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Abstract. For a class of linear switched systems in continuous time a con-
trollability condition implies that state feedbacks allow to achieve almost sure
stabilization with arbitrary exponential decay rates. This is based on the Mul-
tiplicative Ergodic Theorem applied to an associated system in discrete time.
This result is related to the stabilizability problem for linear persistently ex-
cited systems.

1. Introduction

Let N be a positive integer and consider the family of N control systems

(1.1) _xi(t) = Aixi(t) + �i(t)Biui(t); i 2 f1; : : : ; Ng;
where, for i 2 f1; : : : ; Ng, xi(t) 2 Rdi is the state of the subsystem i, ui(t) 2 Rmi is
the control input of the subsystem i, di andmi are non-negative integers, Ai and Bi
are matrices with real entries and appropriate dimensions, and �i : R+ ! f0; 1g is a
switching signal determining the activity of the control input on the i-th subsystem.
We assume that at each time the control input is active in exactly one subsystem,
i.e.,

(1.2)
XN

i=1
�i(t) = 1 for all t 2 R+:

This paper analyzes the stabilizability of all subsystems in (1.1) by linear feedback
laws ui(t) = Kixi(t) under randomly generated switching signals �1; : : : ; �N sat-
isfying (1.2), and the maximal almost sure exponential decay rates that can be
achieved with such feedbacks.
System (1.1) is a switched control system, where the switching signals �1; : : : ; �N

a¤ect the activity of the control input. Switched systems have been extensively
studied in the literature, both for deterministic switching signals, such as in the
monographs Liberzon [26] and Sun and Ge [34] and the surveys Lin and Antsaklis
[27], Margaliot [28], and Shorten, Wirth, Mason, Wul¤, and King [32], and for
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random switching signals, such as in the monographs Costa, Fragoso, and Todorov
[13] and Davis [15], and papers such as Benaïm, Le Borgne, Malrieu, and Zitt [3],
Cloez and Hairer [12], and Guyon, Iovle¤, and Yao [21]. Such systems are useful
models in several applications, ranging from air tra¢c control, electronic circuits,
and automotive engines to chemical processes and population models in biology.
An important motivation for our work comes from the theory of persistently

excited control systems, in which one considers systems of the form

(1.3) _x(t) = Ax(t) + �(t)Bu(t);

with x(t) 2 Rd, u(t) 2 Rm, A and B matrices with real entries and appropri-
ate dimensions, and � a (T; �)-persistently exciting (PE) signal for some positive
constants T � �, i.e., a signal � 2 L1(R+; [0; 1]) satisfying, for every t � 0,

(1.4)
Z t+T

t

�(s) ds

(cf. Chaillet, Chitour, Loría, and Sigalotti [5], Chitour, Colonius, and Sigalotti [9],
Chitour, Mazanti, and Sigalotti [10], Chitour and Sigalotti [11], Srikant and Akella
[33]). Notice that, when � takes its values in f0; 1g, (1.3) can be seen as a particular
case of (1.1) by adding a trivial subsystem (cf. Corollary 5.2). The stabilizability
problem for (1.3) consists in investigating if, given A, B, T , and �, one can �nd a
linear feedback u(t) = Kx(t) which stabilizes (1.3) exponentially for every (T; �)-
persistently exciting signal �. This problem has been considered in [11], where the
authors provide su¢cient conditions for stabilizability and prove that, in contrast to
the situation for autonomous linear control systems, controllability does not imply
stabilizability with arbitrary exponential decay rates, even if one considers only
persistently exciting signals taking values in f0; 1g. The main result of our paper,
Theorem 5.1, implies that, if one requires the feedback to stabilize (1.3) for almost
every randomly generated signal � (with respect to the random model described in
Section 2), then one can retrieve stabilizability with arbitrary decay rates, giving
thus a positive answer to an open problem stated by Chitour and Sigalotti (personal
communication).
Some works in the literature have addressed the stabilization of systems sim-

ilar to (1.3) with randomly generated signals �, such as Diwadkar, Dasgupta, and
Vaidya [16] and Diwadkar and Vaidya [17]. Both references provide criteria for the
exponential mean square stabilization of an analogue of (1.3) in discrete time, with
an additional non-linear term in [16], the signal � being a sequence of independent
identically distributed Bernoulli random variables in f0; 1g in [16] and a sequence of
real-valued square-integrable random variables with the same expected value and
variance in [17]. With respect to the setting of the present paper, apart from the
fact that we restrict our attention to more general systems under the form (1.1)
and in continuous time, a major di¤erence is that we are interested here not only in
stabilizability, but also in obtaining arbitrarily large almost sure exponential decay
rates.
In this paper, in order to study the stabilizability by linear feedback laws of

(1.1), we rewrite it as

(1.5) _x(t) = bAx(t) + bB�(t)u�(t)(t);
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where
(1.6)

x(t) =

0BBBBBBBB@

x1(t)
x2(t)
...

xi(t)
...

xN (t)

1CCCCCCCCA
2 Rd; bA =

0BBBBBBBB@

A1 0 � � � 0 � � � 0
0 A2 � � � 0 � � � 0
...

...
. . .

...
. . .

...
0 0 � � � Ai � � � 0
...

...
. . .

...
. . .

...
0 0 � � � 0 � � � AN

1CCCCCCCCA
; bBi =

0BBBBBBBB@

0
0
...
Bi
...
0

1CCCCCCCCA
;

d = d1+� � �+dN , and � : R+ ! f1; : : : ; Ng is de�ned from �1; : : : ; �N : R+ ! f0; 1g
by setting �(t) to be the unique index i 2 f1; : : : ; Ng such that �i(t) = 1. We then
look for linear feedback laws of the form ui(t) = KiPix, where Pi 2Mdi;d(R) is the
matrix associated with the canonical projection onto the i-th factor of the product
Rd = Rd1 � � � � � RdN . With such feedback laws, (1.5) reads

_x(t) =
� bA+ bB�(t)K�(t)P�(t)

�
x(t):

Before considering the stabilizability of (1.5), we begin the paper by the stability
analysis of the linear switched system with random switching

