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Guided waves are used for the non-destructive evaluation in automotive and aerospace industries.
There is a trend leaning away from isotropic materials to the manufacturing based on composites.
However, the elastic wave dynamics in such materials is considerably more complicated. Much
effort has been committed to the calculation of guided waves’ dispersion curves in composites.
Lots of methods and tools are available, but it becomes difficult when there are more than one hun-
dred layers. In this paper the calculation of dispersion diagrams and mode shapes using the stiffness
matrix method is demonstrated. Boundary conditions are implemented into the stiffness matrix
method that allow for the separate tracing of the various mode families. Shear horizontal modes are
modeled with the transfer matrix method without facing any numerical instability. It is elucidated
just how the occurrence of the mode families depends on the system’s symmetry and wave propa-
gation direction. As a result, the robustness and reliability of guided wave modeling by using the
stiffness method is improved, and more information about the modes is yielded. This is demon-
strated on exemplary layups of the fiber reinforced polymer T800/913, with up to 400 layers.
Referencing is made against results from DISPERSE® (Imperial College London, London, UK) for

selected cases.

I. INTRODUCTION

Guided waves have been used for non-destructive evalu-
ation (NDE) for many decades. An early description of the
flaw detection of sheets and tubes immersed in water by
means of Rayleigh and Lamb waves was given by Viktorov
already back in 1967.' Only a few years later, Luukkala
et al. proposed a contactless test method for paper and metal
plates based on Lamb waves.>> Many applications have
been established since then and the advent of composite
materials in automotive and aerospace industries, which took
place in the early 1990s, has added significant complexity to
the non-destructive testing and evaluation processes. The
ability of guided waves to propagate many meters in a wave-
guide is utilized for pipe inspection.*> They are also used
for the inspection of bonding,® which is one of the most chal-
lenging tasks, especially in the case of kissing bonds.” Other
relevant studies concerning NDE and structural health moni-
toring (SHM) on composite structures are found in Refs.
8—15. The air-coupled version of the guided wave inspection
could play an important role in future production lines.
Often, the presence of a liquid coupling medium is unwanted
because it might inflict damage to unsealed composite struc-
tures. Furthermore, the air-coupled version is more suitable
for in-line non-destructive inspection (NDI), which improves
the cost-efficiency of the manufacturing process. All of the
following researchers have used the air-coupled variant.
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Castaings et al. have done significant work on the single-
sided ultrasonic testing of composites by using Lamb
waves,léF19 while Solodov et al. have used them for trans-
missive inspection.’*** Mechanically induced fatigue on
composites has been monitored by means of Lamb waves by
Rheinfurth and Schmidt er al.**** Holland and Chimenti
have shown that the §; Lamb wave mode at zero group
velocity allows for improved imaging capabilities,” and
Raisutis et al. have investigated the inspection of composite
rods used in aerospace.’® The interaction of the A, Lamb
wave mode with delaminations in composites has been stud-
ied both experimentally and by finite element modeling by
Zenghua et al.”’

The initial task for the work presented here was the
calculation of incidence angles for the excitation of Lamb
waves for the air-coupled ultrasonic testing of rocket booster
pressure vessels of the future launcher Ariane 6. These ves-
sels will be made of carbon fiber reinforced polymer (CFRP)
in order to make them lighter and therefore enable the
launcher to carry more payload. The ultrasonic incidence
angle depends on the anisotropic laminate stiffness and its
thickness. In some areas such pressure vessels can consist of
up to 400 layers, depending on the manufacturing procedure
(integral or differential) and the production technology
(thermoplastic or wet winding or dry fiber layup followed by
infusion), which is a challenging task to calculate them. To
facilitate the calculation, it is a common practice to group
layers, but this is not possible here because the layups are
very complicated and irregular in terms of the winding angle



(fiber direction) and layer thickness. Therefore, every single
layer has to be calculated.

Since the early 1990s Lowe and Pavlakovic have devel-
oped the DISPERSE® software (Imperial College London,
London, UK) for the guided wave modeling and analysis.
Nowadays, due to its versatility and fast computing capabili-
ties, DISPERSE® has become the leading software in its
field. However, it is not suitable for the calculation of rocket
booster laminates since currently it cannot calculate lami-
nates containing more than 64 layers. Therefore, the stiffness
matrix method has been implemented with MaTLAB® R2015a
(MathWorks, Natick, MA) for the calculation of Lamb and
shear horizontal wave dispersion curves as well as the corre-
sponding stress and displacement field components in
CFRP-laminates. The code will be made available as free-
ware stand-alone software “Dispersion Calculator” on the
German Aerospace Center (DLR) homepage.*®

The stiffness matrix method is a reformulation of the
transfer matrix method carried out by Rokhlin and
Wang.?*? The transfer matrix method for a layered medium
was developed by Thomson.*" A small error in his work was
corrected by Haskell,** and Nayfeh®® extended the transfer
matrix method to general anisotropic multilayered media.
The transfer matrix method suffers from a numerical insta-
bility when the product of the layer thickness and frequency
becomes large. Many attempts have been undertaken to
overcome the problem, mostly with limited success and at
the expense of the simple form of the original formulation.
A different approach, which is used also by DISPERSE®, is
the global matrix method proposed by Knopoff.** Here, a
large single matrix comprises the equations of all layers.
Schmidt and Tango®® have shown that this method is numer-
ically stable. However, the drawback of this method is that it
might be slow when many layers have to be computed.
Mal?® extended the global matrix method to anisotropic mul-
tilayered media and Kausel and Roesset”’ conducted a refor-
mulation for isotropic cases. The newer stiffness matrix
method works numerically stable as well and is more effi-
cient than the global matrix method when it comes to the cal-
culation of many layers. At the same time, the concise form
of the stiffness matrix method is easy to understand and
code. The stiffness matrix method is used by many research-
ers, such as Kamal and Giurgiutiu®® and most recently by
Barski and Pajak.> An alternative to root-finding methods is
the semi-analytical finite element (SAFE) method made pop-
ular by Gavric.*® This method is more geometrically flexible
than root-finding methods, where one is restricted to flat and
cylindrical structures. The latest and possibly most powerful
and versatile method is the spectral collocation method
(SCM) developed by Quintanilla et al*' 1t is similar to
SAFE in that it is using a one-dimensional mesh over the
system thickness, but SCM possesses higher accuracy and
speed of computation. Instead of solving a differential equa-
tion directly, the SCM method uses a spectral approximation
that satisfies the differential equation and boundary condi-
tions. The authors claim that SCM is easier to code than
root-finding methods, it is faster, and most importantly, it
can definitely not miss any mode solution. Only recently, the
same authors have developed a classification of multilayered

anisotropic waveguides according to their solution’s proper-
ties.*” All crystal classes and independent axes configura-
tions can be assigned to one of only five different categories.
A critical benefit is that modal solutions can be separated
into mode families for which dispersion curves do not cross.
This helps avoid the well-known jumping mode problem,
which is present in root-finding methods in some situations.
Furthermore, one can save time by computing only a single
mode family if one is not interested in the other ones.

The aim of the present paper is to apply such a classifi-
cation with the stiffness matrix method. This is achieved by
the implementation of appropriate boundary conditions. In
particular, it will be focused on the determination of symmet-
ric and antisymmetric Lamb and shear horizontal waves as
well as the calculation of internal stress and displacement
field components. The transfer matrix is used for shear hori-
zontal waves without facing the numerical instability. The
different situations encountered in symmetric and non-
symmetric layups, as well as the coupling and decoupling of
solutions, are addressed. To demonstrate the capabilities of
our approach on laminates with large numbers of layers, we
present the calculation of a laminate consisting of 400 layers.

