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Abstract. In this paper the stability of the solutions of parameter estimation
problems in their output least squares formulation is analyzed. The concepts
of output least squares stability (OLS stability) is defined and sufficient
conditions for this property are proved for abstract elliptic equations. These
results are applied to the estimation of the diffusion, convection, and friction
coefficient in second-order elliptic equations in R", n=2,3. Results on
Tikhonov regularization in a nonlinear setting are also given.

1. Introduction

In this paper we study continuous dependence of the solutions of the output
least squares (OLS) formulation of parameter estimation problems on the problem
data. It is assumed that the model equation is of the form

A(q)u=1, (1.1)

where A(q) is a linear elliptic operator depending on a functional parameter g
and that we have observations z of the system for which (1.1) is the model
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equation. This observation may arise from interpolation of point data. One
common approach to determine g from z is given by the OLS formulation

minimize |u(q) ~ z|? (1.2)

over some set ., of admissible parameters. This problem is not well posed, in
general, which means that the solutions of (1.2) do not dépend continuously on
the data z. For example, consider the special case z = u(g™), so that z corresponds
to some “‘true’” model parameter. Then it is well known that, in general, the
mapping g - u(q) is not continuously invertible. We refer to [2], [16], and [17]
for further discussion of these matters.

To obtain stability inspite of this difficulty, we need to change the mathemati-
cal formulation of the problem or to make specific assumptions concerning the
structure of the original problem (1.2). One possibility is to add a regularization
term to the cost functional in (1.2):

min [u(q) —z|*+ Blq|5 over Quq, (1.3)

where 8> 0 is a real “regularization” parameter and Q4= Q with Q a normed
linear space. The use of regularization is very common for inversion of linear
operators, see { 10] and [19], but it is not well studied in the nonlinear environment
that is needed for parameter estimation problems. (Note that g— u(q) is not
linear.) Therefore the first part of this paper is devoted to a study of the properties
of the global solutions of (1.3}, which are not unique, in general, and in particular
the behavior of these solution sets as 8-> 0". Subsequently, the stability of the
regularized problems is studied. The essential technical tool that is used is a
stability result from abstract optimization theory, which strongly depends on
higher- (here second-) order sufficient optimality conditions. It is instructive to
consider formally the second derivative of the Lagrangian of (1.3) evaluated at
a solution g” of (1.3) in direction (h, h):

Fou(g®)(h, h)=2n(B)*+2(u(q®) - z, &(h, b)) +2B|h|5

"+ (terms involving Lagrange multipliers
and the constraints); (1.4)

here n(h) and &(h, h) are the first and second derivative of u at g” in direction
h and (h, h), respectively. From (1.4) it is apparent why regularization is helpful
in obtaining positivity of F,,(q”) and consequently stability of (1.3). We also
observe that the distance between the solution of (1.1) evaluated at the solution
g” and the observation z enters in an important manner. Of course we will try
to take 8 >0 as small as possible and still obtain positivity of F,,(g"). This will
depend (among other considerations) on the size of |u(g”)— z| and on possible
lower bounds for n(h). In general we do not assume the existence of g*€ Q,q
with u(g*) =z

We mention that in a recent paper [12] Kravaris and Seinfeld have studied
the use of Tikhonov regularization for parameter estimation in parabolic partial
differential equations. Their approach is based on a variant of Tikhonov’s lemma,
which states that if a continuous function f between metric spaces X and Y is
injective on a precompact subset K < X, then f is continuously invertible on
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f(K). The Tikhonov approach of [12] requires uniqueness of the solution of the
unregularized problem, which is not needed in our analysis. In our approach
stability is checked at each solution of (1.3). If stability can be guaranteed then
such solutions are isolated. Furthermore, we distinguish between the situations
where z° can be obtained as the solution u(q°) of the state equation evaluated
at the “true” parameter ¢q° and where this is not the case.

As indicated above, if stability holds without the use of regularization, then
further assumptions must be made. One such assumption is the finite dimensional-
ity of Q, which is feasible for practical applications. Another one is to make
assumptions on the values of the solution of (1.1) evaluated at the solution § of
(OLS). Finally, we point out that we consider not only stability with respect to
the observations z but also with respect to the constraints defining Q,q.

Concerning the stability problem in parameter estimation we also mention
the work of Chavent [6] who introduced the notion of output least squares
identifiability (OLSI). A parameter is OLSI if there exists a neighborhood A of
the attainable set ¥ (¥ = u(Q.q) in our case), such that for every element ze ¥
there exists a unique solution g€ Q,q4 of OLS depending continuously on =z
Chavent derives general sufficient conditions involving dist(z, ¥"), diam Q,q4, and
lower and upper bounds on the second derivative of u with respect to the
parameter, which imply OLSI. These results are well suited for certain classes
of ordinary differential equations and hyperbolic partial differential equations.

The present paper is a continuation of the research started in [8], where we
introduced the concepts of OLS stability and ROLS stability (OLS stability by
regularization) and applied them in the simple case of estimating c in the two-point
boundary-value problem —(aw, ).+ cu = In the present paper we first consider
abstract elliptic equations and then apply our results to the estimation of the
diffusion, convection, and friction coefficient in second-order elliptic equations
in R* and R°.

Chavent recently extended his results to include the advantages of regulari-
zation [7]. The main difference between Chavent’s work and our’s is given by
the fact that Chavent’s concept of uniqueness and stability is a global one, whereas
our’s is local. As a consequence these two approaches employ completely different
mathematical tools.

In [8] we also made use of the last term in (1.4) to obtain positivity of F,,(g)
or F,(q") and we could repeat this in the general case by making assumptions
that guarantee nontriviality of certain Lagrange multipliers. Differently from the
one-dimensional case [8], [13], however, it seems to be unfeasible to give explicit
conditions in terms of the quantities of the differential equation that imply
nontriviality of the Lagrange multipliers.

The paper is organized as follows: Section 2 gives an informal discussion of
the method we employ for studying sensitivity with respect to parameter vari-
ations. We hope that this motivates the reader to study the abstract theory in the
next two sections. Section 3 contains results on Tikhonov regularization in a
nonlinear setting and is independent of the eliiptic structure of (1.1). In Section
4 we define the concept of ROLS stability and prove sufficient conditions for this
property. These results are applied to several examples in Section 5. The first
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part of Section 6 is devoted to obtaining stability without the benefit of regulari-
zation and it closes with an example for local regularization.

2. An Introductory Example

In this section we informally discuss the method that we propose for the study
of sensitivity in parameter estimation problems by means of a simple two-point
boundary-value problem. Consider

”(qux)x :f on (Os 1),
u(0)=u(1)=0,

where f'e L?. Throughout this section all function spaces are considered over the
interval (0, 1). It is well known that for every positive g € H' there exists a unique
solution u(gq) € H>n H} of (2.1). The output least squares formulation to deter-
mine g from an observation z"€ L? is given by

(OLS) min|u(g)—z°72 over Quq,

where Q.4 is the set of admissible parameters. It is chosen in such a way that
q € Q.4 guarantees existence of a solution of (2.1) as well as of (OLS). For the
former we require a pointwise bound on g and for the latter a norm bound, i.c.,
we take

Qua={ge H" q(x)=k"(x), gl = 7",
where k’c H', k°>0, and y°>0. It is then simple to argue the existence of a
solution ¢° of (OLS). Our goal is the study of the continuous dependence of ¢°
on perturbations in the observation and the set of admissible parameters Q,q4,
or, equivalently, the continuous dependence of g° on w’=(z% k" y")e
L*x H' xR. Henceforth we consider w® as the unperturbed reference parameter
and w as a perturbed parameter. Since the solution g° of the unperturbed problem
need not be unique we have to specify our notion of continuous dependence:
we require the existence of neighborhoods V(w®) < L*x H' xR and V(¢ < Q
of w’ and ¢° such that for every w € V(w°) there exists at least one (local) solution
q.. of (OLS) (with w° replaced by w) and all local solutions of (OLS) which lie
in V(4°) depend continuously on w. Observe that regardless of the choice of ¢°
as a global or local solution of (OLS) we need to allow for the solutions g, of
the perturbed problem to be local solutions only. {For example, consider in R’
the family of functions f(x; &) = x*+ ex’+ (e —1)x°, e < 1. Then f(-; 0) has two
global minima and f(-, €}, € #0, has two local minima, only one of which is
also global.)