(1.7) _x(t) = L�(t)x(t);

where L1; : : : ; LN 2Md(R) and � : R+ ! f1; : : : ; Ng is as before. We characterize
its exponential behavior through its Lyapunov exponents, using the classical Mul-
tiplicative Ergodic Theorem due to Oseledets (cf. Arnold [1]). It turns out that
a direct application of this theorem to systems in continuous time with random
switching is not feasible, since in general they do not de�ne random dynamical
systems in the sense of [1] (cf. Example 2.4). Instead, we apply the Multiplicative
Ergodic Theorem to an associated system in discrete time and then deduce res-
ults for the Lyapunov exponents of the continuous-time system (1.7). We remark
that Lyapunov exponents for continuous-time systems with random switching are
also considered by Li, Chen, Lam, and Mao in [25], but under assumptions on the
random switching signal � guaranteeing that the corresponding switched system
is a random dynamical system, which allows the direct use of the Multiplicative
Ergodic Theorem in continuous time.
The considered linear equations with random switching (1.7) form Piecewise De-

terministic Markov Processes (PDMP). These processes were introduced in Davis
[14] and have since been extensively studied in the literature. For an analysis of
their invariant measures, in particular, their supports, cf. Bakhtin and Hurth [2] and
Benaïm, Le Borgne, Malrieu, and Zitt [3], also for further references. An import-
ant particular case which also attracts much research interest is that of Markovian
jump linear systems (MJLS), in which one assumes that the random switching sig-
nal is generated by a continuous-time Markov chain. For more details, we refer
to Bolzern, Colaneri, and De Nicolao [4], Fang and Loparo [18], and to the mono-
graph Costa, Fragoso, and Todorov [13]. The case of nonlinear switched systems
with random switching signals has also been considered in the literature, cf. e.g.
Chatterjee and Liberzon [6], where multiple Lyapunov functions are used to derive
a stability criterion under some slow switching condition that contains as a partic-
ular case switching signals coming from continuous-time Markov chains. We also
remark that several di¤erent notions of stability for systems with random switching
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have been used in the literature; see, e.g., Feng, Loparo, Ji, and Chizeck [19] for a
comparison between the usual notions in the context of MJLS. The one considered
in this paper is that of almost sure stability.
The contents of this paper is as follows:
Section 2 constructs the random signals � in (1.5) and (1.7). Example 2.4 shows

that, in general, (1.7) endowed with such random switching signals does not de�ne a
random dynamical system, and Remark 2.5 discusses the relation to previous works
in the literature. Section 3 introduces an associated system in discrete time, which
de�nes a random dynamical system in discrete time. We discuss relations between
the Lyapunov exponents for continuous- and discrete-time systems and state the
conclusions we obtain from the Multiplicative Ergodic Theorem. Section 4 derives
a formula for the maximal Lyapunov exponent, which is the main ingredient in the
stability analysis of (1.7). Finally, Section 5 presents the main result of this paper,
namely that almost sure stabilization can be achieved for (1.1) with arbitrary decay
rate under a controllability hypothesis.

Notation: The sets N� and N are used to denote the positive and nonnegative
integers, respectively. For N 2 N� we let N := f1; :::; Ng and R+ := [0;1);R�+ :=
(0;1).

2. Random model for the switching signal

Let N; d 2 N� and L1; : : : ; LN 2Md(R) and consider system (1.7) with a switch-
ing signal � belonging to the set P de�ned by

P := f� : R+ ! N piecewise constant and right continuousg :

Recall that a piecewise constant function has only �nitely many discontinuity points
on any bounded interval. Given an initial condition x0 2 Rd and � 2 P, system
(1.7) admits a unique solution de�ned on R+, which we denote by 'c(�;x0; �).
Furthermore, for i 2 N , we denote by �i the linear �ow de�ned by the matrix Li,
i.e., �it = e

Lit for every t 2 R.
In order to describe the random model for the switching signal �, let us �rst

introduce some notation. Given a measurable space X, we denote by Pr(X) the
set of all probability measures on X. The set N is assumed to be endowed with
the �-algebra P(N) containing all subsets of N , and R+ and R�+ are assumed to
be endowed with their respective Borel �-algebras, denoted for simplicity by B in
both cases. Let 
 = (N�R+)N

�
and endow 
 with the standard product �-algebra

F = (P(N)�B)N� (see, e.g., Halmos [23, §38, §49]).
Let M 2 MN (R) be an irreducible right-stochastic matrix and p 2 RN be its

unique invariant probability vector (regarded here as a row vector). For i 2 N , let
i 2 Pr(R�+) and assume that �i has �nite expectation �i =

R
R�+
td�i(t) 2 (0;1)

(we also regard �i as a Borel probability measure on R+ whenever necessary).
Consider the time-homogeneous discrete-time Markov process in N � R+ whose
transition probabilities P : N �R+ ! Pr(N �R+) and initial law �1 2 Pr(N �R+)
are given by

P (i; t)(fjg � U) =Mij�j(U); 8i; j 2 N; 8t 2 R+; 8U 2 B;(2.1)

�1(fjg � U) = pj�j(U); 8j 2 N; 8U 2 B:(2.2)
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Notice that the associated transition operator T : Pr(N � R+) ! Pr(N � R+) of
this process is given by

(2.3) T�(fjg � U) =
NX
i=1

(fig � R+)Mij�j(U); 8j 2 N; 8U 2 B;

and it induces a measure P 2 Pr(
) de�ned, for n 2 N�, i1; : : : ; in 2 N , and
U1; : : : ; Un 2 B, by

(2.4)
P
�
(fi1g � U1)� (fi2g � U2)� � � � � (fing � Un)� (N � R+)N

�nn
�

= pi1�i1(U1)Mi1i2�i2(U2) � � �Min�1in�in(Un):

(For the de�nition of a discrete-time Markov process in an uncountable set and its
transition probability, initial law, and transition operator, we refer to Hairer [22]
and Meyn and Tweedie [29, Chapter 3].)
To construct a random switching signal � from a certain ! = (in; tn)

1
n=1 2 
,

we regard (in)1n=1 as the sequence of states taken by � and tn as the time spent in
the state in, according to the following de�nition.

De�nition 2.1. We de�ne the map ��� : 
! P as follows: for ! = (in; tn)1n=1 2 
,
we set s0 = 0, sn =

Pn
k=1 tk for n 2 N�, and ���(!)(t) = in for t 2 [sn�1; sn), n 2 N�.

This construction of ��� amounts to choosing a random initial state according to
the probability law de�ned by p and, at every switching event to a state i, choosing
a random time to stay in this state according to the law �i and a random next
state according to the probability law corresponding to the i-th row (Mij)

N
j=1 of

the matrix M . Notice that ���(!) is well-de�ned only when ! belongs to the subset
0 � 
 de�ned by

(2.5) 0 =

(
(in; tn)

1
n=1 2 
 j

1X
n=1

tn =1
)
:

One can easily prove by standard techniques that P(
0) = 1, yielding that ���(!) is
well-de�ned for almost every ! 2 
.

Remark 2.2. In general, since �1; : : : ; �N are arbitrary Borel probability measures
on R�+, ���(!) is not a continuous-time Markov process on N . On the other hand,
every time-homogeneous continuous-time Markov process on N can be written us-
ing the previous de�nitions by a suitable choice ofM , p, and �1; : : : ; �N . Our more
general framework covers some important practical cases that cannot be modeled
by continuous-time Markov processes. For instance, one can model a deterministic
switching signal which switches periodically between N subsystems with prescribed
times T1; : : : ; TN spent in each subsystem by choosing M as an appropriate irredu-
cible permutation matrix encoding the switching sequence and �i = �Ti for i 2 N ,
where �T denotes the Dirac measure at T . In practical implementations, the time
spent at a state i may not be exactly equal to Ti and some random switches may
occur, which can be modeled in our framework by perturbing the matrix M and
choosing �i, e.g., as an absolutely continuous measure concentrated around Ti.