The paper is organized as follows. In Sec. I, the transfer
matrix is introduced, first for the general case and then for
wave propagation along axes of symmetry where Lamb and
shear horizontal waves decouple. Based on Nayfeh’s formal-
ism for shear horizontal waves, shown in Ref. 33, we intro-
duce case-dependent adaptations on the transfer matrix and
the characteristic equations for the determination of modal
solutions. Here, we did not encounter any numerical instabil-
ity. Then we present a formalism for the calculation of the
stress and displacement field components of shear horizontal
waves. Section III covers the stiffness matrix method for the
general and decoupled cases. We propose an alternative
form of the global stiffness matrix for symmetric layups
with a different symmetry identity matrix as the one pre-
sented by Rokhlin and Wang in Refs. 29 and 30. For the
calculation of the stress and displacement field components
in multilayered systems, we use Rokhlin and Wang’s
“backpropagation” recursive algorithm, but we suggest a
more concise equation for the determination of the reflected
and transmitted wave amplitudes. We present also a simple
equation for the calculation of the stress and displacement
field components in a single-layered plate. Then we carry
out the abovementioned algorithms for Lamb waves in the
decoupled case. In Sec. IV, the dispersion curve tracing rou-
tines used by the MATLAB®-based Dispersion Calculator are
explained, and the used boundary conditions are summarized
to give the reader a fast overview and help him with his own
implementation. Numerical dispersion curve simulations in
exemplary layups consisting of the CFRP T800/913 are pre-
sented in Sec. V. Some displacement and stress fields that
visualize the differences between the mode families are plot-
ted and discussed.

Il. THE TRANSFER MATRIX METHOD

In this section, the global transfer matrix is formulated
for the general case, i.e., when the composite contains layers
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with arbitrary azimuthal fiber orientations and arbitrary
wave propagation directions within the main plane of the
plate. Then the solutions for pure shear horizontally polar-
ized waves in the special case of wave propagation along
axes of symmetry are presented. These solutions have been
used for the numerical examples shown in Sec. V since they
do not suffer from the same numerical instability as the gen-
eral solutions and as those for pure Lamb wave modes in the
decoupled case do.

A. General layered composite

The dynamic behavior of a linear elastic, generally
anisotropic solid is given by the tensorial equations of
motion, written in the crystallographic coordinate system
Xi=(X1,x2,X3),as

30’,:,‘ B 021/,« (1)
(9)(/1‘ —r o2

and the general tensorial stress-strain relation as
O-/l:j = C/ijklslklv i7j7 k7l = 17 27 37 (2)

where ¢’ ;j and &1y are the stress and strain tensors, respectively,
u'; is the displacement vector and p the material density. ;i
is the stiffness tensor containing the elastic material constants.
In this paper the calculations are carried out on plates consist-
ing of unidirectional layers of the fiber reinforced polymer
T800/913. This material has transversely isotropic symmetry.
Therefore, according to Ref. 43, Eq. (2) is given as

-O'/ll_ -C/ll C/12 C/lz 0 0 0
o' C'y C'y 0 0O 0
'3 C'yn 0 0O 0
= 1
o' E(CIZZ_C/B) 0 O
6/13 Sym C/55 0
_0/12_ C'ss
_8,11_
&
€33
N E (3)
V23
713
_VIIZ_

wherein the expanded matrix form of the stiffness tensor is
used and 7'}, = 2¢/y;. By using uppercase C’s, the expanded
matrix form is distinguished from the lowercase ¢’s of the
contracted tensor form. Since layers with different fiber ori-
entation angles @ within the x;—x,-plane are stacked onto
each other, it is convenient to transform the stiffness matrix
into a global coordinate system x; = (x;,x,x3) for each layer.
Each layer’s local coordinate system x'; is rotated about the
x3-direction by an angle ® so that x’3 and x; coincide and
their origins reside on the top of the respective layer. Hence,
the transformation operations for orthotropic systems™>
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(including transversely isotropic ones), given in Appendix
A, are performed upon the stiffness matrix, yielding the
transformed stiffness matrix components.

Consider a plate consisting of an arbitrary number of
layers N rigidly bonded at their interfaces and surrounded by
a vacuum that is situated in the global coordinate system
such that the incident plane coincides with the x;—x3-plane
(see Fig. 1). Guided wave propagation is restricted to be
along the x;-direction (® = 90°). The fundamental physical
concept behind the behavior of guided waves is based on the
propagation and superposition of partial waves. When an
incident wave hits the top interface of the first (uppermost)
layer, a certain number of reflected and transmitted partial
waves will be generated. The transmitting ones are refracted
according to Snell’s law. These are three partial waves prop-
agating downward (along the —x3-direction) and another
three being reflected from the bottom interface of the first
layer and propagating upward (along the -x;-direction).
Again, at the bottom of the first layer, a certain proportion of
energy is transmitted into the second layer while the rest gets
reflected. Hence, six partial waves are propagating in each
layer, namely two longitudinally polarized ones (L™, L"),
two shear vertically polarized ones (SV~, SV, with particle
displacement in the x;—x3-plane) and two shear horizontally
polarized ones (SH ™, SH', with particle displacement along
Xp). If all partial waves, as well as the incident wave, share
the same projected wavenumber k along the x,-direction on
each interface, a propagating guided wave is generated by
the superposition of the partial waves. Therefore, it is of fun-
damental importance to find the propagation directions of all
partial waves in each layer. According to Ref. 45, this is
achieved by solving the Christoffel equation

(921/{,‘ 82141

= ey ——— 4
Por = M o @
which has the general form of solution for the displacement

field components u; in terms of the partial wave amplitudes
U, i=123,

(1,12, u3) = (Uy, Us, Uz e sin O Fons=ut), Q)

where k is the x;-component of the wavenumber, v is the
phase velocity (=w/k) along x;, w is the angular frequency, ¢
is the time, and o is an unknown ratio of the wavenumber
components along the x5- and x-directions.

By substituting Eq. (5) into the expanded displacement
field equations obtained from Eq. (4), which are skipped
here for brevity (these equations are given in Refs. 33 and
39), three coupled equations are obtained,

Ci1—pv*+Css0®>  Cig+Caso’ (Ci3+Css)o
Co6—p* +Cus0®  (C36+Cas)at
sym Css—pv>+Cs30°
U,
X | Uy | =0. (6)
Us
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FIG. 1. Layered plate (left) and single

layer (right) with local and global
coordinate systems (Refs. 33 and 44).