The sensitivity analysis of optimization problems in finite-dimensional spaces
suggests that if the cost functional is sufficiently regular with respect to g and
z°, and if Q,4 depends continuously on (k°, ¥°) in an appropriate sense, then a
second-order sufficient optimality condition guarantees continuous dependence
of g on (z° k° ¥°) [9]. This is studied in a rigorous framework in the ensuing
sections. Here we only discuss the feasibility of these requirements for the specific
estimation problem (OLS) arising from (2.1). First observe that (g, z) - |u(g) — z|*

(2.1)
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from Q,yx L*c H'xL? to R is continuous. Moreover, g u(q) is twice con-
tinuously Fréchet differentiable with respect to g. Let  and ¢ denote respectively
the first and second Fréchet-derivative at ¢° in directions he H' and (h, h)e
H'x H', Then n and ¢ are characterized by

—(g°n)x = (hu(g”)).,  M(0)=n(1)=0, (2.2)
and
—(g°¢)x = 2(hn) s £(0)=¢(1)=0. (2.3)

The set Q,4 can also be characterized as follows: let g(-; k°, ¥°): H' > H' XR be
given by

g(q; k%, ¥) = (K~ q.lglin—(¥))
and let K = C*"xR". Clearly, q & Q.q if and only if g(g) € —K. Moreover, g is

seen to be smooth with respect to k° and y°. Finally observe that there exist
constants ¢; and ¢¥ such that

|U|H25 C1|A(Q)UIL25 C?IUEHZ (2.4)

for all ge Q.4 and ue H>n Hy. Here we put A(q)u = (qu,),.
To investigate a second-order sufficient optimality condition we introduce
the Lagrangian associated with (OLS):

F(g)=lu(q)—z]*+ (a1, K" = @)y + Ao(|ql 5 = (v9)?),

where (-, ), denotes the duality pairing between H' and (H')* and A,=0.
A second-order optimality condition is satisfied if F,,(4°), the second Fréchet
derivative of F at ¢°, is uniformly positive on an appropriately chosen subset of
H'. Thus we are led to investigate positivity of

Fu(q®)(h, h) =n[12+(u(g") = 2°% &2+ Aol b2, (2.5)

where 7 and £ are given in (2.2) and (2.3). If A,> 0 and |u(g°®) — z°| is sufficiently
small then we can show quite easily the existence of x >0 such that

F,(g")(h,h)=«k|h|7p  forall heH', (2.6)

which is the desired estimate.

In general it is not a simple matter to give conditions which imply nontriviality
of A,. Moreover, A,> 0 implies |g% ;1 = ¥° and thus it is evident that this is only
a special case. If A, =0, then positivity of qu(qo) as in (2.6) is not possible, in
general. In fact, |n|72 behaves like |hu,(q%)|3- and the second term in (2.5) can
only be bounded from below in the form

(u(g”)—2°, &= —Llu(g®) - hl3p,  K>0.
This estimate can be verified by (2.4), for example. The right-hand side in the
last inequality is zero if and only if z° is in the attainable set, i.e., z°e ¥ =
{u(q): g€ Q,q}. This, however, will not be satisfied in general.

One remedy to the failure of F,,(g") to be positive is the use of a regularization
term in the output least squares formulation. Thus we are led to consider

(ROLS)”  min |u(q)—z°*+ 8|q|3 over Quq,
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where B is a (small) positive parameter. The solutions of (ROLS)? are denoted
by ¢”. Since it appears that regularization theory is not well studied in a nonlinear
environment (note that g - u(q) is not linear) we devote Section 3 to a study of
some basic properties of regularized optimization problems. In particular, we
shall show that the global solutions ¢* of (ROLS)? satisfy

;i:gh B (|u(g®) = 2" ~u(g”) - z°P) =0. (2.7)
In the special case that z°c ¥ (2.7) becomes
lim B~"u(g”) -z =0. (2.8)
B0
The analogue of (2.5) for (ROLS)? is
Fog(g®)(h, B) = |12+ (u(g”) = 2% &)+ 2(A,+ Bl b}, (2.9)

where now 1 and ¢ are calculated at g°. Positivity of F? can be obtained if 8
is chosen appropriately: the term

(u(q”)—2°, &) ==2A[h(A(¢")(u(g") ~ 2°))s ], m)

can be bounded from below by —|n|>— &|h|3;2|u(g®) — 2°3:, where £ > 0. If ¢ ¥,
then from (2.8) we find that Ff(q”)(h, h)=[2(A,+B)—Bp(B)]h|} with
limg_, p(B)=0. Hence there always exist 8> 0, x >0 such that

F2.(q®)(h, h) = k|h|3 forall he H' and Be(0, B).

If 2°¢2 ‘V,_then, as is shown in Section 4, if dist(z°, %) is sufficiently small there
exist B, B, and « such that

Fi(q®)(h, k)= «k|h|3  forall he H' and Be(B, B).

We point out that, differently from (OLS), in the regularized case we require the
unperturbed solution with parameter w® to be a global solution of (ROLS)P. This
is necessary since (2.7) and (2.8) are only shown to hold for global solutions of
(ROLS)~.

In Sections 3 and 4 we show that—besides some technical assumptions like
sufficient regularity of g - u(q) and g » g(q), and a constraint qualification which
guarantees the existence of Lagrange multipliers associated with the inequalities
involved in defining Q.,,—a second-order sufficient optimality condition suffices
to argue continuous dependence at local solutions of (OLS) and global solutions
of (ROLS)”? on w. The example of this section is reexamined in Section 5 by
applying the general theory of Sections 3 and 4.

Finally, let us explain how the results by Chavent in [6] and [7] relate to the
present example. The result in [6] (which allows for perturbations of z° but not
of Q.q) is not applicable since it requires an estimate of the form

Inliz=]A"Yg" ) hu)|=«|h]], k>0,

which is not feasible. However, the regularization approach of [7] may be used,
provided dist(z°, ¥), as well as diam Q.a, are sufficiently small.
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3. Nonlinear Regularization Theory

Let us consider the problem
(P) minimize #(x) over x € Q,q4,

where Q,q< Q with Q a reflexive Banach space and # is a mapping from Q.4
into R. A typical example that we have in mind is $(x)=|®x—z|% where
®: Q.4 X, z€ X, and X is some Banach space. In this case (P) is the formulation
of the equation ®x =z as an optimization problem. If ® does not have a
continuous inverse then we frequently study a regularized form of (P), which is
given by

(RP)? minimize #(x)+ BN (x) over x € Q.q,

where B8>0 and A'(x) is an appropriately defined functional as, for example,
|x|% (see [10] and [19] if ¢ is quadratic). |

The purpose of this section is to summarize some of the basic properties of
the solutions of (RP)® as 8- 0 in the case that ¢ is not quadratic or, referring
back to our example, if @ is not linear. The nonquadratic case commonly occurs
in parameter estimation problems, which are the subject matter of the subsequent
sections.

We assume throughout that:

Q.q 1s a closed and convex subset of the reflexive Banach space Q,
(A1) { #: Q.= R™ is weakly lower semicontinuous,
N: Q-R" is weakly lower semicontinouus with limj,. #(x) = 0.

(A2) There exists a minimizer x° of (P).

Condition (A2) will not be needed before Lemma 3.2. The assumptions on
Q.q imply that it is weakly closed (or equivalently weakly sequentially closed)
and this is precisely the property that is needed of Q,4. If in addition Q,4 is also
bounded, then (Al) implies (A2).

Lemma 3.1. Let (A1) hold. Then there exists a solution x* of (RP)® for each B > 0.

Proof. Let &d=inf{#(x)+BN(x): x€Quu}=0 and let x, be a minimizing
sequence. Since N is radially unbounded, the sequence {x,} is bounded and,
since Q is reflexive, it has a weak cluster point x* € Q,4. By weak lower semicon-
tinuity of & and ¢ it follows that #(x”)+ BN (x?) =inf{ F(x) + BN (x): x € Q,4}.

i

The solutions x? of (RP)® are not unique, in general, and we denote by
XP={xP:x"® is a solution of (RP)”} the set of solutions of (RP)® and put
F(XP)y={F(x"): x € XP} and N(XP)={N(x*): x’ € X?} for any B=0. The
following properties are satisfied by # and .
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Lemma 3.2. Let (Al) hold. Then for all B > B,>0 we have:
(a) sup NM(X?)=inf ¥¢(X?),
(b) sup F(X™)=inf $(X*).
If in addition (A2) is satisfied then (a) and (b) hold for 8 > B,=0.

Proof. For any xPre X" and x” ¢ X* we have

F(xPo)+ BoN (xF0) = F(xP)+ BN (xF). (3.1)
Adding (B — Bo)N(x*) on both sides of (3.1) yields, by the definition of x*,

F(xP)+ BN (xP) + Bo( N (xPo) = N(xP)) = F(xP) + BN (xF)

= F(xPo)+ BN (x"). (3.2)

Estimating the first by the last term in (3.2) we obtain

Bo(N (xPo) = N'(xP)) = B(N (xFo) — N (xF)).
Since 0= B,< B this inequality implies #(x®) < #(x®) and therefore (a) holds.
Using (3.2) together with (a) we find

F(xPo) — F(xP) = Bo(N(xP) — N (xF)) = 0.
Thus (b) is verified. O

Remark 3.1. For estithate (3.1) it is required that x% is a (global) solution of
(RP)™. For this reason we need to restrict our attention to (global) solutions of
(RP)? throughout this section. '

Lemma 3.3. Assume that (A1) and (A2) hold.

