [9]. They need not exist in arbitrary
modal left semirings; rather they have to be axiomatised by the standard unfold
and induction/co-induction laws for least and greatest fixpoints.

9 Modal Semirings of Predicate Transformers and
Demonic Refinement Algebra

Although we have now seen a somewhat more abstract predicate transformer
model of game algebra, we will now take one step further and present a modal left
Kleene algebra of isotone predicate transformers. This will link game semantics
directly with refinement algebra.

First we characterise the tests in the set ISO(B); the proof of the following
lemma can be found in the Appendix.



Lemma 9.1

1. f ∈ test(ISO(B)) ⇔ f(p) = p∧ f(1).
2. If B = test(S) for some left semiring S then test(ISO(B)) = {〈p〉 | p ∈ B}.

Because of 1. and (6) we will, for convenience, denote mappings of the form
λq . p∧ q by 〈p〉 also in the general case of ISO(B). The proof shows also that

¬〈p〉 = 〈¬p〉 .

Now we are ready to enrich ISO(B) by box and diamond operators. To this
end we work out what the right hand side of box axiom (1) means there:

〈p〉 ◦ f ◦ ¬〈q〉 ≤ 0 ⇔ ∀ r : p∧ f(¬q ∧ r) ≤ 0 ⇔ p∧ f(¬q ∧ 1) ≤ 0
⇔ p ≤ ¬f(¬q) ⇔ p ≤ fd(q) ;

the second equivalence holds by isotony of f . So the only possible choice is

[f ]〈q〉 =df 〈fd(q)〉 , 〈f〉〈q〉 =df 〈f(q)〉 .

Let us check that this satisfies the second box axiom (2) as well:

[f ◦ g]〈q〉 = 〈(f ◦ g)d(q)〉 = 〈(fd ◦ g)d(q)〉
= 〈(fd(gd(q))〉 = [f ]〈gd(q)〉 = [f ][g]〈q〉 .

Hence box and diamond are well defined in ISO(B). Altogether we have

Theorem 9.2 ISO(B) forms a modal left Kleene algebra with dualisation.

This rounds off the picture in that now also the test operations of game al-
gebra and PDL have become first-class citizens in predicate transformer algebra.
Moreover, we can enrich that algebra by a domain operator which will provide
the announced connection to refinement algebra.

Generally, in a modal left semiring the domain operator [7] p: S → test(S)
is given by pa =df 〈a〉1. This characterises the set of starting worlds of access
element a. For ISO(B) this works out to pf = 〈f(1)〉. This expression coincides
with that for the termination operator τf in the concrete model of demonic
refinement algebra (DRA) given at the end of [25]. That algebra is an axiomatic
algebraic system for dealing with predicate transformers under a demonic view
of non-determinacy.

Besides τ (which is characterised by the domain axioms of [7]) DRA has
an enabledness operator ε, defined not in terms of tests but by dual axioms in
terms of guards or assumptions. These take the form ¬p · >+ 1 where > is the
greatest element (which always exists in DRA). The intuitive meaning of tests
and assumptions is briefly elaborated in the Appendix.

Let us see what assumptions (also called guards) are in ISO(B):

(〈¬p〉 ◦ >∨ id)(q) = 〈¬p〉(>(q))∨ q = 〈¬p〉1∨ q = ¬p∨ q = [p]q .



Written in point-free style, 〈¬p〉 ◦ >∨ id = [p]. So in ISO(B) the assumptions
are the de Morgan duals of the tests.

For the dual of the domain we obtain

(pf)d = 〈f(1)〉d = [f(1)] = [f(¬0)] = [¬fd(0)] . (16)

This latter expression coincides with that for ε(fd) in the mentioned concrete
model of [25], so that by (gd)d = g we have the equation τf = (ε(fd))d. Finally,
it should be noted that the rightmost expression in (16) also corresponds to the
guard ¬wp(a, false) of [21], while that for the τ coincides with the termination
predicate wp(a, true) there.

