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ASYMPTOTIC PROPERTIES OF OPTIMAL SOLUTIONS IN
PLANAR DISCOUNTED CONTROL PROBLEMS*

FRITZ COLONIUS?: AND MALTE SIEVEKING?

Abstract. The classical Poincar6-Bendixson Theorem on limit sets of solutions of planar differential
equations is generalized to solutions of planar optimal control problems maximizing a discounted present
value that does not depend explicitly on the control function.
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1. Introduction. The main result of this paper is a generalization of the classical
Poincar6-Bendixson Theorem for the following class of optimal control problems (P)
(with n 2):

(1.1) Maximize e-’R(x(t)) dt,

subject to

(1.2) 2j(t)= x.(t) (x(t))+ Y ui(t)f{(x(t)) a.a. tR+, j= 1,..., n,
i=1

(1.3) u(t)=(ui(t))f=N a.a.tlR+,
(1.4) x(0) x e _;
here 8 > 0 and R :[R_ JR, f (f) :R-* are locally Lipschitz continuous, the set f
of control values is compact and convex, and the control functions are chosen in
(1.5) U,d Ud(N+) := {u :N+ - f, measurable}.
Thus we consider discounted optimal control problems where the integral of the
performance index does not depend explicitly on the control, and the system equation
has the "ecological form" (1.2) with control appearing linearly. Our original motivation
for considering asymptotic properties of optimal solutions comes from bioeconomics.
Here the study of such problems is often decomposed into two parts.

First an optimal equilibrium point e is searched for and then a determination
optimal approach path from the initial point Xo to e is tried (compare, e.g., Clark [5,
p. 317]). This approach is justified in the case of a single-state variable (n 1), since
here, in general, bounded solution x(. of (P) converge monotonically to an optimal
equilibrium as tends to +oc (see Theorem 2.7 below). For two state variables (n 2)
the classical Poincar6-Bendixson Theorem describes the asymptotic behavior of the
special class of (uncontrolled) differentiable dynamical systems; here the limit set w(x)
of a trajectory either is a periodic trajectory or consists of trajectories connecting
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equilibria. The Poincar6-Bendixson theorem generalizes within the framework of local
(nonditterentiable) dynamical systems (see Hajek [10]). However, optimal solutions
of (P) are not, in general, unique (cf. the examples given in 6 below). Hence they
need not form a local dynamical system. Nevertheless, the present paper shows that
the Poincar6-Bendixson Theorem can be generalized to optimal control problems of
the type above. The problem of nonuniqueness must be met at the following crucial
steps in the reconstruction ofthe classical argument for proving the Poincar6-Bendixson
Theorem.

(1) We want to form Jordan arcs from parts of solutions; however, solutions may
be self-intersecting. This problem is solved via the optimality principle: if an optimal
solution x returns at time t2 > t into the same state as at time t, then it is also optimal
to run through the same piece of trajectory x l[t, t2] again and again. The solution
obtained this way is optimal and periodic after time t. This is our justification for
studying only the limit sets of nonself-intersecting solutions.

(2) To construct "flow boxes" at nonequilibria we cannot rely on a local paralleliz-
ation theorem such as in dynamical systems. To prove existence of transversal sections
and appropriately defined "flow boxes" we use that the integrand in (1.1) does not
depend explicitly on the control u. Sometimes more general problems can be reduced
to this form (cf. Remarks 2.12, 4.8). The possibility of defining optimality by means
of such a functional has been exploited by Clark in a number of resource management
problems.

The literature on the asymptotic behavior of optimal solutions for (P) concentrates
mainly on establishing sufficient conditions for convergence to equilibrium. We only
mention Arrow [2], Rockafellar [15], [16], Feinstein and Luenberger [8], and Feinstein
and Oren [9]. The convexity assumptions made here are quite restrictive and are usually
not satisfied in resource management. Haurie 12], 13] relaxes the convexity condition,
such that they are, e.g., applicable to Volterra-Lotka equations. However, he must
assume existence of optimal equilibria (with additional properties).

Oscillatory behavior of optimal solutions is often attributed to nonlinear cost
effects and to age structure (Clark [5, pp. 166, 293], Deklerk and Gatto [7]). In 5
we present an example that possesses neither of these attributes.

For a problem arising in economics, Benhabib and Nishimura [4] analyze the
optimality system resulting from the Pontryagin maximum principle. Taking the dis-
count rate as a bifurcation parameter, they show that Hopf bifurcations occur. The
corresponding periodic solutions are optimal due to convexity assumptions.

The paper is organized as follows. Section 2 contains the basic assumptions and
what is needed later about convergent subsequences of solutions and their limit sets.
Furthermore the key lemma about transversal segments is proved as well as the existence
of "flow boxes." Section 3 is a study of optimal equilibria. As a consequence of
Pontryagin’s maximum principle it is shown that in "general" there are only finitely
many optimal equilibria, and a sufficient condition for attractivity of optimal equilibria
is established. The main result is Theorem 3.5, which settles a case in the Poincar6-
Bendixson Theorem. Section 4 contains the proof of the Poincar6-Bendixson Theorem
for nonself-intersecting solutions. Section 5 discusses resource management problems.
A predator-prey system where the predator is subject to harvesting is analyzed. As a
consequence of the Poincar6-Bendixson Theorem, there are optimal solutions having
as limit set an optimal periodic solution. Section 6 discusses nonuniqueness arising
when an optimal periodic trajectory does not contain an optimal equilibrium in its
interior as well as nonuniqueness in an example of a symmetric system of two harvested
competing species. Here nonuniqueness stems from the bifurcation of behavior in the
nonharvested system.
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2. Limit sets and flow boxes. We will denote solutions of (1.2), (1.4) by (t, x, u),
=> O, and always assume global existence of q(., x, u) on+ (uniqueness follows from

local Lipschitz continuity). Let q(x, u):= {q(t, x, u): +} and denote the value of
(1.1) corresponding to (x, u) by V(x, u). If not specified otherwise, convergence in
U means weak convergence in the L2-sense on compact intervals. We will also use

Ua() := u: ->, measurable}.
Throughout this paper, we assume that the following hypothesis is satisfied:
(2.1) For every compact subset K c[2_, the set {q(t,x, u): tE+,xK,u Uad}

is bounded.
DEFINITION 2.1. A pair (x, u) Eg Uao is called optimal if for all v Uo we have

V(x, u)>- V(x, v).
A pair (e, ue) [_ X 1 is called an optimal equilibrium, if e q(t, e, u e) for all +
and the pair (e, u e) is optimal (here u is identified with the constant control in Uad
with value U e). For an optimal pair (x, u), we let V(x):= V(x, u).

Remark 2.2. The notion of optimality above keeps the initial point x(0) x fixed
and considers only the effect of different control actions v.

Remark 2.3. Frequently it willminstead of (2.1)--be sufficient that for a fixed
(optimal) pair (x, u), we have that q(x, u)c

_
is bounded.