(a) Let B,~> Bo=0 and let {x"} be any sequence of corresponding solutions
of (RP)P.. Then {x} has a weak cluster point and every weak cluster
point of {xP} is a solution of (RP)™.

(b) If moreover B,-Bg=0, then lim, . N(xP) exists and equals
min N (X ).

Proof. By Lemma 3.2(a) and (A2) the set {#(x"")};’-, is bounded by N(x°).

Hence {x?}*_, is bounded in Q and there exists a subsequence, again denoted

by {x?+}_,, converging weakly to some % € Q,q. For all x € Q,4 we have
J(xPry+ B, N(xPr) < J(x)+ BN (x).

Weak lower semicontinuity of # and A implies

F(X)+ Bo(X) = #(x)+ By N(x)
for all xe Q,4. Thus £ X and (a) is proved. Now let 8, > B¢ =0 and let x"x
be any subsequence of x® with x®u converging weakly to some x € X*. If there
were a solution x% of (RP)® with A(x%) <N (X) then by Lemma 3.2(a) and
weak lower semicontinuity of & we have

lim sup N (x®) = ¥ (xP) < ¥(X) < lim inf ¥ (x?"),

which is impossible. Thus N (x®)=A(X) and lim, /(x®) exists with
lim, A (xPn) = min{# (xP0): xPoec X P}, O
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Corollary 3.1. Assume that (A1) and (A2) hold, that Q is uniformly convex and
that N (x)=|x|% for some p>0. Let B, By. Then every weak limit point x® of
xP» is a strong limit point and x®° is a minimum norm solution of (RP)%,

This follows from Lemma 3.3(b) and the fact that weak convergence together
with convergence of the norms implies strong convergence in a uniformly convex
Banach space.

In the next corollary we show that in a weak sense all minimum norm solutions
of (P) are approximated by solutions of the regularized problems.

Corollary 3.2. Let the assumptions of Corollary 3.1 hold and let C be an open
connected component in the weak topology of X% ={x% x° is a minimum norm
solution of (P)}. Then for every B, 0" there exists a subsequence B, of B, such
that x"» converges to some element of C as n, — .

Proof. Observe that X%, is weakly compact. Hence C and X5\ C are weakly
compact as well. Then Q\(X,;,\C) is weakly open and contains C. Let xe C.
Recall that a basis of weak neighborhoods for x is given by sets of the form

Vi={y: [{fi, y—x)|<e i},

where f; e X* and I is a finite index set. Thus there exists a weak neighborhood
of x of the form V, which is contained in Q\(X%;,\C). Hence also

We={y:[{fi, y—x) <e/2,iel}

is a neighborhood of x and the weak closure of W, is

W.={y:(f,y—x)i=e/2,iel}.

Since W, < V, we find that for every x € C there exists a weak neighborhood W,
such that its weak closure W, has void intersection with X2 \C. Since C is
weakly compact the union of finitely many W, ,i=1,..., m, covers C. Moreover,
w=UJ, W, is weakly closed and Wm(X \C)=@.

For B> 0 we consider the problems (RP)? given by

(RP)’8 minimize #(x)+ B|x|” over Q,an W.

Since Q,qn W is weakly closed we can argue that there exists a solution x? of
(RP)B forevery 8> 0. Let {B.} be a sequence with lim 8, =0, 8, > 0. By Corollary
3.1 applied to (RP)? there exists a subsequence {B,,A} of {B,,} with xPn e Q,qn W
converging strongly to a minimum norm solution x° of (RP)°. Since the norm of
the minimum norm solution of (RP)° equals the norm of the minimum norm
solution of (P), it follows that x"e C. Note that for n, sufficiently large, x" is
in the strong interior of W and thus x”~ is a solution of (RP)”x. 0

Theorem 3.1. Let (Al) and (A2) hold and let x° be any global solution of (P).
Then:

(a) limg.o+ B7'(sup £(XP) - #(x°)) =0, and
(b) sup F(XP)=0(B) if F(x°)=0.
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(Observe that even if X° is not a singleton, #(X°) is single valued.)

Proof. We proceed by contradiction and assume that there exist §>0 and a
sequence of solutions x* of (RP)? with 8, - 0 and

B (F(xF)— #(x)) =8> 0. (3.3)
By Lemma 3.3 there exists a subsequence of {x”:}, again denoted by {x?+} with
xP» > £ weakly in Q, with #°¢ X°, and lim,, ¥ (x®=) = #(£°). Since J(£°) = #(x%)
we have by (3.3) that

B (F(xP)—F(X))=8>0. (3.4)
From the second inequality in (3.2) it follows that \'

0= g(xP) = (%) = B (N(X*) = N (x)). (3.5)
But & (x?) > ¥(X°), therefore (3.5) contradicts (3.4) and thus (3.3) cannot hold
for any & > 0. This proves (a). Part (b) is an obvious consequence of (a). O

4. Qutput Least Squares Stability by Regularization

As described in the introduction we study the problem of estimating an unknown
coefficient in an elliptic equation from a measurement z° of the solution. The
ouput least squares formulation of this problem is given by

(OLS) minimize |u(q)~ z|} over g € Q.q,
where

A(q)u(q)=f inH
and

Qua=1{g€Q: g(g)e-K}.

Here H is a (real) Hilbert space, z°, fe H, Q is a (real) Hilbert space, Y is a
Banach lattice with ordering induced by the closed convex cone,

K={yeY:y=0}

and the specifications for g and A(g) will be given shortly. To irivestigate the
continuous dependence of solutions of (OLS) on z° and g, let (W, 5) be a metric
space, put

W=HxW
endowed with a product metric and consider
(OLS),, minimize |u(gq)—z|° over g€ Q,
where |
A(q)u(q) =1,
Qaa=1{g€Q:g(q, a)e —K},
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and
w=(z, a).

Here w is the perturbation from the reference parameter w’=(z°, a°). The
specification w®=(z’, ) will be dropped at times and we write (OLS)=
(OLS),» , Q;‘; = Q.4, g(q) = g(g, a°), etc. The family of regularized problems is
given by
(ROLS)% minimize |u(q)—z|*+ B|q|% over g€ Q%
subject to

A(qu(g)=f.

Again we put (ROLS)? =(ROLS)%.. The following assumptions on g and A(q)
are made.

There exists a set U< Q and a neighborhood I(2°) of a° in W such that
Q2 <cint U for all € I(a”) and:

(H1) g(-, @): @- Y is continuous and K-convex on Q, with first and second
continuous Fréchet derivative, for every a € I{a") with the first deriva-
tive bounded on bounded subsets of Q. Furthermore, for every open
set U, x U, = Qx W with a®¢ U, there exists L satisfying

g(q, @)~ g(q, a’)|<Lé(a,a”)  forall (g,a)eU,xU,.

(H2) A(g): D(A)~ H with D(A)< H independent of ge U and D(A)=H,
A(q) is a linear, closed operator for every g U.

(H3) The domain D(A*) of the adjoint operators A(q)* (in H) of A(g)¥ is
independent of ge U.

(H4) There exists a Banach space X continuously embedded in H satisfying

D(A)c X and D(A®)cX

and nondecreasing positive functions ¢, and ¢, such that

Ixlx =a(lg)lA(g)x|y  forall xeD(A), qeU, (4.1)

x[x = ex(lgDlA(g)*x|y  forall xeD(A*), geU. (4.2)
(H5) For every g € Q the operator A(g) has the form

A(g) = Ao+ Ai(q)

with A, and A (q) linear operators in H satisfying that A,(q) is linear

in ge Q and

[Apx|y = Ko|x|x forall xe D(A),

A (@)x|y = K|glolx]x  forall xe D(A) and g€ Q, (4.3)
A (q)*x|y = Kilq|olx| x forall xe D(A*) and g€ Q, (4.4

where K; are independent of x and 4.
(H6) (A,(g)*x,y)=(x, A(q)y) for all ye D(A), xe D(A*) and g Q.
(H7) g—> A" '(q)f from U < Q to H is continuous from the weak to the weak
topology.
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Concerning (H5) and (H6) we recall that the adjoint of a densely defined closed
operator is again densely defined and closed. Moreover, the adjoint of a densely
defined operator is well defined, and thus A,(g)* is meaningful [11, p. 167]. For
elliptic problems we think of the space X as the space of functions in D(A)
(resp. D(A*)) where the boundary conditions are omitted.