10 Conclusion and Outlook

We have shown that modal semirings and Kleene algebras form a comprehensive
and flexible framework for handling various modal logics in a uniform algebraic
fashion. We think therefore that the design of new modal systems geared toward
special applications may benefit from using this algebraic approach.

One topic we have omitted from the present paper is that of infinite iteration.
This has been treated in [18]. However, there is a restriction. Although infinite
iteration can be defined as fω =df νg . f ◦ g in ISO(B) over a complete Boolean
algebra B, this does not imply the usual omega coinduction law c ≤ a · c + b ⇒
c ≤ aω + a∗ · b there. It only does so in DIS(B). However, disjunctivity does not
seem to be a natural requirement for games [23].

Our future work will concern further applications, e.g. extending the work on
characterisation of winning strategies in [2] and of winning and losing positions
in [8], but also partial mechanisation of the axiomatic system. First steps into
the latter direction using the tools Prover9 and Mace4 have been taken by P.
Höfner and G. Struth at Sheffield[12].
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18. B. Möller: Lazy Kleene algebra. In D. Kozen (ed.): Mathematics of Program Con-
struction. LNCS 3125. Springer 2004, 252-273. Revised Version: B. Möller: Kleene
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Appendix

First we prove an auxiliary lemma about relative complements.

Lemma A Assume in a Boolean algebra r ≤ p∧ q ∧ s ≤ p∧¬q ∧ r ∨ s = p.
Then r = p∧ q ∧ s = p∧¬q.

Proof. Observe that s∧ q ≤ p∧¬q ∧ q = p∧ 0 = 0, i.e., s∧ q = 0. Hence
p∧ q = (r ∨ s)∧ q = r ∧ q ∨ s∧ q = r ∧ q ≤ r, which shows r = p∧ q. Symmetrical
reasoning applies to s. ut

Now we can give the

Proof of Lemma 9.1:

1. (⇐) By definition, f ≤ id . A straightforward calculation shows that the
complement of f relative to id is g(p) =df p∧¬f(1).
(⇒) Let g ∈ ISO(B) be the complement of f ≤ id relative to id , i.e.,
f ∨ g = id and f ∧ g = 0. First, f ≤ id means f(p) ≤ p. Second, f ∈ ISO(B)
means f(p) ≤ f(1). Hence f(p) ≤ p∧ f(1). From f ∨ g = id we conclude
g(1) = ¬f(1) and hence, by symmetrical reasoning, g(p) ≤ p∧¬f(1). Since

p∧ f(1)∨ p∧¬f(1) = p∧(f(1)∨¬f(1)) = p∧ 1 = p ,
p∧ f(1)∧ p∧¬f(1) = p∧ f(1)∧¬f(1) = p∧ 0 = 0 ,

we obtain f(p) = p∧ f(1) and g(p) = p∧¬f(1) by Lemma A.
2. By (6) and 1. we have for f ∈ test(ISO(B)) that f = 〈f(1)〉, which shows

(⊆). The reverse inclusion is immediate from isotony of 〈p〉. ut

We conclude by explaining the relation between tests and assumptions. We
first introduce a test-based conditional as if p then a else b ⇔df p · a + ¬p · b.
With its help assertions and assumptions can be defined as

assert p =df if p then 1 else 0 assume p =df if p then 1 else > ,

the latter provided S has a greatest element >. In an operational view, both
constructs check whether p holds at the time of their execution. If so, they simply
proceed (remember that 1 stands for the null action). If not, the assertion aborts
while the assumption may do anything (> means the set of all possible choices,
so we have the behaviour ex falso quodlibet).

Both expressions can be simplified. For assertions we obtain

assert p = p · 1 + ¬p · 0 = p + 0 = 0 .

Hence the construct assert p could be omitted; we have introduced it just for
symmetry. For assumptions we get, since ¬p · 1 ≤ ¬p · >,

assume p = p · 1 + ¬p · > = p · 1 + ¬p · 1 + ¬p · >
= (p + ¬p) · 1 + ¬p · > = 1 + ¬p · > ,

which is the expression given in Section 9.