VWY v

Nontrivial solutions for U;,U,,U; require the vanishing of
the determinant of the 3 x 3 matrix in Eq. (6) and yield the
sixth-degree polynomial equation

o® + Ao + Are® + Ay = 0. 7

A revision of the coefficients A, and A3 as published in Ref.
33 is presented in Appendix B, since several exponents were
missing by accident. Equation (7) has six solutions for o,
where

Op = —0y, 04 =—03, 0= —05. 8)

Substituting a,, ¢ =1,2,...6, into Eq. (6) delivers the partial
wave amplitude ratios V,=U,,/U,, and W,=U;,/U,,
namely,

V. — Kll(ocq)K23(ocq) — K13(ocq)K12(ocq)
i K13(06q)K22(06q) - Klz(fxq)KB((Xq)

; C))

W K1 (og)Ka2 (%) — K12 (%)
- Klz(ocq)K23(ocq) — Kzz(fxq)KB(IXq) ’

(10)

where the elements K;i(«,), i,j = 1,2,3, are the components of
the 3 x 3 matrix in Eq. (6). Now, for convenience, the new
variable a,’fj = a,j/ ik is introduced. Thus, the displacement
and stress field components can be written as

6
(12, 13) =D (1, Vg, W) Upgelkrsin 0570 (1)
=1

<

6
* * 0\ ik(x sin O+ —ut)
(033,073, 0%3) = E (D1gs Dag, D3g)Uyge™ P

q=1
(12)
where
Dy = Ci3 + C36Vy + Ca304W,,
Dy, = C55(06q + Wq) + C45(quq,
D3q = C45(O(q + Wq) + C44ochq. (13)

Now, Egs. (11) and (12) can be combined and written in
expanded matrix form as given in Appendix C. Equation
(C1) relates the displacement and stress field components at
the top of the mth layer (x'5(,) = 0) to those at its bottom
4 3(m) = —dm), Where d,,, is the thickness of the mth layer.

To facilitate the further discussion, the first 6 x 6 matrix in
Eq. (C1) is designated as X,,, and the diagonal matrix as E,,,.
The local transfer matrix A, for the layer m is then given by

Am = XmEme_nl ) (14)

and the global transfer matrix A is obtained by the multipli-
cation of the individual local transfer matrices

A= AmAm—l"'Al- (15)

The global transfer matrix can be used to relate the displace-
ments and stresses at the top to those at the bottom of the
whole plate

S_s = AS,. (16)

Here, S_, is the 6 x 1 displacement and stress matrix at the
bottom surface of the plate (x3 = —d) and S, that one at the
top surface of the plate (x3 =0), where d is the thickness of
the plate. To find modal solutions of Eq. (16), the stress free
upper and lower surface is invoked,

05=0, i=1273. an
This means that no energy is leaking to the surrounding
medium, as is the case in a vacuum. Using the acoustical
impedances Z=pv of aluminum (p=2700kg/m’,
v=6320m/s), air (p=1.2 kg/m3, v=343m/s), and water
(p=1000kg/m®, v=1500m/s), and calculating the trans-
mission T=2Z,/(Z, +Z,) through the respective interface
delivers values of Ty air = 4.8 X 107> and T atuwater = 0.16.
This demonstrates that assuming a vacuum (7, vacuum = 0)
is a good approximation for air as surrounding medium but
not for water. Now, Eq. (16) may be written in the form

uj up
up 17}
0 as; azp azs | |u
us us
=A — |0 =|as1 asy as3 | |uz
0 st A2 des | U3 |
I LY o
(18)

which requires the 3 x 3 submatrix to be singular. Therefore,
the characteristic function for the system is
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daq) A4y 443
as3 =0. (19)

as1  de2  de3

det| as; asp

Equation (19) can be solved numerically in order to deter-
mine the guided wave’s phase velocity dispersion versus fre-
quency or wavenumber.

B. Propagation along axes of symmetry

The physical reason why we do not encounter the
numerical instability in the following algorithms is because
the partial waves in shear horizontal waves are never evanes-
cent. According to Ref. 29, the mathematical reason for the
numerical instability for layer thicknesses of several wave-
lengths is because the inverse matrix of a singular matrix, as
it is required in Eq. (14), does not exist. As will be shown
below, this matrix inversion is not part of the numerical
computation process if one solves for the shear horizontally
polarized modes in the case of wave propagation along axes
of symmetry. Then the solutions decouple into pure Lamb
and shear horizontal modes, but this is possible only in lay-
ups that contain solely layers with fiber orientations along
the 0° and 90° directions, while the wave propagation must
be along either of those directions as well (see Fig. 2).
Hence, x5 coincides with x’3 and x; can coincide with either
X'y or x5 for 0° or 90° orientation, respectively. The propa-
gation of shear horizontal waves is the simplest case in
anisotropic media, since only one displacement field compo-
nent is involved. Therefore, according to Ref. 33, the equa-
tion of motion is relatively simple, namely,

821/{/2 821/{/2 (9214/2
c’ C = 20
66 ax’% +Cu o p YR (20)
and the corresponding stress-strain relation
(9u’2
' =C" . 21
023 “ o0 (21)

The formal solutions of Egs. (20) and (21) under consider-
ation of ® = 90° are

2
Uy = Z Uzqeik(xl+ax’3fl7t) (22)
g=1

z3

: d77L
e S A

U /, I

/.

FIG. 2. Anisotropic plate showing wave propagation along an axis of sym-
metry (Ref. 33).
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2
Gy = D DagUpehtert=smm), 23)
g=1

respectively, where

pv* — Ces

Doy = Cag0ty, 010 = =
Cus

(24)

By using superposition, the displacement and stress field
components can be given by

u 1 1 U21eik(n+,€3cqfvt)
5] TR )
023 C440(1 —C440(1 U22C ik(xy+x'300 —v

and with the use of Eq. (14) one can manipulate Eq. (25)
into

{ 1753 } _ [ cosy,, isin ym/Dm] [ 1753 ]
% - . : % b)
023 |y = a, iDp,siny,, cOoS Y, 023 ] vy =0

(26)

where y,, = 0,,kd,,, and D,,, = ,,,,C44. With the 2 X 2 matrix in
Eq. (26), one has obtained an analytical expression for the
individual local transfer matrix A,, that contains the matrix
inversion a priori, which means that it does not have to be
performed in the numerical computation procedure where it
can cause the instability.

Similar to what has been shown in Sec. Il A, Eq. (26)
relates the displacement and stress field components at the
top of the mth layer (x3,, =0) to those at its bottom
e 3(m) = —dm). Finally, the global transfer matrix A is again
achieved by the multiplication of the individual local transfer
matrices according to Eq. (15),

[ U ] _ [011 a12:| [ up } 27)
* - * I’
023 | yy=—a a2 a2 || 03],

relating the displacement and stress at the bottom surface of
the plate (x3 = —d) to that one at the top surface of the plate
(x3=0). Modal solutions are determined by imposing stress
free plate surfaces, which leads to the simple characteristic
function

az = 0. (28)

If the plate consists of an n-times repetition of a unit cell, the
condition

uz uz i
|: ; :| — |: . :| elkd cos © (29)
g g

23 | xy=—d 23 | x3=0

must be satisfied. Then, with ® = 90°, the characteristic
function for modal solutions is

ap — 1 a
det| 41 12
as ap —1

] =0. (30)

Note that the fundamental shear horizontal mode is non-
dispersive in the decoupled case with v = /Ces/ p.



Since the expressions shown in Sec. II B are not suscep-
tible to the numerical instability, they have been used for
the calculation of the numerical examples, except in one
instance, where a routine based on the stiffness matrix
method has been used instead.

Based on the above formalism for shear horizontal
modes, in Secs. IIB 1 and IIB2 we present adaptations on
Egs. (26), (28), and (30) since the modal solutions could not
have been obtained successfully with them for every layup
type and mode shape symmetry. In Sec. I B 3, we introduce
our calculation routine for the internal stress and displace-
ment fields in shear horizontal modes. The displacement
field is necessary to identify, if it exists, the symmetric or
antisymmetric character of the modes.