We point out some of the consequences of these assumptions. As a con-
sequence of (H5) and the closedness of A(qg), the set D(A) endowed with the
X topology is a Banach space denoted by Dy (A). Similarly, D(A*) endowed
with the X topology is a Banach space which we denote by Dy (A*). Further,
A(q) and A*(q) are surjective by (H2) and (H4). In particular there exists a
unique solution u(g) e D(A) of

AlqQ)ul{q)=f (4.5)

for every g U.
By Y™ we denote the topological dual space of Y and

K®={y*e Y*: (y, y*)=0 for all ye K}

is the positive conjugate cone of K in Y*. For every y*c K® and a < I(a”)
the function x-(g(x, @), y*) is convex, continuously F-differentiable and
therefore also weakly lower semicontinuous [20, p. 82]. Therefore the set
{xe Q: (g(x, a), y*y=0} is closed and convex in Q. Since
Qua={x:glx a)=0t= (1 {x:(g(x, a),y")=0}
ye

Q.4 is closed and convex (compare [22], pp.353 and 404), and thus weakly
sequentially closed. Moreover, (H1) implies that g (g, a)(h, h) € K for all g and
hin Q.

Due to the weak sequential closedness of Qg4, the weak continuity assumption
(H7), and weak lower semicontinuity of the norm, the assumptions of Lemma
3.1 are satisfied and for every 8>0 and w=(z, a)e H x I(a°) existence of a
solution g% of (ROLS)2 is guaranteed.

The following definition specifies the desired stability property of the solutions
of (ROLS)®.

Definition 4.1. We call g in (OLS) output least square stable by regularization
(ROLS stable) at w”= (z°, a°) in Q.4 for B in the interval I = (0, ), if for every
global solution g%0 of (ROLS)?s with B & I there exist neighborhoods V{(w°) of
w’ in W and V(g% of g% in Q and a continuous nondecreasing real-valued
function p with p(0) =0 such that for all we V(w") there exists a local solution
g% € V(g%e) of (ROLS)% and for every such local solution g we have |g5 — glo|o =
p(lz= 2% +8(a, ).

Remark 4.1. We first used the notion of ROLS stability in 8] to study continuous
dependence on problem data for identification of the restoring force coefficient
in a second-order boundary-value problem. There we also introduced ““‘output-
least-square-stability” (OLS stability) which is the continuous dependence of
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solutions on the data in (OLS),, (i.e., B =0 here). Due to the nature of the inverse
problems that are under consideration OLS stability cannot hold without strong
additional assumptions. Some of these cases are discussed in Section 6.

Before we state the two main theorems of this section we require the following
definitions:

Definition 4.2. The point g Q.4 is called regular point (with respect to the
constraint Q,4) if

Ocint{g(q)+g'(q)Q+K}.
Here and below all derivatives are taken in the sense of Fréchet.

Definition4.3. The attainable set V' is given by V' ={u(q): g € Q,4}. The problems
(OLS) = (OLS),° and (ROLS)” = (ROLS)%c are special cases of (P) and (RP)#
with #(g)=|u(q)—z|* and, assuming the existence of a solution g° of (OLS),
the results of the previous section are applicable. In particular, the solutions g°
of {(ROLS)”? satisfy

lg%1=1q"| (4.6)

and

Bl =

- 0
lim sup |g°|=|q",

B>0" g"cQ
where ¢° is a minimum norm solution of (OLS) and Q” is the set of solutions
of the unperturbed regularized problem (ROLS)”.

Theorem 4.1. Assume that there exists a solution of (OLS), that (H1)-(H7) hold,
and that the points of Q,q are regular. Let 8> 0 be chosen such that for a minimum
norm solution g° of (OLS)

5 1
01z - B2 4.7
9] qgl:gélq | K ol (4.7)
and define
) 1 _ -1
_____d~ 0’:1/'2[ 5= 02+ .32] =0,
B Y ety 1 T BT =

If B < then the parameter q in (OLS) is ROLS stable at w°=(z°, 2"} in Q,4 for
all B € (B, B). Moreover, if z°c V then q is ROLS stable in Q,q for all (0, B).

This result, which is proved later, gives conditions that guarantee the con-
tinuous dependence of solutions of (ROLS)?0 on the problem data w. In the first
part there is no attainability assumption, but 8 may be larger than B in which
case the theorem is not applicable. In this situation a more accurate measurement
or an improved model, decreasing dist(z° %), should lead to success. Thus let
wo = (23, @°) € Wwith z) - z3in H and zge ¥. We denote the solutions of (OLS) 0
and (ROLS)% by goc and g%. The following stability property of solutions of
(ROLS)#» can be obtained for 2}, sufficiently close to zg€ . (Recall that stability
is investigated with respect to the upper index in wl.) By QY we denote.the set
of solutions of (OLS),,.



46 F. Colonius and K. Kunisch

Theorem 4.2. Let the assumptions of Theorem 4.1 hold and assume that ¢ > u(q)
from U < Q to H is continuous from the weak to the strong topology. Choose z;, - z§
in H with z3e ¥, and assume that solutions g% of (OLS),.0 with w’ = (27, a®) exist
and that sup, ming,cot.|qus|<oo. Then there exists B >0 with the following
property: for all B* (0, B) there is N(B*) and a neighborhood 1(8*) of B* such
that for all n= N(B*) the parameter q in (OLS),0 is ROLS stable in Q.4 at
wl=(z), a0) for all B I(B®).

The proofs of Theorems 4.1 and 4.2 are based on stability results for abstract
nonlinear optimization problems; the essential requirement for such stability
results is that higher-order sufficient optimality conditions hold. For the con-
venience of the reader and for frequent reference we state a result due to Alt [3].
A more detailed discussion is given in Section 3 of [8].

Let Q, Y, K< Y be as above and let (W, ) be a metric space. Further, let
fiDxW->R" g: Qx W-Y, where D< Q is an open set satisfying

Q.u=1{9€Q: g(q,w") e —K}< D.

Again w° is a fixed reference parameter which is dropped when no ambiguity
can occur. Consider

(P),, minimize f(q, w) subjectto g(g, w) e —K.
A functional A*e Y* is called the Lagrange multiplier for (P),° at ¢° if
J(@")+A1%g,(°) =0, A*eK' and A*g(g")=0, (4.8)

and F: D->R given by F(gq)=f(q)+A%g(q) is called the associated Lagrange
functional. If ¢° is a solution of (P),» then under the assumptions of Proposition
4.1 below there exists a Lagrange multiplier associated with (P), [15].

Proposition 4.1. Let q° be a solution of (P) o which is a regular point of Q.4 (i.e.,
O cint{g(q°, w°)+g.(¢°, w*)Q — K}) and assume that f and g are twice continuously
differentiable with respect to q at (q°, w°) and that there exist constants v>0 and
v >0 such that for a Lagrangian functional F

Fu(q®)(h, h) = y|h[® , (4.9)

forallhe g, (—K +Rg(g®)) n{h: A*g.(g")h < v|h|}. Moreover, assume that there
exists a neighborhood U = U, x U, of (q°, w°) such that for constants L; and L,

1f(q, w)—f(g', W) = Ly(|lq — |+ 8(w, w°)), (4.10)
lg(g, w)—g(gq, w)| = L8(w, w% (4.11)

for all (g, w)e U, and q'€ U,. Then there exist r >0, d >0, and a neighborhood
V of w, such that:

(i) The local extremal value function
uAw)={inf f(g, w): g(q, w)e—K:|qg—q°|=r}

is Lipschitz continuous at w°.
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For every w e V the following additional statements hold:
(ii) For any sequence g, with g(g,, w)e ~K, |g,—q°|=r and
lim f(q,, w) =, (w) it follows that lg. — q°|<r
" for all sufficiently large n.
(iii) If there exists q,, with g(q,,, w)€ —K, |q,—q°|=r, and f(q., w) = n.(w),
then |q,—q°|<r and |q.—q%=ds{w, w2
Lemma 4.1. Let (H1)-(H7) hold. The first and second derivatives ) = u,{(q)h and

£=u,(q)(h, h) of the solution of (4.5} at g € Q,q indirection h € Q are characterized
by

Alg)n =—A(h)u(yg),

and

A(g)é=—-2A,(h)n.

Here g u{q) is taken as a mapping from Q to Dx(A).