In order to consider solutions of (1.7) for signals � chosen randomly according
to the previous construction, we use the solution map 'c of (1.7) to provide the
following de�nition.
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De�nition 2.3. We de�ne the continuous-time map

(2.6) 'rc :

(
R+ � Rd � 
0 ! Rd

(t;x0; !)! 'c(t;x0;���(!)):

For x0 2 Rd n f0g and almost every ! 2 
, we de�ne the Lyapunov exponent of the
continuous-time system (2.6) by

(2.7) �rc(x0; !) = lim sup
t!1

1

t
log k'rc(t;x0; !)k :

The Lyapunov exponent �rc is used to characterize the asymptotic behavior of
(2.6). A natural idea to obtain information on such Lyapunov exponents would be
to apply the continuous-time Multiplicative Ergodic Theorem (see, e.g., Arnold [1,
Theorem 3.4.1]). To do so, 'rc should de�ne a random dynamical system on Rd�
,
i.e., one would have to provide a metric dynamical system � on 
 � a measurable
dynamical system � : R+ � 
 ! 
 on (
;F;P) such that �t preserves P for every
t � 0 � in such a way that 'rc becomes a cocycle over �. However, in general the
natural choice for � to obtain the cocycle property for 'rc, namely the time shift,
does not de�ne such a measure preserving map, as shown in the following example.

Example 2.4. For t � 0, let �t : 
 ! 
 be de�ned for almost every ! 2 
 as
follows. For ! = (ij ; tj)1j=1 2 
0, set s0 = 0, sk =

Pk
j=1 tj for k 2 N�. Let n 2 N�

be the unique integer such that t 2 [sn�1; sn). We de�ne �t(!) = (i�j ; t
�
j )
1
j=1 by

i�j = in+j�1 for j 2 N�, t�1 = sn� t, t�j = tn+j�1 for j � 2. One immediately veri�es
that �t corresponds to the time shift in P, i.e., for every t; s � 0 and ! 2 
0, one
has

(�t!)(s) = ���(!)(t+ s):

However, the map �t in (
;F) does not preserve the measure P in general. Indeed,
suppose that �i = �1 for every i 2 N , where �1 denotes the Dirac measure at 1. In
particular, a set E 2 F has nonzero measure only if E contains a point (ij ; tj)1j=1
with tj = 1 for every j 2 N�. For r 2 N� and i1; : : : ; ir 2 N , let

E = (fi1g � f1g)� � � � � (firg � f1g)� (N � R+)N
�nr
:

Then P(E) = pi1Mi1i2 � � �Mir�1ir , and, for t � 0, ��1t (E) is the set of points
(i�j ; t

�
j )
1
j=1 such that, setting s

�
0 = 0, s

�
k =

Pk
j=1 t

�
j for k 2 N�, and n 2 N� the unique

integer such that t 2
�
s�n�1; s

�
n

�
, one has s�n�t = 1, t�n+j�1 = 1 for j = 2; : : : ; r, and

i�n+j�1 = ij for j 2 r. If t =2 N, then s�n = t+1 =2 N, and thus there exists j 2 n such
that t�j = 1. We have shown that, if t =2 N, then, for every ! = (i�j ; t�j )1j=1 2 ��1t (E),
there exists j 2 N� such that t�j = 1, and thus P(��1t (E)) = 0, hence �t does not
preserve the measure P.

Remark 2.5. For some particular choices of �1; : : : ; �N , the time-shift �t may
preserve P, in which case the continuous-time Multiplicative Ergodic Theorem can
be applied directly to (2.6). This special case falls in the framework of Li, Chen,
Lam, and Mao [25]. An important particular case where �t preserves P is when
1; : : : ; �N are chosen in such a way that ��� becomes a homogeneous continuous-time
Markov chain, which is the case treated, e.g., in Bolzern, Colaneri, and De Nicolao
[4], and in Fang and Loparo [18]. The results we provide in Section 4 generalize the
corresponding almost sure stability criteria from [4, 18, 25] to randomly switching
signals constructed according to De�nition 2.1.
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3. Associated discrete-time system and Lyapunov exponents

Example 2.4 shows that in general one cannot expect to obtain a random dynam-
ical system from 'rc in order to apply the continuous-time Multiplicative Ergodic
Theorem. Our strategy to study the exponential behavior of 'rc relies instead on
de�ning a suitable discrete-time map 'rd associated with 'rc, in such a way that
'rd does de�ne a discrete-time random dynamical system � to which the discrete-
time Multiplicative Ergodic Theorem can be applied � and that the exponential
behavior of 'rc and 'rd can be compared.

De�nition 3.1. For ! = (in; tn)1n=1 2 
, we set sn(!) =
Pn

k=1 tk for n 2 N� and
s0(!) = 0. We de�ne the discrete-time map 'rd by

(3.1) 'rd :

(
N� Rd � 
0 ! Rd

(n;x0; !)! 'rc(sn(!);x0; !):

For x0 2 Rd n f0g and almost every ! 2 
, we de�ne the Lyapunov exponent of the
discrete-time system (3.1) by

(3.2) �rd(x0; !) = lim sup
n!1

1

n
log k'rd(n;x0; !)k :

The map 'rd corresponds to regarding the continuous-time map 'rc only at the
switching times sn(!). It is the solution map of the random discrete-time equation

(3.3) xn = e
Lin tnxn�1:

System (3.3) is obtained from (1.7) by taking the values of a continuous-time solu-
tion at the discrete times sn(!). The sequence (sn(!))1n=0 contains all the discon-
tinuities of ���(!) and may also contain times with trivial jumps. The Lyapunov
exponent �rd characterizes the asymptotic behavior of 'rd.
Notice that the solution maps 'rc and 'rd satisfy, for every x0 2 Rd and almost

every ! = (in; tn)1n=1 2 
,

'rc(0;x0; !) = x0;

'rc(t;x0; !) = �
���(!)(sn(!))
t�sn(!) 'rc(sn(!);x0; !); for n 2 N and t 2 (sn(!); sn+1(!)] ;

(3.4)

and

'rd(0;x0; !) = x0;

'rd(n+ 1;x0; !) = �
���(!)(sn(!))
tn+1 'rd(n;x0; !); for n 2 N:(3.5)

We now prove that 'rd de�nes a discrete-time random dynamical system on
Rd �
. To do so, we must �rst provide a discrete-time metric dynamical system
on (
;F;P), which can be chosen simply as the usual shift operator. Let � : 
!
be de�ned by