Remark 2.4. Let (x,u) x Uad be given and suppose that for some > 0, we
have j(t,x, u)=0 for alljJ {1,2,..., n}. Define

rli(S, X, hi) O, J,
qi(s, x, u),

_
J,

for s in a neighborhood of t. Then q, also solves (1.2) and 4’(t, x, u) q(t, x, u). Hence
by the uniqueness of solutions of ordinary differential equations q q, in a neighbor-
hood of t. Hence either qj (s, x, u) 0 for all s _-> 0 or qj (s, x, u) > 0 for all s _-> 0. Therefore
none of the species can become extinct in finite time and for any J
{yly)-O,jJ}_--+J) is invariant and the restriction of the system to [) is a
system of the same form.

LEMMA 2.5. Suppose xk-x in [_ and uk--> U in Uad. Then q(.,x k, uk)-->
q(’, X, U) uniformly on bounded intervals and V(x k, u k) --> V(x, u).

Proof The first assertion follows in a standard way from Gronwall’s inequality.
For the second one, take e > 0. Then for T and k large enough and xk(t):= q(t, X k, uk),
t[2+, k=0,1,2,’’’,IoV(x, u) e-’R(xk(t)) dt V(x, u) e-’R(x( t)) dt

+ R(x(t)) R(xk(t))]dt

+ e-’R(xk(t)) dt
T

using the first assertion and (2.1).
COROLLARY 2.6. Let (x k, u k) [_ x Uao (k ) be optimal and (xk)k bounded.

Then there are a subsequence (xki, bl ki) (iE) and an optimal (x, u) such that
limi q(., x ki, u k,) q(., x, u) locally uniformly and limi u k, u in Ud.
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Proof Existence of a subsequence (x k;, u k,) converging to (x, u) follows from
boundedness. Now let v Uad. Then, by optimality of (x ;, ui),

V(x, u) lim V(x, u i) >-_ lim V(x, v)
V(x, v).

This proves optimality of (x, u).
Let (x, u)

_
Uad be optimal and define x(. ):= q(., x, u).

THEOREM 2.7. (1) Suppose that n and x( t) is neither increasing nor decreasing;
then a < exist such that each e (a, is an optimal equilibrium.

(2) If e lim,_. x( t) then e is an optimal equilibrium.
Proof (1) If x(t) is neither increasing nor decreasing, there exist r < s < such

that x(r)=x(t), x(s)# x(r). We may choose s such that either x(s)=minx([r, t]) or
x(s) max x([r, t]), say x max x([r, t]). Choose any b (a,/3) (x(r), x(s)). There
is a first instant r > r such that x(r)= b, a first instant s > r such that x(s:)= b + e,
and a first instant t, > st such that x(t,)= b. Let s’ be the last instant < t such that
x(s’:) b + e. Then define

u() u( +) for 0-< cr s r,,
u,(s-r.+o)=u(s’+o) for 0-< o-_-< t s.

This way u (o-) is defined for 0 _-< o- -< s re; + t s’ zr. Now extend u,j to obtain a
periodic function on + with period zr. Define x in the same way as u using x(t)
instead of u(t). Then x satisfies (t)=f(x(t), u(t)) almost everywhere on [_ and
(x, u) is a solution of (1.1)-(1.4) with x(0)=b. Note that for all t_->0 we have
Ix(t)- b _-< e. Let en > 0 tend to zero. Then Corollary 2.6 implies that b is an optimal
equilibrium.

(2) Suppose e=lim,_x(t). For nputx(t)=x(t+n), Un(t)=u(t+n). Then
(xn, u) solves (1.1)-(1.4) with x,(O)=x(n). Hence e is an optimal equilibrium by
Corollary 2.6.

Next we introduce the central notions of this paper.
DEFINITION 2.8. For (x, u)_ Uad define the omega limit set co(x, u) by

(2.2) co(x, u) := {y "" there exist t + such that t -* and q(t, x, u) - y}
cl{p(t,x,u)" t>=n}.

For I [+ or I [, we call (x, u)
_

Ua(I) an optimal/-solution if the correspond-
ing solution q(., x, u) of (1.2) exists on I and for all I

V(cp(t,x, u), u(t+.)) V(qv(t,x, u)).
Frequently, we call optimal [+-solutions simply optimal. If (x, u) is an optimal
-solution, define the alpha limit set ce(x, u) by
(2.3) a(x, u):= f-) cl {q(t,x, u)" t<--n}.
Finally define for optimal (x, u)
(2.4) a3(x, u):= {(y, v)" (y, v) is an optimal -solution and there are t+ such

that t -* oo and q (tk +., x, u) p (., y, v) locally uniformly on
and u( t +. )- v in U}.

DEFINITION 2.9. A subset L of is called (positively) invariant if for all y L
there is an optimal (+-) -solution (y,v) with (,y,v)mL (respectively,
(+, y, v) ).
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PROPOSITION 2.10. Let (x, u) be optimal. Then co(x, u) is nonvoid, compact, and
connected. For every y co(x, u) there is v Uad such that (y, v) (x, u) and q(, y,
to (x, u). In particular, to (x, u) is invariant.

Proof Using (2.1), we see that to(x, u) is nonvoid, connected, and compact. Let
y to (x, u). Then there are tk - o with q (tk, x, u) -* y. By Corollary 2.6, we can, without
loss of generality, assume that s u(t + s), s [+, converges in Uad to some Uo
and s - r (t + s, x, u), s e +, converges uniformly on bounded intervals to r (., y, Uo).
Taking again, if necessary, subsequences, s u(t- 1 + s), s +, converges weakly
on bounded intervals to u_ :[-1, o)-. 12 and s -* q(t 1 + s, x, u) converges uniformly
on bounded intervals to p(.,y,u_):[-1, oo)- with Uo=U_ and o(.,y, uo)
(’, y, u-s) on [0, oo). By successively taking subsequences of (tk) we obtain sequences
u_n :[-n, oo) -->, p(., y, u_,) [-n, oo) -> [n with u-n u-n+ on [-n + 1,) and

d
d--- p(t, y, u_,)=f(cp(t, y, u_n), u_,(t)),

V(cp(-n, y, u-n), u_n(-n +" ))= V((-n, y, u-n)).
Defining

v(t) u_.(t) on I-n, oo),
we obtain an optimal R-solution (y, v).

The following lemma is our key for the construction of local transversal sections.
LEMMA 2.11. Let L be a compact positively invariant set and R(e)=

sup {R(x)lx L} for some e L. Then one of the following conditions is satisfied:
(i) e is an optimal equilibrium;
(ii) L contains a point x with O:f(x, ).
Proof If (ii) is violated there is v el) such that f(e, re) =0. By invariance of L

we find v Ud such that (e, v) is optimal with q(+, e, v)m L. Hence

V(e)= e-’R(q(t, e, v)) dt<= e-’R(e) dt

e-’R(q(t, e, re)) dt= V(e, re).
Thus (e, v) is an optimal equilibrium, i.e., (i) holds.

Remark 2.12. In 5, we will consider a two-dimensional problem from resource
management (n 2), where the integrand of the performance criterion depends also
on u. However, the problem can be transformed into one in which in the interior of
+ we obtain a criterion of the form (1.1) (R(x) becomes unbounded for x-->O 2+).