Proof. We apply the implicit function theorem (see pp. 115 and 134 of [4]) to
F: QxDy(A)» H defined by F(q u)=A(q)u—f For q°c Q.4 we have
F(q°, u(g®))=0. Moreover, F is continuous in a neighborhood of (g°, u(q®)) by
(HS) and F,(q, u) =A(q)e Z(D.(A), H), F,., =0, F){q,u)=A,(")u € Z(Q, H),
F,(q,u)=A,(-)(-), and F,,=0. By (4.3) and linearity of A, in g we have that
F, and F, depend continuously on (g, u) at (¢°, u(g°)). Moreover, by (H2), (H4),
and the closed graph theorem, A(g") is a homeomorphism between Dy (A) and
H. Thus u is twice continuously differentiable at g°. We obtain, from (4.5) by
the implicit function theorem,

A(g°)n+ A, (h)yu(g”) =0
and

2A,(h)n+A(q°)¢=0.
But A(q°) 'e Z(H, Dx(A)) and the lemma is verified. |
Proof of Theorem 4.1. We apply Proposition 4.1 to (ROLS)% and first check the

second-order sufficient condition. Let ¢° =g% be any (global) solution of
(ROLS)%s. The associated Lagrange functional is given by

F(q)=F(q, w")=|u(q)~ 2"\ +Ar*g(q, 2*)+Blq|%,

where A*e Y* is a Lagrange multiplier and w'= (z° a®). For he Q we have

F(g®)(h, h) =2 +2(u(g"®) —2°, £) +(g,,(q®, a®)(h, h), A*)+28|h],
(4.12)
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with 7 and £ defined in Lemma 4.1 (with g = g%0). Since g,,(¢%, a®)(h, 1)=0 in
Y we find
Foe(q”)(h, h) =2/ m|*~4(u(q®) - 2°, A7'(¢®) Ai(h)m) + 2| hf?
=2l ~4(A\(h)*A™(g")*(u(g”) - 2°), n)+28[h]
=28~ 2|A,(h)* A7 (¢%)*(u(g”) - 2°). (4.13)
But by (H5) and (H4)
|A1(B)* AT (") *(u(q”) — 2°)| = | A (B)*| sepyan. ] AT (%) ¥ (u(g®) = 2°)x
= Kolhlexlg°DIu(g®) = 2° -
Using this estimate in (4.13) leads to
Foo(g®)(h, h)=2|h|*(B — (Kacx(19°)) ) u(q®) — 2% 3). (4.14)

For every minimum norm solution g° of (OLS), and for every solution ¢* of
(ROLS)50 we have

—[u(q®)— 2= B(|lq® ") — dist(z°, ¥)*.
Therefore with k = (K,c,(|g%))?

1
(@) )= 20| (2101971 - s, 97

= 2|k« dist(z°, ¥)[B- B 1],

and F,,(q®)(h, k)= const|h|* for all B < (B, B). This implies (4.9) of Proposition
4.1. Existence of local solutions g% of the perturbed problems as required in
Proposition 4.1(iii) follows by weak compactness of Q,qn{q:|qg—q°|=r}, r>0,
and weak lower semicontinuity of g-|u(g)—z|°. Condition (4.11) follows at
once from (H1) and (4.10) is satisfied since g - u{(q) from U < Q to H is Fréchet
differentiable and by (4.1), (4.3), and Lemma 4.1 the Fréchet derivative is
uniformly bounded on bounded sets of its arguments. O

Proof of Theorem 4.2. As in (4.14) we obtain for n=0,1,...

F, (g, wo)(h, h)=2|h|(B — x sup |u(qs)—z))%), (4.15)

where we write g° for qﬁg and the supremum is taken over all solutions g of
(ROLS)ﬁg. Recall that w® = (22, «®). For B* sufficiently small we need to bound
F,(q%, w,) from below uniformly in 8 € I(B*) and n= N(B*). By Theorem 3.1
we can choose £ so that for every B* € (0, B) there exists £ = £(8%*) satisfying

B*—k sup |u(gf ) —zi) =&, (4.16)

where the supremum is taken over all solutions g2 of (ROLS)ﬁﬂ;. First we show
that for all 8* (0, B) there exists an N(B8*) such that

B*—«k Suplu(qg*)——zglzz g/2 (4.17)
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for all n= N(B¥). If (4.17) were false then there would exist a sequence {n}
with lim n, =0 and solutions ¢° of (ROLS)ﬁgk such that

B*—«lu(qh) — 25 P <e/2. (4.18)

By Lemma 3.2(a) and the assumption on the boundedness of |g%] it follows that
{qt "} is bounded. Therefore there ex1sts a weakly convergent subsequence of q,,k ,
agam denoted by ana w1th limit g5 . Since Q.4 is weakly sequentially closed,
g5 € Q.4 and, moreover, g5 is a solution of (ROLS)ﬁg. Taking the limit in (4.18)
we obtain

B*—«lu(gf") - zg = ¢/2,

which contradicts (4.16) and hence (4.17) holds. Next we prove that there exists
a closed neighborhood I(8*) < (0, ) of 8%, such that

B—«ksuplu(gt)—zh|’=¢/4 (4.19)

for all n= N(B*) and all Be I(8¥). If (4.19) were not true, then there would
exist sequences {B..} and {n,,} with B8,, > B* and n,, = N(B*), and solutions g%~
of (ROLS)%Y such that

B —xlu{ghiny—z25 [*<e/4. (4.20)

Concerning the index n,, we have to consider two cases: either infinitely many

n,, assume the same value or {n,,} is unbounded. First, without loss of generality,

assume that n, =7 for all m. Again {g%}%_, is a bounded set in Q and by

Lemma 3.3(a) there exists a subsequence of {g3~};,_, converging weakly to a

solution g% of (ROLS)%s. Taking the limit in (4.20) we obtain
B*—«lu(ql) - zil'= €/4,

where n = N(B*). This contradicts (4.17). On the other hand, if lim n,, =, then

again {g°»} contains a subsequence converging weakly to a solution gs" of
(ROLS)%e. Taking the limit in (4.20) we arrive at

B*—«lu(gf ) —z*=¢/4
which contradicts (4.16). Thus (4.19) is verified. Using (4.19) in (4.15) we obtain .

£
Foo(gn, wa)(h, )= |B[*  for Bel(B¥).
Proposition 4.1 now implies the result. U

The essential estimate in the proofs of Theorems 4.1 and 4.2 is the lower
bound and the second derivative of the Lagrangian. This also implies the
following

Corollary 4.1. Under the assumptions of Theorem 4.1 all solutions q of (ROLS)%e
with B € (B, B) are isolated.
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Proof. Under the assumption of Theorem 4.1 we have shown that
F,,(q")(h, h)=const|h|’ for every B € (B, B). By Theorem 5.6 of [15] there exists
8> 0 and a neighborhood V(g*) of ¢” in Q such that

liu(q) — 2P+ Bl = |u(q?) — 2"+ B|q” | + 8lg — ¢°

for all ge V(g®) n Q,4. This implies the assertion of the corollary. W

Similarly, under the assumptions of Theorem 4.2, all solutions qff,g of
(ROLS)%» with B e I(B*) and n= N(B*) are isolated.

Remark 4.2. Due to the method of our proof involving the second-order sufficient
optimality condition we find that Theorems 4.1 and 4.2 guarantee that p can be
taken as p(x) =+x in the definition of ROLS stability.

5. Examples

In this section we apply the abstract framework of the previous section to several
concrete examples. Two types of constraints will be used: a pointwise lower
bound on the admissible coefficients guarantees the well posedness of the differen-
tial equation whereas a norm bound can be used to imply existence of solutions
for the unregularized output least squares problem (OLS). We start with a result
which implies that the elements of the constraint set satisfy the regular point
condition for such a choice of constraints.

As before let Q be a real Hilbert space, and let K < Q be a closed convex
cone with vertex at zero inducing an ordering on Q such that K ={ge Q: g =0}.
For ke K and yeR™ we define g=(g;, 22): Q> QXR by

g(q)=(2:(q), g:(q)) = (k—gq,|q* - "),

so that Y and K of the previous section are Q XR and K XR" here.

Lemma 5.1. Let y> |k|. Then every point of the set Q,q={qec Q:g(q)=<0} isa
regular point.

Proof. Let g€ Q.q. We need to verify that
Ocint{k—g—h+K, |gf—y*+2(q, ) +R": he Q}. (5.1)

By 8 we denote a positive number which will be chosen sufficiently small later.
Let (g, 7)€ Q xR with |(g, 7)| < 8. Since K is a closed convex cone in a Hilbert
space with vertex at zero, there exists a projection mapping q into g~ € K with
ig®|=|q| for all g€ Q. Clearly,

j=k—q—(k—gq—4+4%)+4q" (5.2)
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which is of the same form as the first coordinate on the right-hand side of (5.1)
with h =k — g — G+ ¢~. Concerning the second component of this set we compute

|91~ ¥*+2(g, h)=|ql’—v"+2(q, k) —2q|"+2(q, 4" — )
< —y2+[kP+2q|(1§%|+14])

= |k|*— y*+48]q|. (5.3)

From (5.3) it follows that for & sufficiently small there exists » € R" such that
F=|ql*—v'+2(g, h)+r" | (5.4)
The result follows from (5.2) and (5.4). ' O

From the proof of this lemma we immediately obtain the following

Corollary 5.1. Let y>>|k|. Then every point of the set Q,q={q<c Q: gi(q)=0} is
a regular point. Similarly, every point of the set Q,a={q € Q: q.(q) =0} is a regular
point.