(3.6) �((in; tn)
1
n=1) = (in+1; tn+1)

1
n=1:

One can easily verify, using (2.4) and the fact that pM = p, that the measure
P is invariant under �, and thus � is a discrete-time metric dynamical system in
(
;F;P). Moreover, since �(
0) = 
0, � also de�nes a metric dynamical system in
(
0;F;P) (where F and P are understood to be restricted to 
0).
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Notice that � is ergodic in (
;F;P). Indeed, given � 2 Pr(N � R+), let P� be
the probability measure on 
 associated with the discrete-time Markov process in
N � R+ with transition probabilities P given by (2.1) and initial law �. One can
easily check that P� is invariant under � if and only if � coincides with the initial law
1 de�ned in (2.2), and thus it follows from classical ergodicity results for Markov
chains (see, e.g., Hairer [22, Theorem 5.7]) that � is ergodic in (
;F;P).
Now that we have de�ned the random discrete-time system (3.1) and provided

the metric dynamical system �, we can show that the pair (�; 'rd) de�nes a random
dynamical system.

Proposition 3.2. (�; 'rd) is a discrete-time random dynamical system over (
;F;
P).

Proof. Since � is a discrete-time metric dynamical system over (
;F;P), one is only
left to show that 'rd satis�es the cocycle property
(3.7)
'rd(n+m;x0; !) = 'rd(n;'rd(m;x0; !); �

m(!)); 8n;m 2 N; 8x0 2 Rd; 8! 2 
0:
Let ! = (in; tn)

1
n=1 2 
0. Then it follows immediately from the de�nitions of

and sn that, for n;m 2 N,

sn(�
m(!)) =

nX
k=1

tk+m =

m+nX
k=m+1

tk = sn+m(!)� sm(!);

(�m(!))(sn(�
m(!))) = in+m = ���(!)(sn+m(!)):

We prove (3.7) by induction on n. When n = 0, (3.7) is clearly satis�ed for every
m 2 N, x0 2 Rd, and ! 2 
0. Suppose now that n 2 N is such that (3.7) is satis�ed
for every m 2 N, x0 2 Rd, and ! 2 
0. Using (3.5), we obtain

'rd(n+ 1;'rd(m;x0; !); �
m(!))

= �
���(�m(!))(sn(�

m(!)))
sn+1(�m(!))�sn(�m(!))'rd(n;'rd(m;x0; !); �

m(!))

= �
���(!)(sn+m(!))
sn+m+1(!)�sn+m(!)'rd(n+m;x0; !) = 'rd(n+m+ 1;x0; !);

which concludes the proof of (3.7).

We now compare the asymptotic behavior of (2.6) and (3.1) by considering the re-
lation between the Lyapunov exponents �rc(x0; !) and �rd(x0; !) of the continuous-
and discrete-time systems. The following result can be easily obtained from the er-
godicity of � and Birkho¤�s Ergodic Theorem.

Proposition 3.3. For almost every ! 2 
, one has

(3.8) lim
n!1

sn(!)

n
=

NX
i=1

pi

Z
R+
td�i(t) =

NX
i=1

pi�i =: m:

The next result provides the relation between �rc and �rd in terms of the quantity
m de�ned in (3.8).

Proposition 3.4. For every x0 2 Rd n f0g and almost every ! 2 
, the Lyapunov
exponents of the continuous- and discrete-time systems (2.6) and (3.1), given by
(2.7) and (3.2), are related by

rd(x0; !) = m rc(x0; !):
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Proof. Let us �rst show that �rd(x0; !) � m�rc(x0; !). For every n 2 N�, one has
1

n
log k'rd(n;x0; !)k =

sn(!)

n

1

sn(!)
log k'rc(sn(!);x0; !)k :

Moreover

lim sup
n!1

1

sn(!)
log k'rc(sn(!);x0; !)k � lim sup

t!1

1

t
log k'rc(t;x0; !)k ;

and then the conclusion follows since sn(!)
n ! m as n!1 for almost every ! 2 
.

We now turn to the proof of the inequality �rd(x0; !) � m�rc(x0; !). Let C;  > 0
be such that

�itx � Cet kxk for every i 2 N , x 2 Rd, and t � 0. For x0 2 Rdnf0g
and t > 0, let nt 2 N be the unique integer such that t 2 (snt(!); snt+1(!)], which
is well-de�ned for almost every ! 2 
. Then

1

t
log k'rc(t;x0; !)k =

1

t
log

(!)(snt (!))

t�snt (!)
'rc(snt(!);x0; !)

=
1

t
log

(!)(snt (!))

t�snt (!)
'rd(nt;x0; !)

logC

t
+

t� snt(!)
t

+
1

t
log k'rd(nt;x0; !)k :(3.9)

Since t 2 (snt(!); snt+1(!)], one has, for almost every ! 2 
,

(3.10) 0
t� snt(!)

t

snt+1(!)

snt(!)
� 1 ���!

t!1
0;

where we use (3.8) to obtain that snt+1(!)

snt (!)
! 1 as t ! 1. We write 1

t =
nt
t
1
nt
.

Since t 2 (snt(!); snt+1(!)], one has nt
t 2

h
nt

snt+1(!)
; nt
snt (!)

. Now

lim
t!1

nt
snt(!)

=
1

m
and lim

t!1

nt
snt+1(!)

= lim
t!1

nt + 1

snt+1(!)
� 1

snt+1(!)
=
1

m
;

and thus nt
t !

1
m as t ! 1. Using this fact and inserting (3.10) into (3.9), one

obtains the conclusion of the theorem by letting t!1.

The next result relies on the ergodicity of � to provide an evaluation of the average
time spent by���(!) in a given state i, generalizing the corresponding classical ergodic
theorem for continuous-time Markov chains to our random model for ���(!) (see, e.g.,
Norris [30, Theorem 3.8.1]).

Proposition 3.5. Let i 2 N . For almost every ! 2 
, one has

lim
T!1

Lft 2 [0; T ] j ���(!)(t) = ig
T

=
pi�i
m
;

where L denotes the Lebesgue measure in R.

Proof. Fix i 2 N . Let 'i : 
! R+ be given by

'i((in; tn)
1
n=1) = t1; if

i1 = i,
0, otherwise.
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Then, by Birkho¤�s Ergodic Theorem, one has, for almost every ! 2 ,

(3.11) lim
n!1

1

n

n�1X
j=0

'i(�
j!) =

Z



'i(!) dP(!) = pi�i:

On the other hand, by de�nition of ���, for almost every ! = (in; tn)1n=1 2 ,
n�1X
j=0

'i(�
j!) =

nX
j=1
ij=i

tj = Lft 2 [0; sn(!)] j ���(!)(t) = ig:

Hence it follows from Proposition 3.3 and (3.11) that, for almost every ! 2 ,

(3.12) lim
n!1

Lft 2 [0; sn(!)] j ���(!)(t) = ig
sn(!)