In fact, Lemma 2.11 remains true here, since it holds in the following general situation.
Suppose (1.1) is replaced by

(2.5) e-’ go(x(t))+ E ui(t)gi(x(t)) dt,
i----1

with g" +-*, 0, 1," ", m, locally Lipschitz continuous, and the following condi-
tion holds:
(2.6) There is a continuous function R" int+ - such that

a, u)) converges for every adt int[ 2+,U Uad
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to a real number VR (a, u).
() Apair(a,u)int2+ Uadisoptimalifandonlyif VR(a,u) >- VR(a, v)

for all v Uad.
First observe that Corollary 2.6, Proposition 2.10, and Theorem 2.7 remain true for
the criterion (2.5). If L cint 2+ this follows from Lemma 2.11. Otherwise, L (’102+ ;
suppose, for example, L L tq rr-(0) where rr(x, x2)= xl. By Remark 2.4, the
restriction of the system to rr-l(0) is well defined and L is compact and invariant for
this system. Since the restricted system again is of the form (2.5), (1.2)-(1.4), Theorem
2.7 yields the assertion.

We first consider case (ii) of Lemma 2.11, and show that it translates into a
geometric condition.

DEFINITION 2.13. Let x E", I:E --> E linear and a > 0. If
If(y, u)> c

for all y in a neighborhood W of x and all u e fi, then
S := W 1-’(x)

is called a local transversal section through x.
PROPOSITION 2.14. Suppose that O:f(x, 1). Then x possesses a local transversal

section. Hence a compact positively invariant set L either contains an optimal equilibrium
or a point possessing a local transversal segment.

Proof In view of Lemma 2.11, we only have to show the first assertion. If
O_f(x, ), then by the Hahn-Banach Theorem this assertion follows, since f(x,)
is compact and convex.

Obviously, trajectories "can cross a local transversal section only from one side."
The next result presents an important consequence from the existence of a local
transversal section.

We need the following definition.
DEFINITION 2.15. Let S be a local transversal section through x, and let V c Vo

be neighborhoods of x. Then the triple (Vo, V, S) is called a flow box around x, if
it has the following property:

If (., x, u) satisfies
q(to, X,u) Vo, (t,,x,u)V1, q(t2,x,u) Vo

for some 0_-<to<t<t2, then there exists te(to, t2) such that q(t,x,u)eS and
q(s, x, u)e Vo for all s between and tl.

THEOREM 2.16. Let S be a local transversal section through x. Then there are
neighborhoods Vo and V ofx such that (Vo, VI, S) is a flow box around x.

Proof There exist a linear map l: , a constant a > 0, and a neighborhood
W of x such that S W fq 1-(x) and

l(f(y,v))>oe for allyW, v.
Choose a ball Vo=B(ro, x) around x with radius ro>0 such that Vo c W and put
c := sup {If(Y, u)l lY e Vo, v e }. Then choose rl e (0, ro) so small that
(2.7) lz- ce/2c(ro- rl) --< ly <- lz + a/2c(ro- rl)
for all z, y e V B(q, x). We have for t> ’->0:

q(t, x, u)= q(t’, x, u)+ f(q(s, x, u), u(s)) ds
t’
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and hence

l(q(t,x,u))=l((t’,x,u))+ lf(q(s,x,u),u(s))ds
t’

>-- l(q(t’, x, u))+ a(t- t’)
provided that p(s, x, u)e W, ’<- s <_-t. Without loss of generality, we may assume

q(s,x,u)Vo for all to -<-s_-<t2
replacing, if necessary, to by the last time before tl at which q(t, x, u) is in the
complement of Vo and t2 by the first time after tl at which (t, x, u) leaves Vo. We have

ro- , -< I(, x, ) (o, x, u)[ _-< c(- o),
ro- rl--< Iq(t2, x, u)-- q(t, x, u)l c(t2- t).

If lq(to, x, u) <= lx <= lq( t2, x, u), or lq(t2, x, u) <= lx <= lee(to, x, u), the assertion follows
by continuity of - If(t, x, u). Hence we only have to consider the following two cases.

Case 1./x < min {lq(to, X, u), lq(t,x, u)}. Here lq(t,x, u)>= lq(to, x, u)+ cr(tl-
to)> lx+c/c(ro-r), contradicting (2.7) for y=q(t,x, u).

Case 2. lx> max {lq(to, x, u), lq( t2, x, u)}. Here lq( t, x, u)>- lq( tl, x, u) + a(t-
t) > lq(t, x, u)+ a/c(ro- r), again contradicting (2.7).

3. Optimal equilibria. In this section we first characterize optimal equilibria by
necessary optimality conditions. It turns out that "in general" only finitely many
optimal equilibria exist. Strong additional assumptions ensure that optimal equilibria
in a limit set are already reached in finite time. Furthermore, limit sets co(x, u) reduce
to a single optimal equilibrium provided that co(x, u) consists of equilibria only and
contains at most finitely many optimal equilibria.

First we discuss the following problem:
Maximize (2.5) subject to (1.2)-(1.4)

where 12 is a rectangle in 2 (in fact, the "ecological form" of (1.2) is not needed in
this section, if not stated otherwise).

Abbreviate

g(x, u) go(x) + E bligi(x), f(x, U) =fo(X) + uigi(x).
i=1 i=1

For any equilibrium e (x, x), there are the two equations (for x, x2, u, u2) defining
an equilibrium, namely
(3.1) o =f(x, u).
To derive a second set of equations we shall use Pontryagin’s maximum principle (cf.
Ha|kin 11 ]). Write

H ho e-’g + h f,
,k(t) =-Ao e-’’g-f’A (adjoint equation).

Here

f= f2 and f.’,,=\f,, f,/,2_ A= A2
Thus,
H ao e-a’go+ a,fo + a2f) -- //1(/0 e-a’gl + a,fl + a2f2) + u2(ao e-’g2 + a,f + a2f).
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Put/z e’h. Then/2 /z + e’. Hence the adjoint equation reads
4 -Aogx + 6I f)tx,

and
H h(t, x, A + Ul(Aogl + txlf + tx2f) + u2(Aog2+/xf +/xf).

Pontryagin’s maximum principle implies that (ho, h (t) 0 for all -_> 0 and H attains
its maximum over f in (ul, u). We may assume that Ao 0 or o 1.

Now we discuss the possible numbers of optimal equilibria. There are three cases:
Case 1. u (u, u) is one of the corners of
Case 2. u lies in the relative interior of one of the edges of
Case 3. u int
Case 1. Recall that there are only four corners of
Case 2. One equation for u is given by the condition that u lies on one of the

edges of . Furthermore the derivative of H in direction, say v (v, v2) (parallel to
the edge of ) containing u), vanishes, i.e.,

(hogl + t.tlf + Uzf)v + (hog2-k-/zf +/.t2f22)v2--0 for all t.
Thus with q := vf + v2f, vlf + v2f)
(3.2) q/.t -ho(gv + g2v2) for all t.
Insertion into the adjoint equation yields
(3.3) O=q12=q(-Aog,+(aI-f’)lz) or q(6I-f’)>=ho%, forallt.
If g and q(6l-f) are linearly dependent we obtain with (3.1), the assumption that
u lies on an edge of 2 and
(3.4) det (q’, (6I-f’)o’)-0,
four equations for the unknowns xl, x2, ul, u2. If p and p(6I+f’) are linearly
independent, (3.2) and (3.3) imply that /z is constant and that ho= 1. We assume
det (aI-f’x)# O. Then by the adjoint equation and (3.2)
(3.5) q(tI--ftx)-lgx =--glVl d- --g202,
and again we obtain four equations for xl, x2, u, uz.