Example 5.1. We reconsider the introductory example of Section 2 of estimating
the diffusion coefficient g in the two-point boundary-value problem

—(quy)tecu=f on(0,1), (5.5)
U(O)= U(1)=Oa

when fe L?, ce L? with ¢ = 0. All function spaces of this example are considered
over the interval (0, 1). In the notation of Section 4 we take

H=1%> Q=H' Y=H'XR, K=H'nC"'xR', W=H"'xR,
W=I’xW=L*xH'xR, and X=H"

Here C™ is the natural cone of nonnegative functions in C. A generic element
in W is given by w={(z, a}=(z, k, v) and the unperturbed reference parameter
is w’=(z% a®)=(2"% Kk’ v°) with |k°|;n<¥° and k,:==min, o3 k°(x)>0. The
function g: QX W Y is given by

g(q, @) =(g:(q, @), £:(q, @) = (k— g, |g|*— ¥*)
and
Qia={geH": g(g, a)=0}={ge H": k(x)=q(x), |q| =7}
The unperturbed output least squares problem is given by
(OLS) min |u(g)— 2% over Q25

with u(q) satisfying (5.5). We now show that Theorems 4.1 and 4.2 are applicable.
Let

U={ge H": q(x)=k,/2}.
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Then there exists a neighborhood I(a®) of a® such that Q% cint U for all
a € I(a®). Condition (H1) can easily be checked. Next we define operators A(qg)
for ge U by D(A(q))=D(A)= Hyn H? and

A(q)u=—(qu,),+ cu.

Clearly, A(q) is densely defined, closed, and seilf-adjoint. An easy calculation
shows that k;|u,|,><]A(q)ul,> for every uc D(A). Since |u,| is a norm on H},
the operators A(q) are bijections, cf. [5].

In particular, there exists a unique solution u(q)e D(A) for every ge U.
Moreover, it can be shown by elementary calculations that

{u(q)| 2= const |f];2,

where const can be chosen uniformly as g and ¢ vary in bounded sets of H' and
L?, respectively. From these observations it follows that (H2)-(H4) and (H6)
hold. For g€ Q and ue D(A) we define

Agu=cu and A,(q)u=—-(qu.),.

These operators satisfy (H5). Finally, let {g,} be a sequence converging weakly
to ¢ in U< Q. The corresponding sequence {u(qg,)} of solutions of (5.5) is
bounded in H?, and therefore there exists a subsequence {u(q,,)} converging
strongly in H' to an element ue H;. It is simple to show that u=u(q) and
therefore the sequence {u(g,)} itself converges to u(g). This implies (H7) and
the additional assumption of Theorem 4.2. Thus g in (OLS) is ROLS stable at
w’ in Q,q for B in appropriately chosen intervals, that is, g depends Holder
continuously on L’-perturbations of the observation z, on perturbations of the
norm bound ¥, and on H'-perturbations of the lower bound k of the admissible
parameter set Q,q4.

Remark 5.1. The norm constraint |g|: =< y in the previous example implies the
existence of a solution of the unperturbed and unregularized problem (OLS)
but is not used otherwise. It could be replaced by z°c ¥, for example. The
norm constraint is not needed for the applicability of Theorems 4.1 and 4.2, see
Corollary 5.1.

Example 5.2. Here we consider the estimation of g =col(q,, ..., g,) with n =2
or 3 in

- Z (qiux,-)x,- +cu =f in ‘Q':

i=1

T=0 (5.6)
ull'=0,

where fe L” and c € L* with ¢ = 0. All function spaces are taken over the bounded
domain ), which is assumed to have a smooth (C?*-) boundary I' or to be a
parallelepiped. In the notation of Section 4 we take

H=L1’, Q=Q H?* Y=0QxR K=0n® C®xR*, W=QxR,
i=1

i=1

W=L>xW, and X=H>
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We endow Q with the Hilbert space product topology and denote by g; the ith
coordinate of the vector g. A generic elementin Wis givenby w=(z, a)=(z, k, y)
and the unperturbed reference parameter is w’ = (z°, a°) = (2°, k°, y%) with |k°|, <
v® and k, =min; min, k{(x)>0. Here we recall that H>c C is a continuous
embedding for n =2 or 3. The function g: Q X W-Yis given by

g(q, a)=(g:(g, a), g:(q, @)) = (col{k,—q,,. .., kn =), 1915 — ")
and '
Q:a={qeQ: glg, «)=0}
={ge H: k(x)=q(x),|qlo=<7,i=1,...,n}
The output least squares problem is given by
(OLS) min|u(q)—z°3: over Q4

with u(q) satisfying (5.6). Again we show that Theorems 4.1 and 4.2 are applicable.
Let

U={qeQ: q(x)=k/2,i=1,...,n}

Then there exists a neighborhood I(a°) of a° such that Qi;cint U for all
a € I(a") and (H1) follows. Associated with the left-hand side in (5.6) we define
the bilinear forms [,: HyxX Hy—>R by

L(u, v) =Y (qu,, v,)+ (cu, v).
Here and below we drop the index for the inner product and norm in L?. For
g Q we have

lq(u’ u) = kl Z |ux,-129

which by Poincaré’s inequality implies
L(u, u)=Klu|ip (5.7)

for a constant K depending only on k; and Q [21, p. 120]. Thus by the Lax-
Milgram lemma there exists a weak solution u € Hj of (5.6). By [14, pp. 180, 188]
we further have that ue H )~ H? and

[ul 2= ei(Ju +| f])
and by (5.7)
lulpz=< )| fI(1+K ™) =¢Elf]. (5.8)

Here ¢, and therefore ¢, depend only on k,, y, and c. In fact, (5.8) holds with
g€ WP, with n arbitrary and p> n, but our general theory is restricted to the
Hilbert space case. For g € U we now define operators A(q) in L> by D(A(g)) =
Hl~ H? and

Alq)u ==Y (githy, ), T clt.
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These operators are densely defined, closed, and self-adjoint. From the above
considerations it also follows that they are homeomorphisms between D{A)
endowed with the H’-norm and L* Assumptions (H2)-(H4) now follow. We
turn to (HS) and define for ge Q

Agu=cu for uel’

and

AI(Q)u=_Z (Qr'ux,v)x,- for UED(A)

Using Green’s formula we can verify (H6) with A¥(q)=A,(q) on D(A). It is
now simple to show (HS).

Finally, let {g,} be a sequence converging weakly to g in U< Q. With an
argument analogous to the one in Example 5.1 it follows that u(g,)- u(q) in
H'. Thus all the hypotheses of Theorems 4.1 and 4.2 hold.

Example 5.3. This is the problem of estimating the convection coefficient g =
col(q,,...,q,) forn=2o0r3in '

iLj=1 i=1
’ (5.9)
u|ll=0,

where fe L?, ce L?, a, ;€ W', p>n, with ¢=0, a; =a,, and
vy E=Y ag(x)&E
i ij

for some »>0 and all xe(), £€R". The assumptions on ) and I" are as in
Example 5.2. In this example we only use a norm constraint and take

H=1*, Q=® H', Y=R, K=R', W=R,
i=1

W=L*xR, and X =H>
We associate a bilinear form I,: Hyx Hy~ R with (5.9) and put

li(u, v) =% (ayu, v )+ X (quus,, v)+ (cu, v).

i) :
Next a’cR is chosen in such a way that there exists k, > 0 satisfying

L (u, u) = kyju|%e (5.10)
for all ue H), and q=(q1,...,q,,)EQ§£={qE Q: lqlo=a’}. We define g: Q x
R-R by g(g, @) =|g|5—a” and

Qua=1{g€Q: g(q, a)=0}.

The output least squares problem is given as in the previous example except that
u(g) must satisfy (5.9).
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To show that (H1)-(H7) and the additional continuity requirement of
Theorem 4.2 hold let us observe first that H' embeds continuously into L? for
p=2if n=2 and for 6=p=2 if n=3. We define

k
U={qe Q: IL(u, u)2j|u|H1 for all ueH(l,}.

Since |(qu,, u)| < k|ul};1|q]yt, where x is an embedding constant, it is simple to
argue that there exists a constant £ > 0 such that {g e Q: |g|o = a’+¢}< U. Con-
sequently, there exists a neighborhood I(a°) of a° such that QZ<int U for
ac1(a®). It is simple to show that for every ge U there exists a constant K,
such that I, (u, v) = K,|u|y|v| g for all u, ve H|. Together with (5.10) this implies
the existence of a weak solution u ¢ Hy of (5.9). As in Example 5.2 the results
in [14, p. 180, 188] imply that uc H{~ H? and that

|u| 2= el f1. (5.11)
Here ¢, depends only on k,, a;, ¢, and u where Y, |q:| 1 =< u. For g € U we define
the operators A(q) in L* by D(A)= D(A(q))= Hyn H? and

A(q)u = _Z (al'jux,»)xj +Z qiyx,- + cu.
L]
For every g€ U the operator A(q) is densely defined, closed, and a homeomor-

phism between D(A) endowed with the H*-norm and L’. The adjoint of A(q)
for ge U is characterized by D(A*(q))=H{n H* and

A*(‘I)u = —Z (aljux{-)xj +Z (ql'u)xr. + cu.
5J
Again, A*(q), q € Q, is densely defined, closed, and a homeomorphism between

D(A*(q)) endowed with the H>-norm and L?. Moreover, there exists a constant
¢,, with the same properties as ¢, above, such that

|uf 2 = )| A*(q) ul (5.12)

for all ue Hyn H?. Thus (H2)-(H4) holds. Next, for every g€ Q we introduce
the densely defined operators A, and A,(g) by

Agu=-Y (a,-juxi.)xj +cu
ij

and

A(qQu=Y qu,, for ue D(A).