The following discussion is conducted for symmetric
and non-symmetric layups separately. The reason for this is
that guided waves, be it Lamb- or shear horizontal modes,
have a definite symmetric or antisymmetric character in
terms of the displacement field component u; for Lamb
modes and u, for shear horizontal mods only in symmetric
layups. This can be a single layer or a layup that is mirrored
in terms of its fiber orientation, as well as the layer thickness
with respect to the middle plane of the plate. Then u,,, have
the same absolute value and polarity at the top and bottom
surface of the plate in such cases of symmetric modes, and
the same absolute value but opposite polarity at the extreme
surfaces in cases of antisymmetric modes.

In the following, the local transfer matrix contained in
Eq. (26) is denoted as A;, where the c-index indicates that
the matrix contains complex values. A second matrix A’ is
introduced that is actually A¢ , but without the two imaginary

m’

numbers “i” in it. This matrix contains only real numbers
Ar = | oS m sin 9,,/Dn 31
= A 31)
Dm sy, COS Py

1. Symmetric layups

For a single layer, the characteristic function for sym-
metric and antisymmetric shear horizontal modes is

By =0, m=1. (32)

If one considers a multilayered, symmetric layup, and solves
for the symmetric modes, then one has to distinguish two
cases. If it contains only one unit cell that is mirrored, like
[0/90];, then one has to multiply the local transfer matrices
according to

A" = AJALACAY, (33)
and then solve
ay, = min. (34)

Here, “min” means that minima have to be found since the
function does not, or only in some instances, cross zero. In
contrast, if the layup contains more than one mirrored unit
cell, i.e., it is a periodic structure, e.g., [0/90],,, n =2,3,...,

one has to multiply the complex local transfer matrices
according to

A= ACAS A, (35)

mdm—1""

and solve after the symmetric modes by using

aj; — 1 a
det| ' 7| = min. (36)
@ ay —1
Antisymmetric modes in layups that contain more than one
layer could not have been solved successfully in transfer
matrix style. The solution of these is presented in Sec. III B 2.

2. Non-symmetric layups

As stated above, no separation into symmetric and anti-
symmetric modes is possible in non-symmetric layups. The
simplest layup possible is [0/90]. This has to be processed by
the usual multiplication operation

A" = AJA, 37)
followed by
ay = 0. (38)

In case of multiple repetitions, like [0/90],, n=2,3,..., the
solution depends on the order p of the respective mode. The
fundamental shear horizontal mode (which is non-disper-
sive) has the order p=0. The higher order modes are
counted in the sequence of increasing critical frequency/
wavenumber by p=1,2,..., i.e., from left to right in the dis-
persion diagram. If the mode order is an integer multiple of
the number of repetitions 7, i.e., p/n =1,2,..., one has to use

AT=ALA, A 39)
and solve Eq. (38). Otherwise one needs Eq. (35), and then
solve

di-b e |y (40)

det : : =
s, ay +1

Notice the different sign in Eq. (40) as compared to Eq. (36).
3. Displacement and stress field component
calculation

In the following, it is important to return the imaginary
identity to the local transfer matrices A] with only real num-

bers in it. That is achieved by the -element-wise
multiplication
1 i
Al =Al o Ll 41
i

An m-layered plate has m + 1 interfaces, where m =1 corre-
sponds to the top surface and m + 1 corresponds to the bot-
tom surface. First, one has to calculate the displacement and
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stress field components uy,,, and 633(,") at all interfaces,
assuming their continuity at the interfaces. One starts with
the uppermost layer m = 1. At the top of this layer the dis-
placement is set to uyqy=1 and the stress to a3;) = 0.
Then u,,, and 633(2) at the bottom of this layer can be
obtained via its local transfer matrix

u _ a(lyll(l) aLl.Z(l) u (42)
o], |9 % 2
312 () "22(1) 23 ]
which results in

Up(2) = Ay Oa32) = day(py- (43)
To get ux3) and 055 at the bottom of the second layer
(m=2), one must multiply the local transfer matrices of the
first and second layers

AT =AG)AQ: @9

Here, A™ is the transfer matrix relating the displacement and
stress field components at the top of the uppermost layer
(i.e., at the top of the plate), to those at the bottom of the sec-
ond layer. Substituting A™ into Eq. (42) and considering the
stress free upper plate surface yields

Uy3) =4y}, O3 = - (45)
This procedure has to be repeated until one has obtained the
displacement Uy, 1y and stress o7, (m1) At the bottom of the
plate. Once the displacements and stresses are obtained at all
interfaces, it is possible to calculate both components inside
each layer. The now known displacements u&m) and stresses

‘7;(3](”1) at the top (x'34, =0) and bottom uz‘(‘fn), 6;3_((1,1)7
(¥'3(m) = —dp) interface of the mth layer can be written in

terms of their respective local transfer matrix and partial
wave amplitudes

ug(m) = a‘il(m) Usi(m) + ai2(m) Uzz(,,,)eik“mdm, (46)
Wym) = a1 Unt € + a1y Una(), (47)
U;g(m) = @31 () Un1(m) + @) Uzz(m)eik“”d’”, (48)
33 = @51(my Ua1m """ + 659 Un (- (49)

Here, the common factor e~ is suppressed since only
the x3-dependency of the displacement and stress is of inter-
est. From Egs. (46) to (49), the partial wave amplitudes are
deduced as follows:

0 ikoyudy _ ,,—d
U U m© U2 (m) eikzndn
.t 2ikondn _ | 50)
21(m) - ac )
11(m)
0 ikmdy _ ,—d

U _ Mz(m)e MZ(’”) (51)

22(m

) aEZ(m) (e2ikocmdm _ 1) )
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+0 ikoyd, x—d
G e mim  __ O'
o0 23(m) 23(m) ko
23(m) 2ikotyd,
T o e mim — l
UZI(’") - a ) (52)
21(m)
*0 ikoydy _ x—d
s 923m)° 923(m) 53)
22(m) — . ik .
(m) @ im (e2ikemdn _ 1)

Now the displacement and stress at any point x5 inside the
mth layer can be calculated by using

_c u ko, x'3 c u kot (dm—x'3)
Uaim) = A1y Uiy "+ @y Uy ",

(54)
JZS(m) = agl(m) U(Zrl(m)eikam} '+ a(ZlZ(nl) U;Z(nl)eikam(dm ) .
(55)

This procedure can be done for every layer in order to
obtain the complete displacement and stress field profile of
a layup.

If symmetric and antisymmetric shear horizontal
modes exist, it is possible to determine their character very
fast. Just set the displacement at the top of the plate to
u = 1. Then the displacement at the bottom of the plate is
given by u,? = a;, where A is the global transfer matrix.
If u;? is positive the shear horizontal mode is symmetric,
and if u,? is negative the shear horizontal mode is
antisymmetric.

lll. THE STIFFNESS MATRIX METHOD

Similarly, as in Sec. II, the stiffness matrix is first intro-
duced for the general case and then it is specialized to the
case when the decoupling of Lamb and shear horizontal
modes occurs. The calculation of the displacement and stress
field components is presented for both cases.