Case 3. Put

\ST ST/
Then

Suppose det F 0. Then

/x=-hoF-(g)g2
and it follows that Ao 1, and O. The adjoint equation yields
(3.6) 0= gx+(6I-f’)x and gx=(6I-fx)F-l(g’).

\ /g
Hence together with (3.1) we obtain four equations for (x, x2, u, u).

Now suppose det F 0. By introducing new control variables we can eliminate
one control variable in the system equation and proceed with the discussion as in Case
or Case 2 above.
We formulate the conclusion of this discussion in the following remark.
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Remark 3.1. Consider problem (2.5), (1.2)-(1.4) with n=m=2 and f=
[0, U] [0, U2]. Then every optimal pair (x, u) such that u 1), 0 =f(x, u) must satisfy
four equations in the unknowns xl, x2, u, u2. In concrete examples, these equations
may serve to compute all candidates for optimal equilibria (recall that the maximum
principle is only a set of necessary conditions). On the other hand, these equations
justify the statement that "in general" there exist at most finitely many optimal
equilibria. We shall use this as a hypothesis further below in this section and in 4.

We proceed to analyze finite-time reachability properties of optimal equilibria in
limit sets.

DEFINITION 3.2. An equilibrium e is called strongly optimal if the constant
function x(t)= e is the unique optimal trajectory for start in e.

LEMMA 3.3. Let (x, u) be optimal and suppose that e is a strongly optimal equilibrium
in to(x, u). Thenfor every T> 0 and every neighborhood Vole there exists a neighborhood
U of e such that q( t, x, u) U implies q ([ t, + T], x, u) c V.

Proof Assume, contrary to the assertion, that there exist a neighborhood V of e,
T>0, and t,-o with q(t,,x,n)-e and q(t,+s,,x,u)V for some s,[0, T].
Without loss of generality, s-s[O, T]. We may assume that q(., q(t,,x, u),
u(t,+.)) converges uniformly on bounded intervals to an optimal q(., e, v). Since
q(s, e, v) V and q(0, e, v)= e, this contradicts strong optimality of e.

THEOREM 3.4. Let (x, u)
_

Uao be optimalfor (1.1)-(1.4). Let e to(x, u) with
the following:

(i) e is a strongly optimal equilibrium in int _;
(ii) There is u int f with f(e, u) 0;
(iii) m >-_ n andre(e),... ,f(e) are linearly independent;
(iv) R is a C2-function in a neighborhood of e and R’(e)=0, R"(e) is negative

definite.
Then for all > 0 sufficiently large q( t, x, u) e.
Proof (a) Suppose q V " is a coordinate change defined on an open neighbor-

hood V of e. If x(t) is in V and satisfies x(t)=fo(x(t))+= u(t)f(x(t)), then
y(t) b(x(t)) satisfies )(t)= (b(x(t))(fo q-)y(t)+= ut(t)(O(x(t))(f d/-)(y(t)),
which again is a system of equations of the type we are considering. Obviously our
assumptions (i)-(iv) carry over. By (iv) and according to the Morse Lemma there is
a coordinate change q such that R q (x)=-i= x for all x in a neighborhood W
of O(e).

Hence we may without loss of generality assume R(e+x)= R(e)+=l (x-e)
in a ball V(e, r) of center e and radius r.

(b) By (ii), (iii) and the implicit function theorem r may be chosen so small that
a smooth function u: V(O,r)x V(e,r)-->O exists such that for all (y,x)
V(O, r) x V(e, r) we have y f(x, u(x, y)). In fact, if F(x) is the matrix with columns
fl(x),""" ,f,(x) then

u(x, y)= F-l(x)(y--fo(X)).
In particular, if x(t)-- a+ t(e--a), 2(t)= e--a=f(x(t), u(x(t), e--a)) provided
a < r. Hence x(t)= q(t, a, u) is an admissible solution of our system at least up to
t-- (u(t)= u(x(t), e-a)).

(c) We now assume e q(x, u) and try to reach a contradiction to (i). See Fig.
3.1. Choose T> 3. According to Lemma 3.3 there is by (i) > 0 such that q((t, +
T),x, u)c V(e,r). By our assumption in (a) there is a first time s (0, 1) such that
for all s(s,l]

R(xo(s))> R((t+s,x, u))
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ao

FIG. 3.1. q3 visits ao, a, e, a3, a:.
where

Put

then

Put

Xo(S)=ao+s(e-ao), ao=q(t,x, u).

a q(t+s, x, u),
le aol (e a,), 0_<- s<_---x,(s)=al+Sle_al

R(Xl(t))> R(q(t+s,+s,x, u)), O<--s<=s2

a2= p(t+ T, x, u),
x2(s)=e+s(a2-e), 0<--s<--l=s3.

Note that S + S -- S < 3 < T.
There is a last time S4 C (0, $3) such that

R(x2(s))> R(q(t+ T-s3+s,x, u)),

a3 qg(t+ T- s3 + s4, x u),
e + , _7 (ag e), 0 <-_ ,

R(x3(s))> R(q(t+ T-s3+s,x U)),

Put

Then

S C (0, $4).

S4

S (0, S4).
Now we combine the xj’s to build a solution that performs better than q(., x, u). Put

(s,x,u),
XI(S-- t--S2)

q3(s) e,
x3(s- t-,T+ s3),
,(s, x: u)

O<-s<-t+s,
t+ SS t+ Sl + $2,
t+S+S2<=S<---t+ T-s3,
t+ T-s3<=s<-t+ T-s3+$4,
t+ T-s3+s4<:s.

The definition makes sense since T> S --$2-I- S Using (b) we may find v gad such
that q3(s) q(s, x, v). But

0- t+ s < t+ T-s3+ $4-- 0"2
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and
R(q(s, x, v)) > R(q(s, x, u)) for s (o,, cry.),
R(q(s, x, v))= R(q(s, x, u)) for s (or,, or2).

Therefore V(x, v)> V(x, u) in contradiction to the optimality of (x, u).
Next we give a sufficient condition for optimal solutions to converge to a single

optimal equilibrium. This result will be used substantially in the next section.
THEOREM 3.5. Let (x, u)12_x Uad be optimal for (1.1)-(1.4). Suppose the fol-

lowing"
(i) to(x, u) contains at most finitely many optimal equilibria.
(ii) to (x, u) c E {y

_
there exists v f with o f(y, v)}.

Then to(x, u) consists of a single optimal equilibrium.
Proof Suppose that

4to(x, u)-> 2.
There is e to (x, u) and a sequence of points e, to (x, u) such that lim, e, e and

a sup {R(y)]y to(x, u)} lim R(e,).
There is to(x, u) such that

b R(g) < a.
Otherwise all points in to(x, u) would be optimal equilibria and by connectedness
to(x, u) would contain infinitely many optimal equilibria contrary to (i). We choose
numbers b0, b, b2 with

a > bo> bl > b2 2> b
such that there is at most one optimal equilibrium e in to(x, u) with R(e) > b2.

Choose (t) c I2+ with t ee and q (t, x, u) - e. For every k N there are sk __> 0,
0, 1, 2, with

s:= inf {s 0: R(q(t+s,x, u)) < bz},
S := sup {s-<_ s2k" e(q(tk+S,X, U))> bl},
Sok := sup {s <-- sk" R(q(tk + S, X, U)) > bo}.