Clearly,
AH(q)u=Y (qu),  for ueD(A),
so that in particular (H6) holds. Clearly, there exist constants K, and K, such

that |Aou| < Koluly2 and A,(q)u = K,|q|o|u| 42 for all ue D(A). Moreover, for all
u e D(A) the following estimate holds:

AT (Pul =T (gl cofu |12 +1(q0) ] [u] =) = Kol qlo|u] w2,
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where K, is an embedding constant. Finally, using (5.11) it is simple to show
that ¢ - u(q) is continuous from U endowed with the weak topology of Q to
H'. This ends our consideration for this example.

Remark 5.2. In all our examples we assumed the availability of observations
ze L*(Q). If only point data are available, our results can be utilized in the
following way. Let Iz € L*(Q) denote an appropriate interpolation of pointwise
data z={z;}M, taken at x;€Q, i=1,..., M. If the interpolation operator is
Lipschitz continuous from R™ to L*(Q), then again we can argue that (4.10) of
Proposition 4.1 holds and stability with respect to the point data can be guaranteed.
In a similar context this is carried out in more detail in the following section.

6. Output Least Squares Stability

In this section we discuss some conditions which guarantee stability of the
solutions of the output least squares problem without the benefit of regularization
terms or with only local regularization. We recall that the problems that we
investigate are given by

(OLS),, minimize |u(q)—z|* over g€ Q24
where

AlQu(g)=f, Qia={9eQ:g(q a)e—-K}, and w=(z a).
As before w is the perturbed parameter with reference parameter w’=(z°, a"),

and (OLS)=(0OLS),°, Qu= Q:;. We shall assume throughout the existence of
a solution g,° of (OLS).

Definition 6.1. The parameter g in (OLS),. is called output least squares stable
(OLS stable) at w®=(z°, a°) in Q.4 at the local solution g,,° of (OLS),0, if there
exist neighborhoods V(w°) of w®in W and V(g,°) of g, in Q and a continuous
real-valued function p with p(0)=0 such that for all we V(w") there exists a
local solution g,, € V(g,,0) of (OLS),, and for every such local solution g,, we have

lqw - qwolQ = P(lz— ZOlH + 5(“; aO))_
We point out that QLS stability is a concept which applies at specific local

solutions, whereas ROLS stability requires stability of all global solutions of the
regularized problem.

6.1. Finite-Dimensional Parameter Space

In this subsection the case of a finite-dimensional parameter space Q is considered.
We write g° = g,,°.

Theorem 6.1. Assume that (H1)-(H7) holds with Q a finite-dimensional normed
linear space and let q° be a local solution of (OLS),». If q° is a regular point, if
h~>|A,(h)u(g®)|y defines a norm on Q, and if |z° — u(q®)| is sufficiently small, then
g is OLS stable at w° in Q,4 at ¢°.



Output Least Squares Stability in Elliptic Systems 57

Proof. The Lagrange functional associated with (OLS),» is given by F(q)=
F(g, w®)=|u{q) - 2%+ Ar*g(q, «"), where A* <€ Y* is a Lagrange multiplier and
w?=(z° a°). For all he Q we have

F,.(q°)(h, h) =2|n*+2(u(g°) — 2°, £) + A*g,,(q°, «®)(h, h),

where n and ¢ are characterized by A(g”)n=-A,(h)u(q"”) and A(g°)¢é=
—2A,(h)n. As in the proof of Theorem 4.1 we have A*gqq(qo, a®)(h, h)=0 and
therefore

Foo(q°)(h, h) = 2| [*+ 2(u(q") - 2% ) |
=2|nf* -4 A, (R)* (A (g°)*(u(g") ~z°)||n]
= |n|*—4|A;(h)* (A7 (g")*(u(g") - 2°)°
2|n|2—[h]é[Zchz(]qolﬂu(qo) -2y 1%
Here we use (H4) and (HS5) and proceed similarly as in (4.13). To estimate | 7|
from below let H™ denote the dual space (with respect to H as a pivot space)
of D(A*) endowed with the graph norm of A(g"), i.e.,
su _w0)y .
veniara |A*(q") vl
We easily check that |w|,-=<|A(g%) 'w|y for all we H. Therefore
Inlt = 1A (B)u(g”) 5

Next we observe that h—|A,(h)u(q®)|y- is a norm on Q. Homogeneity and the
triangle inequality follow from the linearity of h- A(h). Moreover, if
|A; (W) u(q®)|-=0 then A,(h)u(g®)=0 in H; but by the assumption that h -
|A;(h)u(q®)|y is a norm on Q we conclude that 2 =0. Thus h-|A,(h)u(g")|y
as well as h—|A;(h)u(q°)|y- are norms on Q, and since Q is finite dimensional
these norms are equivalent to the norm on Q. Therefore we have, for some
constant «,

Fyy(q°)(h, h) = klh| 5 = | h|o[2Ksex(1q")u(g”) = 2% 1™

For |u(gq®) — z°| 5 sufficiently small this implies (4.9) of Proposition 4.1. Conditions
(4.10) and (4.11) can easily be checked. The result now follows from Proposition
4.1.

|w]y-=

Example 6.1. As in Example 5.1 we consider the estimation of the coefficient g
in the two-point boundary-value problem

—(quy)xtcu=f on(0,1),
u(0)=u(1)=0,

where fe L? and ce L?, with ¢=0. In the notation of Section 4 we take

(6.1)

H=L? Qc H'a finite-dimensional linear space,
Y=H'XR, K=C'xR*, W=H'xR,
W=L*xH'xR, and X =H>



58 F. Colonius and K. Kunisch

The definitions of w’, g, and (OLS) are as in Example 5.1, only now we have to
assume in addition that there exists at least one element g € Q such that g(x)=
k°(x) on [0, 1], and |g|x =< 7°, to guarantee that Q; is niot empty. The existence
of at least one solution ¢g° of (OLS) is guaranteed since Q;‘; is bounded, closed,
and convex. Moreover, by Lemma 5.1 every point of Q% satisfies the regular
point condition. We now make the following assumption:

q° is a local solution of (OLS) and u(q®), is (6.2)
different from zero almost everywhere on [0, 1]. '

Using Theorem 6.1 we now show that g is OLS stable at w® in Q,4 at the specific
local solution ¢° for which (6.2) holds. It suffices to argue that h-|(hu,),|,2,
with u = u(q®), defines a norm on Q. Homogeneity and the triangle inequality
hold. Since u(0)=u(1)=0 there exists at least one £ (0, 1) such that u, (&) =0.
Therefore |(hu,),|.2=|hu,|,2 for all he Q. Thus, if |(hu,),|= 0 then |hu,],2=0and
by assumption i =0 on [0, 1]. We have shown OLS stability of g at ¢g°. We point
out that u, # 0 almost everywhere on [0, 1] is a sufficient condition: but in specific
cases u, = 0 on sets of positive measure may still allow us to argue that h - [(hu, )|
is a norm on Q. For example, if Q consists of linear spline functions and
meas{x: u.(x) =0} is strictly smaller than the measure of the support of any of
the basis elements, then this assumption holds.

Remark 6.1. Further examples can easily be obtained. For instance, g, in (5.9)
is OLS stable in a local solution ¢° for Q< H' finite dimensional if u,(g°)#0
almost everywhere in ().

6.2. OLS Stability over Subsets of the Domain

In this subsection we discuss another case of stability of the solutions of the OLS
problem without requiring regularization terms. To do so we need to change
somewhat the general framework that we used so far. First, we now only attempt
to estimate the unknown parameters away from the “singularities” of the solution
u. To give an indication of what we mean by singularity let us consider Example
5.1 and let g° be a solution of (OLS). Then ¥ ={x: u.(q°)=0} is the set of
singularities for the diffusion coefficient q°. From (5.5) it is clear that the determi-
nation of ¢°(x) for x € & using an OLS approach is difficult or even impossible
(if x is in the interior of &). Secondly, we use a fit-to-data criterion involving
the X-norm rather than the H-norm. This requires the availability of measure-
ments z in the X-norm and, in practice, it may result in approximate differentiation
of pointwise “real data.” We therefore proceed as follows. Let Z be the normed
linear space from which we take “real data” z and let $: Z-> X be an operator
satisfying

| Iz, — Izo|x = M|z, — 2, (6.3)

for a constant M, independent of z,, z,€ Z. In applications Z may be R™ with
z={z}M, point data and . an interpolation operator. We show stability with
respect to the constraints as well as to z
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In addition to the spaces H, Q, and Y, the cone K, and the operators A(ql
of Section 4 we require a real Hilbert space é and an affine operator E: Q> Q
which has &’ as a Fréchet derivative independent of where the derivative is taken.
The operators A(g) are now of the form

A(g) = A+ A (€(q)).