A. General layered composite

Rokhlin and Wang® have rearranged the transfer matrix
formulation into a numerically stable form, which is called
the stiffness matrix K. In contrast to the transfer matrix, the
stiffness matrix relates the stresses at the top o), and bottom
6, of the mth layer to the displacements at the top u,, and
the bottom u,,, 1,

-1

o, D D'H] [P P'H u,
O';H_l - D™ H D+ m P H P+ W1
u;,
=K, (56)
Uyl

Kamal and Giurgiutiu®® have presented Eq. (56) in a form
that is well suited for its implementation into code and which
is reproduced in Appendix D 1. In order to obtain the global
stiffness matrix of a multilayered plate, the local layer stiff-
ness matrices K,, must be calculated first. Consider the local
stiffness matrices of two neighboring layers



o} _ K, K/?z u 0, _ K, K} ||w _ (57)
o) K?l K?z w |’ 03 Kgl ng u3

Then Rokhlin and Wang’s recursive algorithm is used to combine them

* _l —l
lm _ KN+ KLKE —K5,) 'Ky KK - K) 'K, ul} -
o K (K, - K3,)7'KS, K5, — K5 (K6, —K3,) 'KE, | | ws

Calling the obtained matrix K* and the stiffness matrix of the third layer KZ, one can recursively use Eq. (58) to obtain the
global stiffness matrix, which relates the stresses and displacements at the top and the bottom of the whole plate. If the plate
consists of a periodic repetition of a unit cell, one can denote the stiffness matrix of the unit cell K* and use Eq. (58) with
K”=K" as many times as repetitions are contained in the plate. By that way, the global stiffness matrix can be obtained very
efficiently without recursively multiplying every single local stiffness matrix in every repetition. If the layup is symmetric,
one has to calculate the stiffness matrix of one half of the layup K*. Our alternative formalism to the one presented by
Rokhlin and Wang for the global stiffness matrix K is given by

K?l + K?z(ng ol — K?z)_lKél
(K?z © I)(ng ol — K?z)_lKél

«
0
X
o3

with the symmetry identity matrix

1 1 -1
I=|-1 -1 1 [. (60)
-1 -1 1

The characteristic function for modal solutions is

detK = 0. (61)

For the calculation of the displacement and stress field com-
ponents in a plate consisting of only one layer we abstain
from using Rokhlin and Wang’s backpropagation recursive
algorithm, which is introduced below, and suggest to write
Eq. (56) in the form

*k
9
»
o_y4

instead, where U™ comprises the amplitudes of the three
downward propagating partial waves U;, i=1,2,3, and
U™ contains the amplitudes of the three upward propa-
gating ones Uj, j=4,5,6. The usual procedure is to set
one partial wave amplitude as unity. Then one can
determine the amplitudes of the other partial waves in
terms of the first one. With setting U; =1, our approach
yields

D~ D'H
D H D'

U
U+

U-

v | =0

(62)

_K?z(ng ol— K?z)_l(Kél ol)
K?l ol— (K?z o I)(Kéz ol — K?z)_l(Kél ol)

up
[ 1 ) (59)
u3

U, dy dy dy dys dy da
Us dzy dyz dyy d3s die ds
Us | =—|da daz day das das dy |- (63)
Us dsy ds3 dsq dss dse ds)
Us dey de3 des dos des de

Now, the displacement and stress field components at any
coordinate x3 can be calculated according to Appendix E. To
distinguish symmetric and antisymmetric modes, one must
calculate u; for x3=0,d. If both values have the same sign
the mode is symmetric, and if they have the opposite sign
the mode is antisymmetric.

The calculation of the displacements and stresses in a
multilayered system is more sophisticated. According to
Ref. 29, the displacement at the top and bottom of the system
is given by

u =P, Ui, + PjU;, u_y =P U, (64)

where U, U,, and U, are the incident, reflected, and trans-
mitted waves at the top and bottom surfaces, respectively.
However, instead of using the explicit relations for the
stresses, as shown in Ref. 29, we suggest to use oy, 06 ; = 0.
Therefore, by substituting Eq. (64) into

6 Kii Kip|| u
|:a—d:| |:K21 K22:| [ud] ©
we obtain the simpler relation
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Ul _[-KuP —KePo, ] [ KuPy 1y
U, Ko Py KpPZ, Ky Py |
(66)
with
1
U= 0], (67)
0

Notice that K;; are submatrices of the global stiffness matrix.
With the now known reflection and transmission coefficients
U, and U, Eq. (64) can be solved. In order to get the dis-
placements and stresses at the inner interfaces, one should
use the backpropagation recursive algorithm proposed by
Rokhlin and Wang. In contrast to the procedure presented in
Sec. II B 3, now one has to start with the lowermost layer m.
The displacements at the bottom of this layer u_, have
already been obtained. Then, u,, at the top of this layer is
given by

w, = (Kf) — K3) 'K uo — (Kf = K3y) ' Kuer,
(68)

where K™ is the local stiffness matrix of the mth layer and
K" is the total stiffness matrix of the top m — 1 layers. This
procedure has to be repeated until one has the displacements
at the bottom of the top layer. Now, the six partial wave
amplitudes for each layer can be calculated by

~1
U, P~ P'H u,,
== . . 69
|:Um+1 :| |:P H P m LUm+1 (69)
Finally, Eqs. (E1) are used for each layer to get their respec-
tive displacement and stress field components inside the
layers at the locations x'3.

To distinguish between symmetric and antisymmetric
modes in multilayered systems Eq. (64) is reduced to

1 1
W=1+ 1|0, uw'=]1|U. (70)
1 1

B. Propagation along axes of symmetry
1. Lamb waves

In the case of decoupling between Lamb and shear hori-
zontal modes, pure Lamb waves are formed through the
superposition of only four partial waves, possessing dis-
placement only along the x;- and x;-directions. Therefore,
Eq. (5) reduces to

(ur,u3) = (Uy, Uz)e*™s, (71)

wherein the common factor e*"1=") is suppressed.
Substituting Eq. (71) into the expanded displacement field

equations delivers
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Ci1 — pv* + Cssa? (C13 + Css)o Ui —0
sym Css — pv* + Cx30? | | Us '

(72)

Nontrivial solutions for U;,U; require the vanishing of the
determinant of the 2 x 2 matrix in Eq. (72) and yield the
fourth-degree polynomial equation

Aot + Aol + A3 =0, (73)
with the coefficients

Ay = C33Css,
Ay = Cs5(Css — pv*) + C33(Cyy — pv?) — (C13 + Css)7,
Az = (Css — pv*)(Cyy — pv?).