= lim
n!1

n

sn(!)

1

n

n�1X
j=0

'i(�
j!) =

pi�i
m
:

Let ! 2 
 be such that (3.12) holds and take T 2 R+. Choose nT 2 N such that
snT (!) � T < snT+1(!). Then

1

T
Lft 2 [0; T ] j ���(!)(t) = ig 1

snT (!)
Lft 2 [0; snT+1(!)] j ���(!)(t) = ig

and
1

T
Lft 2 [0; T ] j ���(!)(t) = ig 1

snT+1(!)
Lft 2 [0; snT (!)] j ���(!)(t) = ig:

The conclusion of the proposition then follows since, by Proposition 3.3, sn+1(!)sn(!)
! 1

as n!1 for almost every ! 2 
.

Remark 3.6. The choice of sn in De�nition 3.1 is not unique, and one might be
interested in other possible choices. The times sn(!) correspond to the transitions
of the discrete-time Markov chain in N�R+ from Section 2. However, if some of the
diagonal elements of M are non-zero, then the discrete part of the Markov chain,
i.e., its component in N , may switch from a certain state to itself. In practical
situations, it may be possible to observe only switches between di¤erent states, and
another possible choice for sn(!) that may be of practical interest is to consider
only the times corresponding to such non-trivial switches. De�ning � as the shift
to the next di¤erent state, � de�nes a metric dynamical system if we suppose that,
instead of having pM = p, we have p ~M = p, where ~Mij =

Mij

1�Mii
for i; j 2 N

with i = j and ~Mii = 0 for i 2 N . (Notice that Mii = 1 for every i 2 N since
M is irreducible.) The counterparts of the previous results can be proved in this
framework with no extra di¢culty.

Remark 3.7. The fact that systems (1.7) and (3.3) are linear has been used only
in the proof of Proposition 3.4, where one uses an exponential bound on the growth
of the �ows �it = eLit, namely that there exist constants C;  > 0 such that
eLit

 � Cet for every t � 0 and i 2 N . If we consider, instead of system (1.7),
the nonlinear switched system

_x(t) = f�(t)(x(t));

where f1; : : : ; fN are complete vector �elds generating �ows �1; : : : ;�N , and modify
the discrete-time system (3.3) accordingly, all the previous results remain true, with
the same proofs, under the additional assumption that there exist constants C;  > 0
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such that
�itx � Cet kxk for every t � 0, i 2 N , and x 2 Rd. However, the next

results do not generalize to the nonlinear framework.

In order to conclude this section, we apply the discrete-time Multiplicative Er-
godic Theorem (see, e.g., Arnold [1, Theorem 3.4.1]) in the one-sided invertible case
to system (3.1) and we use Proposition 3.4 to obtain that several of its conclusions
also hold for the continuous-time system (2.6).
Let L : 
!Md(R) be the function de�ned for ! = (in; tn)1n=1 by L(!) = eLi1 t1 ,

so that 'rd(n;x0; !) = L(�n�1!)'rd(n � 1;x0; !) for every x0 2 Rd, n 2 N�, and
almost every ! 2 
. For n 2 N and almost every ! 2 
, we denote �(n; !) the
linear operator de�ned by �(n; !)x = 'rd(n;x; !) for every x 2 Rd, which is thus
given by �(n; !) = eLin tn � � � eLi1 t1 for ! = (ij ; tj)1j=1 2 
 and n 2 N�.

Proposition 3.8. There exists a measurable subset b
 � 
 of full P-measure and
invariant under � such that

(i) for every ! 2 b
, the limit 	(!) = limn!1
�
�(n; !)T�(n; !)

�1=2n
exists

and is a positive de�nite matrix;
(ii) there exist an integer q 2 d and q integers d1 > � � � > dq such that, for

every ! 2 b
, there exist q vector subspaces V1(!); : : : ; Vq(!) with respective
dimensions d1 > � � � > dq such that

Vq(!) � � � � � V1(!) = Rd;
and L(!)Vi(!) = Vi(�(!)) for every i 2 q;

(iii) for every x0 2 Rd n f0g and ! 2 b
, the Lyapunov exponents �rd(x0; !) and
�rc(x0; !) exist as limits, i.e.,

�rd(x0; !) = lim
n!1

1

n
log k'rd(n;x0; !)k ;

�rc(x0; !) = lim
t!1

1

t
log k'rc(t;x0; !)k ;

(iv) there exist real numbers �d1 > � � � > �dq and �
c
1 > � � � > �cq such that, for

every i 2 q and ! 2 b
,
�rd(x0; !) = �

d
i () �rc(x0; !) = �

c
i () x0 2 Vi(!) n Vi+1(!);

where Vq+1(!) = f0g;
(v) for every ! 2 b
, the eigenvalues of 	(!) are e�d1 > � � � > e�

d
q , and their

respective algebraic multiplicities are mi = di � di+1, with dq+1 = 0.

Proof. Let us show that Multiplicative Ergodic Theorem can be applied to the
random dynamical system (�; 'rd). Recall that there are C � 1,  > 0 such that,
for every i 2 N and t 2 R,

eLit � Cejtj. Then, for ! = (in; tn)
1
n=1 2 
0,

log+
L(!)�1 � logC + t1, so thatZ




log+
L(!)�1dP(!) � logC +  NX

i=1

pi�i <1:

Then the Multiplicative Ergodic Theorem can be applied to (�; 'rd), yielding all
the conclusions for 	, q, di, Vi, �rd(x0; !), and �di . The conclusions concerning
�rc(x0; !) and �ci in (iv) follow from Proposition 3.4, with �ci =

1
m�

d
i . One is now

left to show that the Lyapunov exponent �rc(x0; !) exists as a limit.
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Notice that
e�Litx � Cet kxk for every i 2 N , x 2 Rd and t � 0, and

hence
eLitx � C�1e�t kxk. Let t > 0 and choose nt 2 N such that t 2

(snt(!); snt+1(!)]. Then, proceeding as in (3.9), one gets

1

t
log k'rc(t;x0; !)k � �

logC

t
�  t� snt

t
+
1

t
log k'rd(nt;x0; !)k :

Using (3.10), we thus obtain that

lim inf
t!1

1

t
log k'rc(t;x0; !)k �

1

m
�rd(x0; !) = �rc(x0; !);

which yields the existence of the limit. �

4. The maximal Lyapunov exponent

We are interested in this section in the maximal Lyapunov exponents for systems
(2.6) and (3.1), i.e., the real numbers �c1 and �

d
1 from Proposition 3.8(iv). We denote

these numbers by �cmax and �
d
max, respectively. Before proving the main results of

this section, we state the following lemma, which shows that the Gelfand formula
for the spectral radius � holds uniformly over compact sets of matrices. This follows
from the estimates derived in Green [20, Section 3.3]. For the reader�s convenience,
we provide a proof.