We require (H1)-(H7) to hold with Q replaced by Q. The parameter dependent
output least squares problem is

(OLS),, min|u(q)— $z|% over g€ Q2y,
where

Alq)u(q)=f
and

Qu={q€Q:g(q a)e-K}, w=(za)

Justasin Lemma 4.1 we can show that g » u(q) is twice continuously differentiable
from Q to X with n=u,(q)(h) and £=u,(q)(h, h) given by

A(g)n+A(€'h)u(q)=0 (6.4)
and

A(q)Ye+2A,(€ h)n=0. (6.5)
Theorem 6.2. Assume that (H1)-(H7) hold with Q replaced by O, that € and ¥

are as defined above, and that q° is a local solution of (OLS),». If 4° is a regular
point, if |$z° — u(q®)|x is sufficiently small, and if there exists a constant k such that

IAI(%’h)u(q0)|H2k|h|Q forall heQ, (6.6)
then q is OLS stable at w° in Q,q4 at q°.

Proof. Again we use Proposition 4.1. The Lagrangian is now given by
F(q)=F(q, w’)=|u(q) - 92°[x + A *g(g, a°).
Using (6.4) and (6.5) the second derivative of F at g,° is found to be
Foa(q°)(h, h) =2nl% +2(u(q") — 92°, £)x + A *g,4(q", a®)(h, h).
We therefore have, putting ¢; = ¢;(|q"), ¢;= Ko+ K[| €'|| 9.
Fo(gwe)(h, h}=2|A(¢°) 'A(E'h)u(q”)|%
—4lu(q°) - 92°|x|A(¢") 1A (€ h)n]x
=2¢5 | A& ) u(g°)h — 46 |u(g”) — F2% x| A (€'h)
>2¢5k* A
—4¢, K[| €] |B||AT (") AL (E R u(q°)|x|u(q®) — £2°|x
=263k k[~ 4K € P13 u(q®) (") — 92°)x
=2/hlgles*k* = 2eiK 3] €'l |u(q°)|xu(g®) — #2°|x .

»
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For |u(q")— $z°%x sufficiently small this implies qu(qo)(h,h)zfy|h|f2 for an
appropriately defined y independent of h. This is (4.9) of Proposition 4.1. As
before, (4.11) follows from (H1) and (4.10) is a consequence of

[|u(g)— j’zl|x - lu(qz) —5622|x|
=lu(q) ~u(q:)|x +|Fz, — Fz3| x
= sup |”q(‘11 +7(q,— Q1))|$(Q,X)|‘11 — o} + M|z, — 2,

T7<[0,1]
= 01(")2K2” &l 1f11g1— qa| + M|z, — zo],
where we used (6.3) and put r =max({|q,|, |g2|). This ends the proof. O

Example 6.2. Here we consider the estimation of g over the measurable set
Qc<(0,1) in

—(au, ), +qu=f on(0,1),
u(0y=u(1)=0,

where g is known on [0, 1]\Q. We take discrete measurements z ={z;} [ e R™"'
at i/M, i=0,..., M, and assume that ac H', fe L* with a(x)> 0. The general
theory will be used by making the following choice for the spaces:

H=1%0,1), Q=L%Q), @=L*0,1), Y=L Q)xR,
K=L (Q)xR", W=LHQ)xR, W=RxL*(Q)xR,
X =H?*0,1), and Z=RM",

Here L3(Q) denotes the cone of almost everywhere nonnegative functions. It is
assumed that g is known on [0, 1\Q and has the value ce L*((0, 1)\{)) there
with ¢=0. For ge Q= L*(Q}) we define

e on[0, 1]\,
%g(q)“{q on £).

We easily find

0 on{0,1\Q,
on {).

To specify the constraints we choose k°c L*(Q), k°=0, ¥°>0, and define g: Q X
W-Y by g(q, a)=(k—gq,|q|% —7v°), where a =(k, y)e W, Moreover, we put
Q% ={qe Q: g(g, a)=0}. We further define $:R" ™' > X as the cubic spline
interpolation operator which maps z={z} into the unique element $ze C?
satisfying ($z)(i/ M) = z,, ($z)'(0) = ($2)'(1) = 0 and which is a cubic polynomial
on all subintervals (i/M, (i+1)/M). It is then straightforward to see that (6.3)
holds [18, pp. 46, 47]. We have now fully specified the OLS problem. It is simple
to see that there exists at least one solution of (OLS),s. Let g° be any local
solution of (OLS),,» and assume that for some w >0

lu(g®)(x)|=u>0 forall xe(Q. (6.7)

g'(hy= {
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By Lemma 5.1 we know that g, is a regular point. Moreover, (6.7) implies that

|A(&'h)u(g°) 20,y = [hu(g")] 20y = 1 h] L2y, (6.8)

which is assumption (6.6) of Theorem 6.2. Conditions (H1)-(H7) can easily be
checked for the present example Thus all assumptions of Theorem 6.2 are satisfied
and OLS stability of g at ¢° is obtained if (6.7) holds and |$z°—u(q° )|H 0.1y 18
small.

Remark 6.2. The above example can be generalized with appropriate modifica-
tions to the multidimensional case. Theorem 6.2 can also be used to study OLS
stability of the parameter b in —(au,), + bu, + cu = f, where a natural space for
the coefficients is again L°. However, further generalizations of the theory are
required to treat the multidimensional analog or to study OLS stability of the
diffusion coefficient a in this equation.

6.3. An Example for Local Regularization

We have seen that the essential requirement in obtaining OLS or ROLS stability
is positive definiteness of the second derivative of the Lagrangian. In Sections 4
and 5 this was achieved by means of a regularization term, whereas in the first
two subsections of this section positivity was guaranteed by means of specific
assumptions on the OLS problem. These two ideas can be combined by only
regularizing over certain subsets of the domain of the unknown parameter. We
give an example.

Example 6.3. We return to Example 6.2 which is the identification of g in

—(au ) +qu=f on(0,1),

u(0)=u(1)=0,
with fe L*(0,1), ae H'(0, 1), with a > 0. The cost functional involves cubic spline
interpolation of point data ze R™*! and an H?-criterion just as in Example 6.2.
The aim is to estimate q in Q,q={ge L*(0,1): g(x)=0,|g|=<v°}, v>0, in such
a way that the result depends continuously on the pointwise data and on the
constraints defining Q,q4.

The OLS problem involving a local regularization term is given by

min |u(q) — Pz|32+ Blgli2oinay  Over Quq. (6.9)
In the notation of Section 3 we put

H=I1% Q=1° Y=L*xR, K=L2xR', W=L>xR,

W=RM"'xW, and X=H>
where the domain is (0,1) for all function spaces. Moreover, g(g, a)=
(k—gq,qI*— %), where a = (k, y) and a’=(0, ¥%), and Q%y={ge L* g(q)=0}.
Clearly, there exists a solution of (6.9) and every element of Q4 is a regular

point. Let g° be a local solution of (6.9) for w=w" and assume that for some
constant >0

lu(g®?)(x)|=p  forevery xeQ. (6.10)
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We calculate the second derivative of the Lagrangian at ¢° in direction (h, h),
for he L?, and define A(q): Hyn H>~ L*by A(gq)u=—(au,),+qu and A,(g)u =
qu. In the following estimates the constants k; are independent of h:

Fo(g®)(h, h) =2 m|57 — 4|u(qP) - £2° 2| A(¢%) A (W) ml 2+ 2Bl 220,10
= ki| A (h)u(q”)| 12~ kalu(g®) “'fZ'O‘HZ|Al(h)77|1_2
+2Bh| 2 0.ane)
= k1p2|h|iz(g) — k3| b 2lu(q®) — $2° 12| Ax(R)u(g”)| 2
+281h| 1200
zmin(k,w?, 28)| k|72~ kil |72 u(q”) — F2° 2l (") .

Thus F,,(q°)(h, h)=ks(B)|h|7> for some ks(B)>>0 independent of h, provided
(6.10) holds, B is sufficiently large, and |u(g”)— .0/, is sufficiently small. This
implies that—in the sense of Proposition 4.1—the local solution ¢” is stable with
respect to perturbations of the point observations z and the parameter o defining
the admissible parameter set.

Clearly, the concept of local regularization requires a systematic analysis,

which is not within the scope of this paper.
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