74

Equation (73) admits four solutions «,, ¢ = 1,2,...,4, accord-
ing to

—Ayt /A —4AIA
aq:+¢ A (75)

N 2A4

Substituting o, into Eq. (72) delivers the partial wave ampli-
tude ratio W, = U3,/U,,, namely,

~ Ku(og) pv* — Cyy — Css“f,
¢ Kia (%) (C13 + Css)oy

(76)

Now, the displacement and stress field components are rep-
resented as

4
(uy,u3) = Z(l, Wq)Ulqeik“,3,
g=1
4 H J
(033073) = Z(quszq)Ulqelkm’q» 7
g=1

with

Dy, = Ci3+ C30,W,, Dy = C55(ocq + Wq). (78)
Finally, the stiffness matrix in Eq. (D1) turns into Eq. (D2)
as given in Appendix D 2. All further operations, which have
been explained for the general layered case, can be con-
ducted also in their reduced form in the decoupled case and
need not be repeated here. It should only be noted that the
symmetry identity matrix is now given as

1 -1
1= [_1 | ] (79)

2. Shear horizontal waves

As stated in Sec. IIB 1, antisymmetric shear horizontal
modes could not have been computed in symmetric, multi-
layered systems in transfer matrix style. Instead, a relation



offered by Wang and Rokhlin®® has been used, where the
local stiffness matrix of the mth layer is given as

_iC44kZ[—1—e2 2e]

K (80)

e —1 —2e 142

where ¢ = el and k. = \/(pw? — Ceek?)/Cas. Now, Egs.
(57)—(59) can be applied to obtain the global stiffness matrix
(with the symmetry identity /= —1). However, in order to
get the displacement and stress, one has to compute the indi-
vidual local transfer matrices A, according to Eq. (26). This
can be done by entering the corresponding phase velocities,
which have been obtained during the tracing procedure with
the use of Eq. (80). Then one can apply Eqs. (42)—(55).

IV. DISPERSION CURVE TRACING

In the following, the tracing algorithms used by our
Dispersion Calculator software are described. If higher order
modes shall be traced, the program starts with a frequency
sweep at a certain phase velocity, which is then the top phase
velocity in the dispersion diagram (20 m/ms in Figs. 3 and
4). The cut-off frequencies of all occurring modes should be
detected by that sweep. These modes are classified into four
possible mode families (in case of the decoupling in a sym-
metric layup, one has symmetric and antisymmetric Lamb
and shear horizontal waves). Then, three phase velocity
sweeps are conducted after the symmetric and antisymmetric
fundamental Lamb wave modes S, A, and the fundamental
shear horizontal mode S’y at 1 Hz. The main condition is that
the determinant has to be zero. In practice it will never be
zero, so it is searched for a change in sign of the determinant
between two increments. It is important to check also that
the absolute value of the determinant is a minimum because
there occur sign changes that are not accompanied by a mini-
mum and do not indicate a modal solution. If a sign change
that is also a minimum is detected between two increments,
it is converged upon the root by three point bisection until
the selected resolution is reached.

20
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FIG. 3. Dispersion diagram for wave propagation along 0° in a 2mm thick
layup [0/90],5, T800/913. In this decoupled case one can distinguish
between symmetric (red/orange) and antisymmetric (blue) Lamb- (solid
lines) and shear horizontal waves (dashed lines). Notice that modes of the
same family do not cross each other.
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FIG. 4. Dispersion diagram for wave propagation along 0° in a 2mm thick
layup [0/90]4, T800/913. Since Lamb and shear horizontal waves decouple,
one can solve them separately, but because the layup is non-symmetric, the
modes do not have a definite symmetric or antisymmetric character. Since
we are not aware of an official notation for these non-symmetric modes, we
denote them with the letter “B.”

Each mode family has its own individual boundary con-
ditions, which makes it possible to trace them separately (see
Table I). In the decoupled case in symmetric layups, only
modes belonging to different families cross each other (see
Fig. 3), but since they have different boundary conditions,
the well-known tracing problem of jumping to the wrong
mode can be avoided completely. In the coupled case, in
symmetric layups, it can be distinguished between two mode
families, namely symmetric and antisymmetric modes (see
Fig. 5). Now, crossing of modes belonging to the same fam-
ily can occur and appropriate algorithms are required to con-
trol the jumping mode behavior in this case. The modes
belonging to the same family are traced one after the other,
starting with the fundamental mode and moving on in
increasing mode order. This procedure is performed for
every mode family, one after the other. Our program traces
directly in the frequency space for the most part, i.e., the
phase velocity is swept at certain frequency increments (usu-
ally between 1 and 10 kHz). Let us consider now the tracing

TABLE 1. Boundary conditions used for the tracing of the six mode
families.

Family Situation Boundary conditions
N detK =0, abs(detK) = min, u/**
A detK =0, abs(detK) = min, u{ "
B det K =0, abs(det K) = min
s Single layer iy =0
Single super layer abs(d},) = min
Periodic abs ( det [a‘ll - 1 ca‘lz }) — min
sy ay —1
A Single layer @iy =0
Else detK=0
B’ Single super layer ay =0
Per., p/n=1,2,...Periodic ay =0
Per.,p/n#1.2,... det[ail -1 a$, ] —0
@ dyt]
S0, By Decoupled case Non-dispersive, v = \/Ces/p

“u, at the plate’s top and bottom have the same sign.
®u, at the plate’s top and bottom have the opposite sign.
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FIG. 5. Dispersion diagram for wave propagation along 0° in a 50 mm thick
layup [0/90/45/-45]50s, T800/913. Since the system is symmetric, one can
determine symmetric and antisymmetric modes. Lamb and shear horizontal
waves are coupled and the crossing of modes belonging to the same family
occurs. The fundamental shear horizontal mode S’y can always be determined
since it is located between Sy and Ag. In contrast to its behavior in the
decoupled case, Sy is now dispersive even though it can hardly be seen.

of the Sy mode. By the initial phase velocity sweep, one has
the phase velocity at 1 Hz. The second sample point, e.g., at
5kHz (corresponding to 0.01 MHz mm, since the thickness
is 2mm), is expected to be at a lower phase velocity.
Therefore, the phase velocity sweep starts from the phase
velocity of the first sample point downward. For the tracing
of all following sample points, the phase velocity interval,
wherein the search is performed, reaches from just above the
preceding sample point’s phase velocity down by a certain
multiple of the difference between the second to last and the
last sample’s phase velocity. The multiple is set to ten where
dispersion curves have a negative curvature and two where
they have a positive curvature like it is the case for the com-
plete shear horizontal mode curves. In contrast to what was
performed to find the first two samples, now the phase veloc-
ity interval is not divided into fixed increments initially.
Instead, the bisection starts immediately unless a change of
sign/minimum could not be found between the initial inter-
val limits. This can happen if two modes are within the
search interval (two sign changes are as if there was none),
or simply if smaller increments have to be used in order to
detect a root. In that case an n-loop, n=1,2,..., is initiated,
wherein the interval is divided into 5" increments, until a
change of sign/minimum is detected. After that, the bisection
of the two critical increments starts if the desired resolution
has not already been achieved. This kind of prediction of the
next sample point and adjustment of the search range accord-
ingly is necessary in order to avoid extremely slow tracing
and achieve small enough increments to be able to trace
curves in some instances at all. The aforementioned multiple
of ten ensures that samples are covered by the search inter-
val, even if the curve’s slope changes drastically, as is the
case with Sy and B in Figs. 3-5 around 1 MHz mm (in this
paper, the modes in non-symmetric layups are unconvention-
ally denoted with the letter “B”). All modes tend to lower
phase velocities with increasing frequency except Ay and By,.
Sometimes, as is the case in Figs. 3 and 4, Ag and B have an
apex. From then on the modes bend down and one must
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switch to the top-down routine like the one used for the other
modes.

M. J. S. Lowe describes in Refs. 43 and 44 another tracing
routine, which he utilizes in DISPERSE®. Here, an extrapola-
tion method is used to make a guess for the next sample point.
This works well in the wavenumber space since the curves are
more straight there than in the frequency space.