We may assume that the functions
q( tk + sko +’, X, U)

converge uniformly on every bounded interval to an optimal trajectory q(., y, v)c
to(x, u). Then y E and R(y)= bo. Next we show the following" The sequence t2k

k+ls-Sok, k N, is bounded. Otherwise we might assume that t2k < tz and tk oe. The
functions

R(qO(tk+Sko+t,x,u)), t[0, t2k]
have values in

V(bo, b) := {z" bo >- R(z) >- b}.
Hence also q(., y, v), to(y, v)c V(bo, b2).

Since to(y, u)c E, Lemma 2.11 implies that to(y, v) contains an optimal equili-
brium. This contradicts the choice of b2.
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Thus (t2k) is bounded and, considering subsequences, we may even assume that
tzk _. t2 and lk sk Sok - tl with 0 < tl t2 <. Hence,

We obtain

R(y) R(q(O, y, v))= bo,
R(q(t,y, v))<-bo
R(q(t, y, v)) <= b
R(q(t, y, v))<=a

for [0, tl],
for 6 t, t2],
for [t2, ).

e-tR(q(t,y, v)) dt= + + =<-(1-e )+-(e-tl t2

Since y E and (y, v) optimal
1 R(y)=b fo -’R-<= e (q(t,y,v))dt;

hence

or

bo =< bo- bo e -tl6 + b e -’,a b e-’2 + 6
t2

e-t2
t2

bo<-b(1-e(’,-’9)+t3e ’, R(q(t,y, v)) dt.
t2

Note that the right-hand side is constructed independently of bo. Hence if a +oe we
may let bo tend to a +oe, thus obtaining a contradiction since ,2 converges to a finite
value. Hence we may assume that a is finite and thus

bo -< b e(’’-’) + a e
Letting bo tend to a, we find

a( e(’’-’ga) _-< bl( e("-’)),
leading to the contradiction aN b since q(t, y, v)= b2, q(tl, y, v)= hi, and hence

Using similar arguments as in the proof above, we can show the analogous result for
c-limit sets.

THEOREM 3.6. Let the assumptions of Theorem 3.5 be satisfied for a(x, u) instead
of to (x, u). Then c (x, u) consists of a single optimal equilibrium.

Remark 3.7. Let n 2, replace (1.1) by (2.5), and suppose that (2.6) holds. Let
(x, u)[+ Uao be optimal. Then when we assume (i), (ii), a slight change in the
proof of Theorem 3.5 shows that either to(x, u) consists of a single optimal equilibrium
or is contained in the boundary of 2+" Furthermore the following holds" Let (y, u)
t3(x, u) with to(y, v)=O + such that to(y, v) contains only a finite number of optimal
equilibria. Then to(y, v) consists of a single optimal equilibrium.

Proof Suppose the assertion is false. Then #to(y, v)>-2, and since to(y, v) is
connected, to(y, v) contains infinitely many points. By assumption there is z (Zl, z2)
to(y, v), which is not an optimal equilibrium, say with z2 0. There is (z, w) o(x, u).
Since the first component q(., z, w) is not constant, it is by Theorem 2.7, say, increasing
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(if it is decreasing, analogous arguments will apply). By Remark 2.4, the second
component q2(t, z, w) vanishes for all t. Let > 0 such that the segment between z and
z’= q(t, z, w) does not contain an optimal equilibrium. Since z, z’ to (x, u) there are
tn, sn => 0 such that

limtn=+, limq(tn, x,u)=z’, limq(t,+s,,x,u)=z

and for all n , [0, s,],
zl<=ql(t,+t,x,u)<=z, O<=q2(t,+t,x,u)<=l/n.

We may assume that the sequence of functions q(t, + t, x, u) converges locally
uniformly to a function q(., z’, w’) such that (z’, w’) o3(x, u). If lim s11 +, then
to(z’, w’)c [zl, z] {0}. By Theorem 2.7, to(z’, w’) contains an optimal equilibrium,
in contradiction to our assumption.

Therefore a subsequence of (s11) converges to some s[0,). Obviously,
q (s, z’, w’) z. Define

w"(cr) w(cr) for 0<- o- =< t,
w"(cr)=w’(cr-t) fort<cr<=s+t,

and extend w" periodic on / with period s + t. Then (z, w") is optimal and periodic.
Now consider (z, w") as an optimal pair with respect to the restriction of our system
to +x{0}-l+ (Remark 2.4). Since q(., z, w") is neither increasing nor decreasing,
Theorem 2.7 implies the existence of infinitely many optimal equilibria contrary to the
assumption.

4. Poinear-Bendixson Theorem. The analysis of this section is restricted to two-
dimensional systems (i.e., n- 2). Our final result, Theorem 4.6, is a generalization of
the classical Poincar6-Bendixson Theorem. If we drop the assumption of that theorem
that q(., x, u) is nonself-intersecting, we obtain an optimal periodic solution in a trivial
way according to the following proposition.

PROPOSITION 4.1. Suppose that (x, u)
_

Uad is optimal and q(., x, u) intersects
itself i.e., there are T2 > T1 >- 0 with q( T, x, u) ( T2, x, u). Then there is Uo such
that (x, t) is optimal and q( T + s, x, u) q(T + k( T2- T) + s, x, ) for s [0, T- T],
k.

Proof Define (t)= u(t) for t [0, T],
(T+k(T2-T)+t)=U(Tl+t) fort6[0, Tz-T], k6.

Then the assertion follows since final segments of optimal solutions are optimal.
We call a solution (x, ) with the property above finally periodic.
For the reader’s convenience, we cite the following classical theorem (see, e.g.,

Beck [3, Cot. C.23]), which will be used frequently.
JORDAN’S CURVE THEOREM. Let J be a Jordan curve in 2 (i.e., a homeomorphism

from the circle into 2). Then 2\Im J has two components, one of which is bounded
(called ins J) and the other one (called outs J) is unbounded. Each one has boundary
Im J and is simply connected.

Since the orientation does not concern us, we identify J with its image.
LEMMA 4.2. Let (x, u)6+ Uo and suppose that the corresponding trajectory

q (., x, u) is nonself-intersecting. Then a local transversal section S has at most one point
in common with to(x, u). For optimal R-solutions it follows also that S has at most one
point in common with a x, u ).
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Proof As in the theory of uncontrolled differential equations (see, e.g., 1, Lemma
24.1] or [14]) we prove the following: Let (xi) be a sequence of points in (x, u)f3S.
If (xi) is increasing on (.,x, u), then it is also on S. Now suppose that y, Y2
w(x, u) S and y Y2. Let be disjoint neighborhoods of y., j 1, 2. Then there
exists a sequence tk - C such that

(t2k+,,x,u) U, and ( tzk, x, u) U2, k .
By Theorem 2.16, we may choose Uj= V, where (V, V, S) are flow boxes around
yj, j 1, 2, and Vo f-I Vo --. Then there exists a sequence (sk), Sk oO, with

(s+,, x, u) U, t S, (s2+,, x, u) U S.
This contradicts the assertion above.