Lemma 4.1. Let A �Md(R) be a compact set of matrices. Then the limit

lim
n!1

kAnk1=n = �(A)

is uniform over A.

Proof. Let " > 0 and de�ne a continuous function F : A !Md(R) by

F (A) =
1

�(A) + "
A:

Then F (A) is compact and for every F (A) 2 F (A) its spectral radius is �(F (A)) =
�(A)
�(A)+" < 1. Fix A 2 A. Then (see, e.g., Horn and Johnson [24, Lemma 5.6.10])
there is a norm k�kA in Rd with kF (A)kA <

1+�(F (A))
2 . Then for all B in a neigh-

borhood U of A

kF (B)kA <
1 + �(F (A))

2
:

Since all norms onMd(R) are equivalent, there is �A > 0 such that for all B 2 U

kF (B)nk � �A kF (B)nkA � �A kF (B)k
n
A � �A

�
1 + �(F (A))

2

�n
:

Then there is N 2 N�, depending only on A and ", such that for all n � N and all
B 2 U ,

1

�(B) + "
kBnk1=n = kF (B)nk1=n < 1;

implying kBnk1=n < �(B)+ ". Since this holds for every B in a neighborhood U of
A and kBnk1=n � �(B) for every n 2 N�, one obtains that the convergence in U is
uniform, and the assertion follows by compactness of A. �

We can now prove our �rst result regarding the characterization of �cmax and
�dmax.
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Proposition 4.2. For almost every ! 2 
, we have

(4.1) �dmax = lim
n!1

1

n
log k�(n; !)k :

Moreover,

(4.2) �dmax � inf
n2N�

1

n

Z



log k�(n; !)kdP(!) = lim
n!1

1

n

Z



log k�(n; !)kdP(!):

Proof. Notice that (4.1) and (4.2) do not depend on the norm in Md(R). We �x
in this proof the norm induced by the Euclidean norm in Rd, given by kAk =p
�(ATA). Notice that, in this case,

ATA =p�((ATA)2) = �(ATA) = kAk2.
By Proposition 3.8(v), e�

d
max is the spectral radius �(	(!)) of 	(!) for almost

every ! 2 
. By continuity of the spectral radius and Proposition 3.8(i), one then
gets that

e�
d
max = lim

n!1
�
h�
�(n; !)T�(n; !)

�1=2ni
= lim

n!1
lim
k!1

��(n; !)T�(n; !)�k=2n1=k ;(4.3)

using also Gelfand�s Formula for the spectral radius. The sequence of matrices��
�(n; !)T�(n; !)

�1=2n�1
n=1

converges to 	(!), hence this sequence is bounded in

Md(R). By Lemma 4.1, the limit in Gelfand�s Formula is uniform, which shows
that one can take the limit in (4.3) along the line k = 2n to obtain

e�
d
max = lim

n!1

�(n; !)T�(n; !)1=2n = lim
n!1

k�(n; !)k1=n :

Hence (4.1) follows by taking the logarithm.
In order to prove (4.2), �x m 2 N�. By (4.1), for almost every ! 2 
,

(4.4) �dmax = lim
n!1

1

nm
log k�(nm;!)k :

One has �(nm;!) = �(m; �(n�1)m!) � � ��(m; �m!)�(m;!), and thus

(4.5)
1

nm
log k�(nm;!)k � 1

nm

n�1X
k=0

log
�(m; �mk!) :

Since �m preserves P and log k�(m; �)k 2 L1(
;R), Birkho¤�s Ergodic Theorem
shows that

(4.6) lim
n!1

1

nm

n�1X
k=0

log
�(m; �mk!) = 1

m

Z



log k�(m;!)kdP(!):

Combining (4.4), (4.5), and (4.6), one obtains the inequality in (4.2). The sequence�R


log k�(n; !)kdP(!)

�
n
is subadditive, since �(n + m;!) = �(m; �n!)�(n; !)

for n;m 2 N and � preserves P. This subadditivity implies that the equality in
(4.2) holds. �

Under some extra assumptions on the probability measures �i, i 2 N , one obtains
that the inequality in (4.2) is actually an equality.
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Proposition 4.3. Suppose there exists r > 1 such that, for every i 2 N , one hasR
(0;1)

tr d�i(t) <1. Then �dmax is given by

�dmax = inf
n2N�

1

n

Z



log k�(n; !)kdP(!) = lim
n!1

1

n

Z



log k�(n; !)kdP(!):

Proof. One clearly has, using (4.1), that

�dmax =

Z



�dmax dP(!) =
Z



lim
n!1

1

n
log k�(n; !)kdP(!):

The theorem is proved if we show one can exchange the limit and the integral in the
above expression, which we do by applying Vitali�s convergence theorem (see, e.g.,
Rudin [31, Chapter 6]). We are thus left to show that the sequence of functions�
1
n log k�(n; �)k

�1
n=1

is uniformly integrable, i.e., for every " > 0, there exists � > 0
such that, for every E 2 F with P(E) < �, one has 1

n

��R
E
log k�(n; !)kdP(!)

�� < ".
For ! = (in; tn)

1
n=1 2 
0 and n 2 N�, one has �(n; !) = eLin tn � � � eLi1 t1 and

�(0; !) = Idd. Let C;  > 0 be such that
eLit � Cejtj for every i 2 N and

t 2 R. For every n 2 N, since �(n + 1; !) = eLin+1 tn+1�(n; !) and �(n; !) =
e�Lin+1 tn+1�(n+ 1; !), one obtains that

C�1e�tn+1 k�(n; !)k � k�(n+ 1; !)k � Cetn+1 k�(n; !)k ;
and thus an inductive argument yields, for n 2 N�,

C�ne�sn(!) � k�(n; !)k � Cnesn(!);
where sn(!) =

Pn
i=1 ti. Then�� log k�(n; !)k �� � n logC + sn(!):

Hence, it su¢ ces to show that the sequence
�
sn
n

�1
n=1

is uniformly integrable.
For n 2 N� and E 2 F, we have, by Hölder�s inequality,Z

E

sn(!)

n
dP(!) =

1

n

nX
i=1

Z
E

ti dP(!)

� 1

n

nX
i=1

�Z



tri dP(!)
� 1

r

P(E)
1
r0 � K 1

r P(E)
1
r0 ;(4.7)

where r0 2 (1;1) is such that 1
r +

1
r0 = 1 and K = maxi2N

R
(0;1)

tr d�i(t) < 1.
Equation (4.7) establishes the uniform integrability of

�
sn
n

�1
n=1

, which yields the
result. �

As an immediate consequence of Proposition 3.3, Proposition 3.4, Proposition
4.2, and Proposition 4.3, we obtain the following result.