If higher order modes are traced, the lower search interval
limit is raised if necessary so that it just does not touch the
next lower mode from the same mode family at the same fre-
quency. In case of decoupling in symmetric layups it is clear
that the currently traced mode does not go below the next
lower mode anyway. However, in all other situations, the rais-
ing of the interval ensures that the tracing routine does not
jump to a crossing mode of the same family that has already
been traced. In this case, when a search is not successful above
the lower mode because the current mode crosses that one, a
new search interval is defined afterward, starting just below
the lower mode to continue the tracing. This procedure is
slow, but prevents the jumping to modes that have already
been traced effectively. Of course though, before such an
instance could happen, the lower mode must have crossed the
higher mode before the latter one was traced. The jumping to
yet unknown modes basically cannot be avoided in any case.
If the jumping occurs, one has to try different tracing parame-
ters like the frequency increments, for instance, to avoid it.

Higher order modes are also traced by phase velocity
sweeps starting at their respective cut-off frequencies.
However, since these modes are close to parallel to the phase
velocity axis around their cut-off frequencies, the curves are
often incomplete at high phase velocities. If this happens,
frequency sweeps are performed to complete the curves to
the upper phase velocity limit. M. J. S. Lowe offers one rout-
ing among others in DISPERSE®, where the sweeps are con-
ducted normally to the dispersion curve’s tangent. This
prevents the aforementioned problem altogether.

As can be seen in Fig. 3, pure shear horizontal modes
are special in that they never cross each other even if they
belong to different families. Therefore, one can abstain from
checking the polarity of the displacement u, at the plate’s
top and bottom during the tracing. This is only done to clas-
sify the modes in the course of the initial frequency sweep.
Furthermore, the curve tracings of both families are already
distinguished through the use of different functions, except
if the plate is single layered.

V. NUMERICAL EXAMPLES

In this section we present our calculations on the fiber-
matrix system T800/913 by using our Dispersion Calculator
software. The density of T800/913 of 1550kg/m> and the
stiffness matrix (in GPa) were taken from Ref. 46,

154 37 37 0 0 0

95 52 0 0 O
9.5 0 0 O
C'1300/913 = 215 0 o |- @D
sym 42 0
4.2



First, we demonstrate the calculation of the different mode
families on 2 mm thick [0/90],, and [0/90],4 layups. The cor-
responding dispersion curves are compared to those obtained
with DISPERSE®. Then we compute SO0 mm thick [0/90/45/
—45],0s and [0/90/45/—45]50, layups in order to prove the
capabilities of our method on laminates with large numbers
of layers. These laminates cannot be calculated with
DISPERSE® currently. For consistency, the wave propaga-
tion is always along 0°.

A. Dispersion diagrams

Figure 3 displays the dispersion diagram for wave prop-
agation along 0° in the 2 mm thick layup [0/90],,. Lamb and
shear horizontal modes are decoupled and have a definite
symmetric or antisymmetric character. The bold curves are
calculated by DISPERSE® and the thin curves by the
Dispersion Calculator. Clearly, the curves of both softwares
are matching regarding the shape as well as the mode type.
In Table II we give the average and maximum deviation of
the sample points of Sy and S, calculated by the Dispersion
Calculator from the ones obtained by DISPERSE®. The fre-
quency step in the dispersion curves is 1 kHz, i.e., Sy consists
of 5000 samples. Figure 4 shows the dispersion diagram for
wave propagation along 0° in the 2 mm thick layup [0/90],.
Due to the non-symmetric layup, the modes do not have a
definite symmetric or antisymmetric shape. Hence, the solu-
tions can be separated only into shear horizontal- and Lamb
wave modes. Again, our results match those of DISPERSE®.
It was already said that modern rocket booster pressure ves-
sels can consist of up to 400 layers in certain areas and it is
the main requisite that the Dispersion Calculator must be
able to calculate such laminates since rocket booster layups
are of such complexity that no grouping of layers can be
applied. We assume a layup [0/90/45/—45]s0, with layer
thicknesses of 0.125 mm yielding a 50 mm thick laminate.
The dispersion diagram is presented in Fig. 5. The calcula-
tion of that diagram took 101 min on an i7-2700K central
processing unit (CPU) at 4 x 3.5 GHz (Intel, Santa Clara,
CA). The processing time is strongly dependent on the curve
tracing algorithms, most importantly on the as precise as
possible prediction of the next sample point’s phase velocity.
This can be taken care of by optimal tracing parameters
available in the software. Finally, we study the effect of the
grouping of layers on the dispersion diagrams. Therefore,
the prior layup is approximated by [0/90/45/—45],¢, with
layer thicknesses of 0.625 mm, having only 80 layers. This
calculation took 15 min. The dispersion curves are compared
in Fig. 6. Whereas the fundamental modes S, and A, are
matching very well, there are notable differences in the

TABLE II. Deviation of the Dispersion Calculator from DISPERSE® in Fig. 3.

So S$2
Average deviation (m/ms) 2.08 x 1073 1.13x 107
Average deviation (%) 455%x107* 823 %1074
Maximum deviation (m/ms) 1.30x 1073 258 x 1072
Maximum deviation (%) 2.00x 1072 1.37%x 107!
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FIG. 6. Comparison of 50 mm thick layups [0/90/45/—45]s0s and [0/90/45/
—45]10s, T800/913. While Sy and Aq are matching well, there are differences
in the higher order modes.

higher order modes. Therefore, the approximative calcula-
tion is suitable for applications like the non-destructive test-
ing, where one is interested in A, for the most part, but not
for an in-depth modal analysis.

B. Displacement and stress profiles

In Fig. 7, the displacement and stress field components
are displayed for three exemplary modes at certain frequen-
cies. Since these components have been calculated with
respect to one arbitrarily chosen partial wave amplitude,
absolute numbers have no physical meaning. However, these
profiles represent the correct ratios between the three compo-
nents. Since the field components are complex numbers, one
has to establish a certain convention about which component
should be analyzed. The left-hand diagrams display the rela-
tive displacements real(u;), real(u,), and imag(u3) and the
right-hand diagrams display the relative stresses real(oss),
imag(o,3), and imag(o,3). This choice has been made in
order to be able to compare with DISPERSE®.

Figure 7(a) shows the displacements versus the plate
thickness for Sy at 2 MHz as appears in Fig. 3. Since Lamb
and shear horizontal modes are decoupled, it is a pure Lamb
wave, so the up-component is zero. As the u;-components at
the top and bottom have the same sign, this mode is identi-
fied to be symmetric. Figure 7(b) displays the corresponding
stresses. According to the free wave condition, all compo-
nents are zero at the plate’s surfaces. In this picture, one can
distinguish eight sections in the profiles very well, which
correspond to the eight layers in [0/90],,. Figures 7(c) and
7(d) depict the displacement and stress, respectively, of the
pure shear horizontal mode A} from the same dispersion dia-
gram in Fig. 3. Only the u,- and ¢,3-component are non-zero
and the shape of u, determines this mode’s character to be
antisymmetric. Interestingly enough, the shape of both pro-
files is independent of the frequency, unlike the case in
Lamb waves. In Figs. 7(e) and 7(f), A, is analyzed at 70 kHz
in [0/90/45/—45]50s from Fig. 5. Since there are 45°-layers in
the layup, the mode is coupled and all six displacement and
stress field components are non-zero. Again, the antisymmet-
ric character is indicated by u; at the top and bottom of the
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plate. The periodicity of the layup becomes obvious in the
displacements u; and u, and the shear stresses a3 and ;3.