The same arguments apply to a a-limit sets of optimal R-solutions.
PROPOSITION 4.2. Let (x, u) 2+ Uad be optimal and suppose that q(., x, u) is

nonself-intersecting. Let (y, v) be an optimal i-solution with (, y, v)c to(x, u). Then
w(y, v) and a(y, v) consist of equilibria only or (., y, v) intersects itself in a point z
possessing a local transversal section S.

Proof Suppose that to(y, v) contains a point z which is not an equilibrium. Then
z possesses a local transversal section S by Lemma 2.11. Using a flow box around z
we find that q(y, v) S #. Since (y, v), to(y, v) w(x, u) and z
w(y, v) S to(x, u)f3 S this implies by Lemma 4.2 that S to(x, u)= {z}, and hence
{z}= (y, v)71 w(y, v). Thus there is T1 >--0 such that (T1, y, v)= z. Since z is not an
equilibrium, there is a neighborhood Vo of z and s > T with (s, y, v) Vo. Using a
flow box Vo, V, S) around z, we find a T2 > s with (T2, y, v) S. Hence ( T2, y, v)

T, y, v) z. Thus (., y, v) intersects itself in z.
We prepare the proof of the next proposition by the following lemma.
LEMMA 4.4. Let (C,) be a decreasing sequence of closed sets in . Define

C := 71, C,, let nk -, and
D := {y q: there exist x, with x,,, OC and x, - y}.

Then 0C D.
Proof Suppose y D, i.e., there are (x,,,) with x, OC, and x, y. Let B(y, e)

be the ball with center y and radius e > 0. Then for k large enough x, B(y, e). Since
x, OC, there is y, B(y, e)\ C,, B(y, e)\ C. Since e > 0 is arbitrary, y int C. Since
C,. C,, for k > it follows that x, C,, for k > and, since C,, is closed, y 6 C,, for
all /. Hence y C\int C OC.

Conversely suppose that y OC and note C k C,. Then for every e > 0 there
exists z B(y, e)\C. Hence there is nk such thaty B(y, e)\C,. Suppose that B(y, e)f3
OC, . Then

B(y, e)=(B(y, e)\C,)U(B(y, e) f’) int C,.).
Since B(y,e) is connected and zB(y,e)\C, we conclude that =B(y, e)int C. B(y, e)f3 C, y. This contradiction shows that there exist y,.
B(y, e) 710C,. Evidently, lim y, y, and hence y D.

PROPOSTOy 4.5. Let (x, u)2+ Uad be optimal and assume that q(., x, u) is
nonself-intersecting. Suppose that there are (y, v) t3 x, u) and T2 > T with

( T1, y, v) ( T2, y, v)=: z,
with z possessing a local transversal section S. Then

w(x, u) q([ T1, T2], y, v).
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Proof Since z co(x, u) we can use a flow box around z to construct inductively
a sequence of numbers tn such that tn+ is the first instant after tn with (t, x, u) S.
Then for all n we have tn < t,+, t,c, and (t,, x, n)--> z. Now define the Jordan arc
Fn to consist of ([t,, t,+],x, u) and the segment on S between q(tn, x, n) and
q (t,+, x, u). There are two cases.

Case 1. For all n ins F, =ins F,+.
Case 2. For all n outs F, = outs F,+.
Let us first consider Case 1. Put C := (3 cl ins F,. By Lemma 4.4, OC w(x, u).

Now let be arbitrary and consider a flow box (Vo, V, S) around z such that Vo
is a ball around z with radius 1/1. The set V contains a ball around z of positive
radius r. Since (y, v) o3(x, u), there is t> 0 such that

I(t+T,+s,x,u)-q(T+s,y,v)l<r, O<=s<=T2-T,.
By the flow box property we may follow q(t + T + s, x, u) starting with s =0 and
without leaving Vo until we reach + T + s t,,. Applying the same argument to the
instant + T2-T we find that the part of q([t,,, tn,+,], x, u) not contained in q([t +
T, t+ T2], x, u) is contained in Vo. Hence each a q([t,,, t,,+,],x, u) has a distance
less than 1/I to some a’ q( T, T2], y, v). Thus a second application ofLemma 4.4 yields

q([ T, T2], y, v) 0 F’l cl ins F,, 0 cl ins F, to(x, u).
Case 2 can be treated analogously.
The next theorem presents the main result of this paper.
THEOREM 4.6. Let (x, u) + Uad be optimal for (1.1)-(1.4) with (., x, u)

nonself-intersecting and suppose that w(x, u) contains onlyfinitely many optimal equilibria.
Then one of the following cases occurs"

There are T> 0 and an optimal [-solution (y, v) t3 x, u) such that y
q(T, y, v) and w(x, u) q([0, T], y, v).

(ii) ere are optimal E-solutions (Yi v w x, u) and optimal equilibria e
such that for all i,
(4.1) ef lim (t, Yi, v), e lim (t, Yi, vi),

(4.2) w(x, u)= q(E, yi, vi)w {e, e-}.
Proof Let y e w (x, u). By Proposition 2.10 there is v Uad such that (y, v) a3 (x, u).

If either o (y, v) or w (y, v) contain a point that is not an equilibrium, then Propositions
4.3 and 4.5 imply that (i) holds (naturally, we may take T =0).

In the other case, a(y, v) and w(y, v) consist of equilibria only. Since c(y, v),
w(y, v) w(x, u), Theorems 3.5 and 3.6 imply that there are optimal equilibria e- and
e+ with

e- lim q (t, y, v), e+ lim q (t, y, v).
COROLLARY 4.7. Let (x, u)2+ Ud be optimal for (1.1)-(1.4) and suppose that

w(x, u) does not contain an optimal equilibrium. Then either there is Ud such that
x, is optimal, finally periodic and q x, q x, u) or there are optimal periodic

(y, v) (x, u) (y, v).+ Ud with to
Proof If q(., x, u) is self-intersecting the assertion follows from Proposition 4.1.

Otherwise Proposition 4.5 implies the existence of optimal ()7, ) and Tz > T _>-0 with
q(T,)7, ) q(T2, .9, ) and w(x, u) q([ T, T2], y, v). Applying Proposition 4.1
again, we obtain the assertion.
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Remark 4.8. By Remarks 2.12 and 3.7, the results above remain true if the
performance criterion (1.1) is replaced by (2.5) provided that (2.6) holds.

5. Application to bioeconomic problems. The crucial assumption in the Poincar6-
Bendixson Theorem given above is that the integrand of the performance criterion
does not depend explicitly on the control u. In this section we show that the weakened
form of this assumption specified in (2.6) can be verified in bioeconomic problems.

Furthermore, we present a specific example where the w-limit set of an optimal
solution consists of an optimal periodic trajectory that is not an optimal equilibrium.
Feasibility of this case is a specific feature of the two-dimensional problem compared
to the one-dimensional problem.

We will have to ensure that the w-limit set has empty intersection with 0[2+. This
deserves special attention also independently of the question considered here. Hence
we give the following definition.