Corollary 4.4. The maximal Lyapunov exponents �cmax and �
d
max satisfy

(4.8) m�cmax = �
d
max � inf

n2N�
1

n

Z



log k�(n; !)kdP(!):

In particular, if

(4.9) there exists n 2 N� such that
Z



log k�(n; !)kdP(!) < 0;

then systems (2.6) and (3.1) are almost surely exponentially stable.
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If we have further that there exists r > 1 such that
R
R+ t

r d�i(t) < 1 for every
i 2 N , then the inequality in (4.8) is an equality and (4.9) is equivalent to the
almost sure exponential stability of (2.6) and to the almost sure exponential stability
of (3.1).

We conclude this section with the following characterization of a weighted sum
of the Lyapunov exponents �di , i 2 N .

Proposition 4.5. Suppose there exists r > 1 such that, for every i 2 N , one hasR
(0;+1)

tr d�i(t) <1. Then

(4.10)
qX
i=1

mi�
d
i =

NX
i=1

pi�i Tr(Li);

where mi is as in Proposition 3.8(v).

Proof. Thanks to Proposition 3.8(v), one obtains that, for almost every ! = (in;
tn)

1
n=1 2 
,

det	(!) =

qY
i=1

emi�
d
i ;

which yields
qX
i=1

mi�
d
i = log det	(!) = lim

n!1
log det

�
�(n; !)T�(n; !)

�1=2n
= lim

n!1
log

 
nY
k=1

det eLik tk

!1=n
= lim

n!1

1

n

nX
k=1

tk Tr(Lik):

Then
qX
i=1

mi�
d
i =

Z



qX
i=1

mi�
d
i dP(!) =

Z



lim
n!1

1

n

nX
k=1

tk Tr(Lik) dP(!)

= lim
n!1

1

n

nX
k=1

Z



tk Tr(Lik) dP(!) =
NX
i=1

pi�i Tr(Li);

where we exchange limit and integral thanks to Vitali�s convergence theorem and

to the fact that
�
sn(!)
n

�1
n=1

=
�
1
n

Pn
k=1 tk

�1
n=1

is uniformly integrable, as shown in

the proof of Proposition 4.3. �

5. Main result

In this section, we use the stability criterion from Corollary 4.4 to study the
stabilization by linear feedback laws of (1.1). As stated in the Introduction, we
write (1.1) under the form (1.5), which is a switched control system with dynamics
given by the N equations _x = bAx+ bBiui, i 2 N .
We consider system (1.5) in a probabilistic setting by taking random signals

���(!) as in De�nition 2.1, i.e., the random control system _x(t) = bAx(t) + bB���(!)(t)
u���(!)(t)(t). The problem treated in this section is the arbitrary rate stabilizability
of this system by linear feedback laws ui = KiPix, i 2 N , where we recall that
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Pi 2Mdi;d(R) is the projection onto the i-th factor of Rd = Rd1 �� � ��RdN . More
precisely, we consider the closed-loop random switched system

(5.1) _x(t) =
� bA+ bB���(!)(t)K���(!)(t)P���(!)(t)�x(t):

We wish to know if, given � 2 R, there exist matrices Ki 2Mmi;di(R), i 2 N , such
that the maximal Lyapunov exponent �cmax of the continuous-time system (5.1),
de�ned as in Section 4, satis�es �cmax � �. Our main result is the following, which
states that this is true under the controllability of (Ai; Bi) for every i 2 N , thus
implying that arbitrary decay rates are achievable.

Theorem 5.1. Let N 2 N�, d1; : : : ; dN ;m1; : : : ;mN 2 N, Ai 2 Mdi(R), Bi 2
Mdi;mi

(R) for i 2 N , and assume that (Ai; Bi) is controllable for every i 2 N .
De�ne bA and bBi as in (1.6). Then, for every � 2 R, there exist matrices Ki 2
Mmi;di(R), i 2 N , such that the maximal Lyapunov exponent �cmax of the closed-
loop random switched system (5.1) satis�es �cmax � �.

Proof. Let C � 1; � > 0 be such that, for every i 2 N and every t � 0,eAit
 � Ce�t. Thanks to Cheng, Guo, Lin, and Wang [7, Proposition 2.1] (see

also [8, Proposition 1]), we may assume that C is chosen large enough such that
the following property holds: there exists D 2 N� such that, for every  � 1 and
i 2 N , there exists a matrix Ki 2Mmi;di(R) with

(5.2)
e(Ai+BiKi)t

 � CDe�t; 8t 2 R+:

Let bKi = KiPi 2Mmi;d(R). Then

bA+ bBi bKi =

0BBBBBBBB@

A1 0 � � � 0 � � � 0
0 A2 � � � 0 � � � 0
...

...
. . .

...
. . .

...
0 0 � � � Ai +BiKi � � � 0
...

...
. . .

...
. . .

...
0 0 � � � 0 � � � AN

1CCCCCCCCA
;

and thus, for every t 2 R,

e(
bA+ bBi

bKi)t =

0BBBBBBBB@

eA1t 0 � � � 0 � � � 0
0 eA2t � � � 0 � � � 0
...

...
. . .

...
. . .

...
0 0 � � � e(Ai+BiKi)t � � � 0
...

...
. . .

...
. . .

...
0 0 � � � 0 � � � eAN t

1CCCCCCCCA
:

SinceM is irreducible and p is invariant underM , we have pi > 0 for every i 2 N .
The irreducibility of M also provides the existence of r � N and (i�1; : : : ; i

�
r) 2 Nr

such that fi�1; : : : ; i�rg = N and Mi�1i
�
2
� � �Mi�r�1i

�
r
> 0. In order to apply Corollary



DECAY RATES FOR LINEAR SYSTEMS WITH RANDOM SWITCHING 17

4.4, considerZ



log k�(r; !)kdP(!) =
X

(i1;:::;ir)2Nr

pi1Mi1i2 � � �Mir�1ir

�
Z
(0;1)r

log
e( bA+ bBir

bKir )tr � � � e( bA+ bBi1
bKi1 )t1

d�i1(t1) � � �d�ir (tr):(5.3)

Since
PN

i=1 P
T
i Pi = Idd and Pie(

bA+ bBi
bKi)tPTj = 0 if i 6= j, we have, for every

(i1; : : : ; ir) 2 Nr and (t1; : : : ; tr) 2 Rr+,

e(
bA+ bBir

bKir )tr � � � e( bA+ bBi1
bKi1 )t1

=

0@ NX
jr=1

PTjrPjr

1A e( bA+ bBir
bKir )tr � � �

0@ NX
j1=1

PTj1Pj1

1A e( bA+ bBi1
bKi1

)t1

0@ NX
j0=1

PTj0Pj0

1A
=

NX
i=1

PTi Pie
( bA+ bBir

bKir )tr � � �PTi Pie(
bA+ bBi1

bKi1
)t1PTi Pi

=
NX
i=1

PTi e
(Ai+�iirBiKi)tr � � � e(Ai+�ii1BiKi)t1Pi:

(5.4)

Since, for every i 2 N and t � 0, we have
eAit

 � Ce�t and
e(Ai+BiKi)t

 �
CDe�t, we get, for every (i1; : : : ; ir) 2 Nr and (t1; : : : ; tr) 2 Rr+,

(5.5)
e( bA+ bBir

bKir )tr � � � e( bA+ bBi1
bKi1 )t1

 � NCrrDe�Pr
i=1 ti :

When (i1; : : : ; ir) = (i�1; : : : ; i
�
r), we can obtain a sharper bound than (5.5). For

i 2 N , denote by N(i) the nonempty set of all indices k 2 r such that i�k = i, and
denote by n(i) 2 N� the number of elements in N(i). ThenPTi e(Ai+�ii�rBiKi)tr � � � e(Ai+�ii�1

BiKi)t1Pi

 � Crn(i)De�Pk2N(i) tke�
P

k2rnN(i) tk ;

which shows, using (5.4), that

e( bA+ bBi�r
bKi�r )tr � � � e( bA+ bBi�1

bKi�1
)t1
 � NX

i=1

Crn(i)De�
P

k2N(i) tke�
P

k2rnN(i) tk

� NCrrDe�mink2r tker�maxk2r tk :(5.6)

Let

E0 = max
i2N

�i;

Emin =

Z
(0;1)r

min
k2r

tk d�i�1 (t1) � � �d�i�r (tr) > 0;

Emax =

Z
(0;1)r

max
k2r

tk d�i�1 (t1) � � �d�i�r (tr) <1:
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Then, combining (5.5) and (5.6), we obtain from (5.3) thatZ



log k�(r; !)kdP(!) � Nr (log(NCr) + rD log  + r�E0)

+ pi�1Mi�1i
�
2
� � �Mi�r�1i

�
r
(log(NCr) + rD log  � Emin + r�Emax) :(5.7)

The right-hand side of (5.7) tends to �1 as  ! 1, which can be achieved by
(5.2). Hence it follows from Corollary 4.4 that the maximal Lyapunov exponent of
(5.1) can be made arbitrarily small.

Recall that the main motivation for Theorem 5.1 comes from the stabilizability
of persistently excited systems (1.3) under linear feedback laws. Let us now provide
an application of Theorem 5.1 to (1.3). To do so, let �1; �2 2 Pr(R�+) have �nite ex-
pectation andM 2M2(R) be right-stochastic and irreducible with unique invariant
probability vector p 2 R2. We also slightly modify De�nition 2.1 for the remainder
of this section by saying that, for ! = (in; tn)

1
n=1, one has ���(!)(t) = 2 � in for

t 2 [sn�1; sn) and n 2 N�, which amounts to saying that ���(!) takes the value 0 in
the state i = 2 and the value 1 in the state i = 1. As a consequence of Theorem
5.1, we obtain the following result for (1.3).

Corollary 5.2. Let d;m 2 N, A 2 Md(R), B 2 Md;m(R), and consider system
(1.3). If (A;B) is controllable, then, for every � 2 R, there exists K 2 Mm;d(R)
such that the maximal Lyapunov exponent �cmax of the closed-loop random switched
system _x(t) = (A+���(!)(t)BK)x(t) satis�es �cmax � �.
Proof. The corollary follows immediately from Theorem 5.1 by letting N = 2,
A1 = A, B1 = B, and adding a trivial second subsystem with d2 = m2 = 0.

It was proved in [11, Proposition 4.5] that there are (two dimensional) control-
lable systems for which the achievable decay rates under persistently exciting signals
through linear feedback laws are bounded below, even when we consider only per-
sistently exciting signals � taking values in f0; 1g instead of [0; 1]. Corollary 5.2
shows that, in the probabilistic setting de�ned above, one can get arbitrarily large
(almost sure) decay rates for (1.3), which is in contrast to the situation for persist-
ently excited systems. An explanation for this fact is that the probability of having
a signal � with very fast switching for an in�nitely long time, such as the signals
used in the proof of [11, Proposition 4.5], is zero, and hence such signals do not
interfere with the behavior of the (random) maximal Lyapunov exponent.
Notice that, in general, ���(!) is not (T; �)-persistently exciting, but it can be

shown to satisfy a condition similar to (1.4) in an asymptotic sense.

De�nition 5.3. Let � > 0 and � : R+ ! [0; 1] be measurable. We say that � is
-asymptotically persistently exciting if

lim inf
t!1

1

t

Z t

0

�(s) ds � �:

It follows easily from (1.4) that every (T; �)-persistently exciting signal is �
T -

asymptotically persistently exciting. In order to prove that the above signals ���(!)
are almost surely asymptotically persistently exciting for a suitable constant � > 0,
we assume, in order to simplify the proof, that, in the probabilistic model of ���,
trivial switches do not occur, which amounts to choosing

(5.8) M =

�
0 1
1 0
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with its unique invariant probability vector p =
�
1
2 ;

1
2

�
.

Proposition 5.4. Let M be given by (5.8), p be its unique invariant probability
vector, and �1; �2 2 Pr(R�+) have �nite expectations �1; �2 2 R�+, respectively.

(i) If �2((0; t]) < 1 for every t > 0, then, for almost every ! 2 
, the signal
���(!) is not (T; �)-persistently exciting for any T; � 2 R�+ with T � �.

(ii) For almost every ! 2 
, the signal ���(!) is �1
�1+�2

-asymptotically persistently
exciting.

Proof. To prove (i), we show that

(5.9) Pf! 2 
 j 9T � � > 0 such that ���(!) is a PE (T; �)-signalg = 0:
Since a (T; �)-signal is also a (T 0; �0)-signal for every T 0 � T and 0 < �0 � �, we
have

f! 2 
 j 9T � � > 0 such that ���(!) is a PE (T; �)-signalg

=
[
T>0

[
2(0;T ]

f! 2 
 j ���(!) is a PE (T; �)-signalg

=
[
T2N�

[
1 2N�

f! 2 
 j ���(!) is a PE (T; �)-signalg:

If � is a PE (T; �)-signal, the PE condition implies that � cannot remain zero
during time intervals longer than T � �, and thus

f! 2 
 j ���(!) is a PE (T; �)-signalg
� f! = (in; tn)1n=1 2 
 j 8n 2 N� : in = 2 =) tn � T � �g:(5.10)

Since in takes the value 2 in�nitely many times for almost every ! 2 
 and
2((0; T � �]) < 1, the right-hand side of (5.10) has measure zero, and thus (5.9)
holds.
Proposition 3.5 implies that, for almost every ! 2 
,

lim
t!1

1

t

Z t

0

���(!)(s) ds =
1

1 + �2
;

and thus (ii) holds.
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