It provides an interesting insight into a Lamb wave, if
one animates the mode shape through the reintroduction of
the factor e**1~")_ Figure 8 shows one frame in such a cal-
culation of the B; mode at 3MHz in the non-symmetric

an;

Thickness (z3)

WY

Propagation direction (z;)

FIG. 8. Mode shape of B3 at 3MHz in a 2 mm thick layup [0/90],, T800/
913.
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Relative stress

(f)

layup [0/90]4 (see Fig. 4), where the wave propagation is
along 0°. It is important to keep in mind that, unlike the case
in symmetric layups, u; at the top and bottom can change
sign with frequency, so that it is impossible to determine a
definite symmetric or antisymmetric character.

VI. CONCLUSIONS

It was shown that laminates consisting of up to 400
layers can be calculated by using the stiffness matrix
method. In this aspect it is superior to DISPERSE®, which
currently cannot calculate laminates containing more than 64
layers. By the classification of the modal solutions into the
different mode families, the robustness and retrieved infor-
mation about the modes obtained by the stiffness matrix
method was significantly improved. Validation of the pro-
gram was made against the DISPERSE® results for [0/90],,
and [0/90]; thin laminates, which showed remarkable
99.9994% agreement. With a typical computer it is now



possible to calculate dispersion curves for thick walled laminates. The program will be made available as freeware on the
DLR homepage.”®
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APPENDIX A: TRANSFORMED STIFFNESS MATRIX COMPONENTS

Ci1 = C'11cos* ® 4 C'y sin* @ + 2(C' 1y + 2C'g6) sin® @ cos® D,

Ci3 = C'13c082 D + 53 sin’ @,

Cis = (C'1y +2C"ss — C'11) sin®cos® @ + (C'yy — C'1p — 2C" ) cos @ sin® @,

C33 =C'3,

C36 = (C'3 — C'13) sin @ cos D,

Cas = C'44c08> D + C's5 sin” D,

Cys = (C'yy — C'ss) sin @ cos O,

Css = C's5cos> @ + C'ss sin O,

Cos = C'e + (C'11 + C'yp — 2C' 15 — 4C'g6) sin*® cos? ®. (A1)

APPENDIX B: POLYNOMIAL COEFFICIENTS

A= [2(C13C36C45 — C16C33Ca5 — C13C14Cs5 + C13C5) + C11C33C44+C33Cs55Ce6 — CaaCry — Cs5C
— (C33Ca4 + C33Cs5 + CauCss — Ci5)pv?]/A,
Ay = [2(C13C16C36 + C13C16Cas + C16C36Cs5 — C13C55Ce6 — C11C36Cas) + C11C33Ce6+C11CaaCss — C11Cag
— C33C2 — C11Ch5 — Co6C2y + (2(C16Cas + C13Cs5 + C36Cas) — C11C33 — C11Cag — C33Ce6 — CaaCss
— Cs5Ce6 + Ch3 + C36 4 Cis)pv” + (C33 + Cas + Css)p*v*] /A,
Az = [C11Cs5Ce6 — C55C2s — (C11Css + C11Co6 + Cs5Ce6 — Cag) pv*+(Ci1 + Css + Cee)p*v* — p*0°] /A (B1)

with

A = C33CauCss — C33Cis. (B2)

APPENDIX C: EXPANDED MATRIX FORM OF THE TRANSFER MATRIX METHOD

(] [ 11 1 1 1 ] e 0 0 0 0 0 |[uyektnm]
Uz Viovio Vs Vi Vs Vs 0 ems 0 0 0 0 Ujpeikta=)
u3 Wi =Wy Wi W3 Ws —Ws 0 0 et 0 0 0 Ujzelka=t)
o |Dn Du Diz Dy Dis Dis 0 0 0 ek 0 0 U y4eki=e0)
13 Dy —Day Dz —D23 Dys —Dos 0 0 0 0 ek 0 Uysekta—t)

19| |DPs —D31 Dz —D33 D3s —Dss| | 0 0 0 0 0 efknes 11 Ujgelktxi—on)

1
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APPENDIX D: EXPANDED MATRIX FORMS OF THE STIFFNESS MATRIX METHOD

1. General layered composite

ayy ] [ Du Di3 Dis Dyjelfndn  pselkndn pyselkasdn ]
o1y D5, D3 Ds —Dyjedn _Dyyekaadn _Dyseiksdn
053 D5, D33 Dss —Djjefdn —Dyseikaadn —Diseiksdn
a3y - Dyjefidn pjekaadn Dy seikesdn Dy D3 D;s
O.ﬂlfgn+l Dz]eikald’” D23eikoc3dm D2seikm5dn, _D21 _D23 _D25
i O'%VH—I | _D3leikoc1d,,, D33eikoc3dm Dsseikmdm _D31 _D33 _D35 ]
r 1 1 1 eikedy eiknd, eikasdn ] -r ur b
Vl V3 VS Vl eikocldm V3 eikmgdm Vseikogdm ur2rl
W1 W3 W5 _Wl eikocl(/im _W3eikoz3dm _Wseikozsdm ugrl
x eikocl dy, eikO(3 dy, eikoc5 d,y, 1 1 1 urer—l
Vl eikledm V3eikoc3dm Vseikocsdm Vl V3 VS urer—l
i W] eikml dy W3eikot3dm W5 eikot5dm —W1 —W3 _WS | i Mng_l
2. Propagation along axes of symmetry
o Dy Dis Dlleikmldm Dmeimdm ]
o.»lfgn D21 D23 _D21 eikledm _D23 eikzxgdm
ot B Dyjelidn D yseltosdn Dy D3
G]kgnJrl Dﬂeikmld,,, D23eikzx3dm —D21 _D23
1 1 eikody eikosdy Iroym
1
W1 W3 _Wl eikocldm —W3Cikl3dm ugﬂ
x ik ik 1 1 ur1n+l
Wieikndn  peikesdy —W, —W; ugn+l

APPENDIX E: DISPLACEMENT AND STRESS FIELD COMPONENTS

ikoux: ikozx ikots.x: ikou (d—x ik (d—x ikos (d—x
u1=U16 13+U26 33+U36 53+U4e 1 3)+U56 3( 3)+U66 s ( 3)7

M2 — Vl Uleikoc1X3 + V3 U2eikot3)’3 + VS U3eika5)c3 + Vl U4eikle(d7)t’3) + V3 U5€ika3(d7x3) + VS U6eik0(5(d7)63)7

Uy = Wl Ulelkml.x‘3 + W3 Uzelko’.g.\'g + WS USClkoq;xg _ Wl U4elkml (d—x3) _ W3 Uselkmg(d—.x‘3) _ WS U6e1koc5((/i—,\73)7
0_23 — DllUleikotl.\‘3 +D13Uzeikot3.\‘3 +D15 U3eikO(5X3 +D11U4eikotl(d—.\‘3) +D13Useikl3(d—,r3) + DISUGeikV.s((]—xﬁ7
0.9;3 — D21U1eikoc1x3 +D23Uzeikzx3x3 +D25 U3eikzx5x3 _ D21U4eikzx1(d7x;) _ D23Useikoc3(dﬂr3) _ DZSUGCikocs(d—X3)’

ik ik ikos ikon (d—x oy (d— i (d—
Gy = D3 U1 + D33 Une™ 4 DasUse™™™ — D3y Use®™ ) — DyUse!™75) — DsUge ).
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