DEFINITION 5.1. A pair (x, u)eint_x Uad leads to extinction if oo(x, u)(-I
O

PROPOSITION 5.2. Let (x, u) int
_

Uad be optimal If (x, u) leads to extinction,
then there are optimal (Yk, vk) k O, 1, 2, , such that y int _, y - Yo OR

_
and

sup {d(z, ON_), z q(y, v)}-O for k-+.
Proof In the case co(x, u)= 0_ we may choose Yk := q(tk, X, U), Vk := u(tk +" ),

with tg-. Now assume that w(x, u)f30[+, but w(x, u):O_. For e>0 let
B := {z _: d(z, 0_) <_- e}. Choose e small enough such that w(x, u) B. Then there
are tl z and Sl > O, , such that for all large enough

q( tl, x, u) OB, q( h + s, x, u) B/t, q( tt + s, x, u) B fors[0, st].
Without loss of generality we may assume that t- q(h+ t, x, u) converges locally
uniformly to some q(., y, v) with (y, v) d)(x, u), y OBj. If (s) is bounded we may
assume that s- seN+. This implies q(s,y, v)ON_. Hence q(0, y, v)cON_. This
contradicts q(h,x, u)OB. If (s) is unbounded, we may assume that sl-*oo. This
implies q (y, v) c Be. Choosing a sequence (e) with ek -> 0, we obtain (y, vk) satisfying
the assertion.

Example 5.3. Maximize

V(a, u)= e-’{p,x,(’y,,u, "at- ’Yl2U2)Fl(x1)’nt-p2x2(’Y21Ul q’- "Y22u2)F2(x2)
Cl/’/1 C2U2} dt

(where dependence on has been dropped) such that
Xl(FA(X)- (3/llU t-

)2 X2(F(X) (’)121Ul q- ")122u2) F2(x2)),
(Xl(O) xz(O))=(a, a2)[ 2+
(u,(t), u2(t))-=[O, U1]x[O U2].

This example is designed to model resource-harvesting of two resources, the stocklevel
of which (at time t) is denoted by x(t), respectively, x2(t). There are two technologies
available, such that an effort UJ spent applying technology j results in a catch-rate
]/qljFi(xi) with respect to the species i. y,..j are nonnegative efficiency coefficients; Fi(xi)
is a positive locally Lipschitz continuous function 2+-, which relates effort and
catch. There is a more detailed discussion of these "density profiles" in Clark [6].
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Pl, P2 are nonnegative constants to be interpreted as prices per unit biomass, c,
c2 are nonnegative constants to be interpreted as cost per unit effort spent applying
technology one, respectively, two. Therefore V(a, u) represents the "total discounted
net revenue."

The rewriting of V(a, u) in int2/. Note first that
XlF(x)--l

3/11Ul " 3/12U2 x1FI(x1)
xlg(x e3/21/,/1 q’- 3/Z2U2 x2F2(x2)

plXl(3/11/,/1 -}- 3/12/,/2)iwl(xl)-- F(x)plx
pzxz(ylU + yzzuz)FZ(x2)= F(x)pzx2-p222.

We assume that the matrix (%) is invertible. For obvious reasons the special case of
3/12 3/2 0 is called "selective harvesting." Suppose first yl # 0. Then

{ Y Y12’ F(x) 721F(x) 22 721 21Y22 ) /’/2 F3/11 F2(x2) 3/llFl(xl)x2F2(x2 "-}-3’ x (x)
or with d Yl 3,’22 3/123/21

where

3/1-- cl -} Cl 3/123/21 C2 3/21 Cl 3/12 C23/11
3/1 d3/ d 3/2-- d d

and G, G, G are locally Lipschitz continuous functions of x. Put G4(x) G3(x)+
F(x)pxl + F(x)p2x2. Then

V(a, u)= e-tG4(x(t)) dt+ e-’ 3/ 3/2xF(x)-Pl ) + x2F(x2)-p2 2 dt.

Put g(y)=; (/fF(f)-p), where z=(z,, z2) is a pair of positive reals fixed
once and for all. Now

(5.1)

V(a, u)= e-a’G4(x(t)) at+ e-’[g(xl(t))),(t)+g’2(x2(t))2,2(t)] at

e-a’G4(x(t)) dt + e_a, d-7 [g,(x,(t)) q- g2(x2( t))] at

io e-’G4(x(t)) dt+e-’[g(x(t))+g2(x2(t))]
t=O

+ e-a’6[gl(x,(t)) - g2(x2( t))] dt

r(a)+ e-’R(x(t)) dt
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with r(a):= -gl(al)-g2(a2), R(yl, Y2)= G4(y) + 8gl(yl)+ 8g2(Y2), provided that
(5.2) lim e’[gl(xl(t))+ g2(x2(t))] =0.

To establish (5.2) let c(t):= e-’gj(xj(t)) for j= or j= 2. It suffices to show that
limt_, c(t) 0. Now

(t)= _6c(t)+ e-,[ 7x(t)FJ(x)(t))-PJ xj(t)[FJ(x(t))-(Ylul(t)+ yj2u2(t))FJ(xj(t))]
=-6c(t)+h(t),

where h is a measurable and, since FJ(O) O, also bounded function on +. By the
variation of constant formula

[c(/)[ _-< ([c(0)l + [[hl[/) e-’
and (5.2), and hence (5.1), follows.

The definition of R given above implies for Xl, x2> 0 that
lim R(y)=+o if )’2X0,y(x1,0)

lim R(y)=+oo if )’iX0.y- (0,x

Property (2.6)(a) follows from (5.1) and (5.2).
Analogous arguments can be used if )’11 0, and also in the case of nonselective

harvesting, where )’l )’l 0.
Remark 5.4. We may construct examples of optimal control systems (with rn > n)

where condition (2.6) is not satisfied.
Now we present an example of a predator-prey system where both species are

subject to innerspecific competition. Only the predator is harvested and the costs are
proportional to the effort. The unharvested system possesses a limit cycle. We will
show that there are optimal trajectories tending to an optimal periodic solution as

oo. The system equation and the analysis of the uncontrolled system are taken from
Sieveking 17].

Example 5.5. IoMaximize e-’[ pqx2- c]u dt

Subject to 21 xl[a )’xz- h(xl) exl],
2 X2[--/ -/X LI,X qu], +,
(Xl(0), X2(0))= X 2
U [0, U 1]

where p, q, c, a,/3, )’, ,, I, x, U are positive constants, and h is defined by

h(x,)={(xl-fl/A) forO<--xl<--fl/A,
0 for / Z X

The system above is a special case of Example 5.3, and conditions (2.1), (2.6) are
satisfied. First we analyze the uncontrolled equation where ul uz 0" All trajectories
q(., x, 0) are bounded and for e,/x>0, small, the only equilibria are (0, 0), (a/e, 0)
and a point e near e (fi/,, a / )’).
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The equilibrium e is (locally) asymptotically stable the points (0, 0) and (c/e, 0)
are saddles.

For e, p, > 0, small enough, the equation possesses a limit cycle (applying the
Poincar6-Bendixson Theorem to the time-reversed equation, this implies the existence
of another--unstable--periodic solution).

In the following, we assume that e, t are small enough such that existence of a
limit cycle is guaranteed. There exists an initial value xint[ 2+ on the line x2--
-/t.t +A/tzx such that p(., x, 0) spirals outward, i.e., there exists a (minimal) time
T > 0 such that ( T, x, 0) lies on the same line above x. Using continuous dependence
of solutions on the right-hand side, this implies that for U> 0, small enough, also
every trajectory q(., x, u), u(t) [0, U 1] almost everywhere, spirals outward. In par-
ticular, this is true for an optimal trajectory q(., x, u). See Fig. 5.1.

The controlled system has exactly two equilibria on 0[ namely (0, 0) and (c/e, 0)+,
Next we show that no optimal pair (x, u) int2+ x Uad leads to extinction. Fors> 0, let Ae :- [s, c/e] x [0, M] where M := max z2(t) and z (z, z2) is the unique

trajectory in int2+ of the uncontrolled system with lim,__ooz(t)=(c/e, 0). Then we
can show that there exists (> 0 with the following property" For all (y, v) int [+ Uad
there is T> 0 such that for all _>- T it follows that q (t, y, v) Ae; furthermore q (y, v) c
Ae for every (y, v)Ae U. Hence w(x,u)f-I{O}+=. Now suppose that
w(x, u)f-)+ {0} . Then Proposition 5.2 implies the existence of optimal (yk, vk)
int 2+ U with y -* Yo [+ {0} and

max{d(z,+{0})" zq(y,v)}-O fork-*oo.
But for x2 small, we have pqx:-c < 0. This contradicts the existence of (y, vk) with
the properties indicated above.

Conclusion. Suppose that in Example 5.5 the positive constants e, , U are small
enough. No optimal pair (x, u) int+ U, leads to extinction and every trajectory
is bounded. There are initial values x e int [+ such that corresponding optimal trajec-
tories q(., x, u) spiral outward. Hence, according to Corollary 4.7, there are optimal
finally periodic (x, t) or w(x, u)= q(y, v) with (y, v) optimal periodic.

/

1/x c/c
FG. 5.1.
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6. Nonuniqueness. For given initial state, solutions of ordinary differential
equations are unique (provided that local Lipschitz continuity prevails). In general,
optimal control problems do not share this nice property. In fact in this section we
give a nonconstructive criterion implying nonuniqueness for a certain initial value.
Furthermore, a simple bioeconomic example is presented with nonunique optimal
solutions.

DEFINITION 6.1. An element x
_

is called a point of nonuniqueness if there
are u, v Ua such that (x, u) and (x, v) are optimal and q(t, x, u) q(t, x, v) for some
[2+.

"Nonuniqueness" requires that the trajectories corresponding to u and v do not
coincide. Thus "redundancies" in the controls do not lead, in our terminology, to
nonuniqueness.

THEOREM 6.2. Suppose that (x, u)+ Uad are optimal and that there are T2 >
T1 >= 0 such that q (., x, u), T1, T2] is a Jordan curve. IfI :- el ins F does not contain
any optimal equilibrium, then it contains a point of nonuniqueness.

Proof Suppose there is no point of nonuniqueness in I and note that I is positively
invariant. Hence for every y /, there is a unique control u(y) Uao such that (y, u(y))
is optimal and q(y, u(y)) c 1. Lemma 2.5 implies that y - u(y) I - Uao is continuous,
and hence for every t->_0 the map y-q(t,y,u(y)):I-I is continuous. By the
Schoenfliess Theorem (Beck [3, p. 22]), I is homeomorphic to the closed unit ball in
2. Hence, by Brouwer’s Fixed Point Theorem, there is for every _-> 0 a fixed point x,
with

(t,x,,u(y))=x,.
Let (tn) be a sequence of numbers with tn > 0 such that lim t, 0 and lim x,,,--e I
exists. We claim that e is an optimal equilibrium. In fact, for every n N, uniqueness
of optimal solutions implies that p(., xn, u(x)) is a periodic solution of period
Without loss of generality we may assume that q(., xn, u(x,)) converges uniformly to
the constant trajectory e, which therefore is an optimal equilibrium contrary to our
assumption.

In the following example, nonuniqueness is shown by a different argument.
Example 6.3.

Maximize V(x, u):= e--’{[p C(Xl(t))]u,(t)x(t)
+[p-c(xz(t))]u2(t)x2(t)} dt

Subject to (t)=x(t)[2-x(t)-2x2(t)-u(t)],
2(t) xz(t)[2- x2(t) 2x(t) uz(t)],
(u,), u)) := [0, _] [0, ],
x(0) x,, x(0) x,

where p > 0 and c(. is continuous and strictly decreasing on + with c()= p.
Assertion. For > 0 sufficiently small the point x (, ) is a point of non-

uniqueness.
Proof (See Fig. 6.1.) First note that existence of an optimal solution follows by

uniform boundedness of the trajectories, linearity in u and convexity and compactness
of ). Define

Y2 Y Y2
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x

3/2

3/4

09(. ,x, (I/2,0))

i 3/

FIG. 6.1. Illustration of Example 6.3.

The symmetry of the system equation and x Sx imply for u 6 Uad and t_-> 0
s( t, x, u) ( t, x, Su).

Furthermore,
V(x, Su): V(x, u).

Thus, if (x, u) is optimal, also (x, Su) is optimal. If the optimal solution is unique, it
follows that

ql( t, x, u) qz( t, x, u) for all :> 0.
Looking at the system equation we find that this implies

q,(t,x, u)<--, qz(t,X, u)<-_ forall t>0.
Hence

and
p-c(q(t,x, u))<-O, p-c(q2(t,x, u))<=O forallt>0

V(x,u)<=o.
Thus, in case of uniqueness, the only candidate for an optimal control is u--u2-= O,
which leaves x--(, ) fixed and

V(x, u)=O.
Thus it suffices to construct v Uad with

V(x, v) > O.
Consider first the control (3, 3)

=, e(t) - 0.
A phase plane analysis (cf. Fig. 6.1) yields that for increasing, (t, x, iS) decreases
and q(t, x, 3) increases, with
(6.1) lim q(t, x, 3) (0, 2).
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Now consider the system
(6.2) :(t) x(t)[2-x,(t)-Zx2(t)], 2(t) x2(t)[2-Xz(t)-Zx(t)-1/2].
For this system the point (0, ) is (locally) asymptotically stable. In fact, the Jacobian
at this point is

-1(_3
Since the region of attraction of an asymptotically stable point is always open and
(0, 2) is attracted by (0, ), it follows from (6.1) that there is t >0 such that in the
system (6.2), q(t, x, ) is attracted by (0, ). Define

(, 0), [0, t],V(t):= (0,), t(t,,).
Then

lim q(t, x, v) (0, ).
t-->

By continuity of c, there is M1 > 0 with
(pl- c(q(t, x, )))p,(t, x, )1/2>- -M,

Thus
O<:ttl

without loss of generality we may assume
_(t, x, v)_-> 1

Since there is M2 > 0 with

it follows that

for all _-> t.

Together we get

p c(y) >M fory->l

(p-c(q2(t,x, v)))q2(t,x, v)1/2>=M2 fort=>t,.

V(x, v) >= -1/2M,(1 e -a’’) +1/2M2 e -at’.
For 6- 0, the right-hand side of this inequality tends to 1/2M2. Hence V(x, 5)> 0 for
> 0, sufficiently small. This proves the assertion.

The idea for this example may be sketched as follows. We start in an equilibrium
point x, where two competing species coexist, and where the net revenue p-c(x) is
zero. Catching one of these species we have a temporary loss. On the other hand, the
other species increases until it gets into a domain where it can be caught continually,
yielding positive net revenue. The initial loss is, for sufficiently small discount rate
8 > 0, less than the later revenue.
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