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1. INTRODUCTION

The aim of this paper is to extend to time-varying linear retarded func-
tional-differential equations (FDEs) the results on structural operators and
duality which were obtained in recent years for autonomous linear FDEs
[1, 6,7, 18, 20]. These results have become very useful, as they clarified the
structure of the semigroups corresponding to linear FDEs and helped to
characterize solutions of control problems associated with FDEs [24] and
to develop certain aspects of numerical approximation schemes [16, 17].
Analogous results for general time-varying equations have not been
available so far. Only in the special case of constant point delays there were
some results in a paper by Delfour [5], but they were not stated in terms
of structural operators. In the case of time-varying point delays, even the
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question of existence of solutions with L7 initial functions did not have an
adequate answer.

In this paper the time-varying RFDEs are investigated in the setting of
both the state space C of continious functions and the product space
R”x LP. In the C space two state concepts are investigated: the state given
by the initial function and the state given by the forcing term. The duality
theory is based upon these two concepts. What distinguishes the present
approach from the previously existing ones [12, 13, 14] is the explicit use
of two structural operators F(t) and G(t), their relations with the evolution
operators and duality, as well as the results on strong continuity of all
these operators. The latter results require an additional assumption on the
original equation which cannot be omitted as shown by an example.

In the setting of the product space M? = R" x L the following questions
are investigated: the extendability of structural and evolution operators
defined on the space C to product spaces, the strong continuity of these
extended operators, the duality theory in product spaces, and the existence
of a functional-differential adjoint equation.

The latter problem has particularly interesting aspects. It has been
known that in the setting of the C space the adjoint equation is in general
an integral equation of Volterra type, which in some special cases can be
“differentiated.” By using our duality results we establish a link between the
extendability of evolution operators from space C to M” and the existence
of a functional differential adjoint equation.

A surprising discovery of this paper is that the solution of all the
problems mentioned above depends critically on a certain assumption
about the original equation, which we call a “fundamental extendability
hypothesis.” We give a general formulation of this hypothesis and show
how it intervenes in the solution of these problems. We then translate the
hypothesis into a number of concrete conditions related directly to
equation parameters, in particular to the behavior of time-varying point
delays. Some interesting features of this behavior and their relation to the
form of the differential adjoint equation are exhibited in a few examples.

In [4], the results of this paper are used in order to characterize
solutions of optimal periodic control problems.

2. STRUCTURE THEORY IN THE STATE SPACE OF
ConNTINUOUS FUNCTIONS

2.1. Time-Varying Retarded Systems

We consider the time-varying linear retarded functional-differential
equation (RFDE)

xX(t)=L(1, x,), (2.1)
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where x(7) e R" and x, is defined by
x(t)=x(t+71), —h<1<0,0<h<o0.

We assume that

(H1) (i) there exists a function m(-)e L,.(— o0, o0) such that for
almost all te R and all ¢ € C[ —h, 0; R"]

|L(t, §)l < m(t) ]l e - 1,0, 5015 (2.2)

(i1) for every ¢peC[—h,0; R™], the function t— L(t,¢), teR, is
measurable.

LEMMA 2.1. Suppose that L satisfies hypothesis (H1). Then there exists
a nxn matrix valued function n(t, t) with the following properties.

(i) For every te R the function n(t, -)e NBV[ —h, 0; R"], ie., n(t, -)
is of bounded variation and normalized in the sense that n(t,t) is left
continuous in 7 for —h<t<0, n(t,t)=0 for 1 >0, and yn(t, 1) =n(t, —h) for
1< —h;

(i) For almost all te R and all $ € C[ —h, 0; R"]

L(t, ¢) = ,, [den(t, D1 4(0); (2.3)

.J[ k.
(i) ~#n(-, -) is measurable on Rx R,

Proof. Without loss of generality we can assume that n=1. The Riesz
representation theorem implies the existence of n with the properties (i)
and (i1). Now fix t,e€ (—#A, 0] and define the sequence ¢,(-)e C[ —h, 0] as
indicated in Fig. 1. Then for almost every te R

Al )= Jlim | (s 0] 4u(e)= lim L(s ¢,)

and therefore the function n(-, 7) is measurable for every 1€ [ —hA, 0]. This
implies that the function

n.(t, 7)= VAR 7(s, -)
[—hAt]

is measurable in ¢ for every fixed 7 € [ — A, 0]. Furthermore, this function is
monotone in 7 and hence we can apply [2, Chap. V, Exercise 6] and
obtain that »n, is measurable on Rx R. The same arguments apply to
n_=n, —n and thus n=n, —n_ is measurable in Rx R. This proves
statement (11). |
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FIGURE 1

Remark. Let L satisfy (H1) and let x(-)e C[t,—h, t;; R"], t,<t,, be
given. Then the functions

[ Mdme0lst+n, <<,
[-40]
| (Aot O] x(t4+1),  fo<t<ty,
[—Ar—1)
j [d.n(s, 1)) x(t+ 1), ity
[rg—1.0]

are in L'[#,, f;; R"] and depend in this space continuously on x(-)je
C[IO _‘h, tl) Rn].

A function x(-)e C[t,—h, t,; R"] is said to be a solution of (2.1) if x(r)
is absolutely continuous on the inverval [¢,,¢,] and satisfies (2.1) for
almost every t € [1,, f;]. It has been shown in Hale [12, Chap. 6] that (2.1)
admits a unique solution on the interval [1,, ¢,] for every initial condition
of the form

x(t,+ 1) =@(1), —h<1<0, (2.4)

where ¢eC[—h 0; R"], and for an additional forcing term in
L'[t,,t,; R"]. For our purposes we need a slightly stronger result.
Integrating Eqs. (2.1), (2.4), we obtain

x(to+5)=1"(s)

5

(s r
+| | [d.n(to+0, 1)) x(25+ 0 +7) do, 520, (2.5)
Yo J[-6.07
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where f'°(-)e C[0, t, —ty; R"] is given by

Sos)=d(0)+ [ |

Jo -4 -2

, [d.n(t,+0,1)] ¢lo+1)da, s20. (2.6)
By the Remark after Lemma 2.1 this forcing term f"(-) is actually in
WU''[0,1,—t;; R"] and depends in this space continuously on
¢ e C[ —h, 0; R"]. Moreover, note that f*(s) is constant for s> h Hale’s
result [12, p. 142] implies that Eq. (2.5) admits a unique solution x(-)e
W' 1y, t,; R"] for every f°(-)e W"'[0, 1, —1t; R"]). The next lemma
extends this result to arbitrary continuous forcing terms [f(-)e
C[O, t;—1t4; R™].

LemMma 22. Let (H1) be satisfied Then, for every [f“(-)€
C[0, t,—to; R"), Eq.(2.5) admits a unigue solution x(-)e C[t,,t;; R"].
This solution satisfies the inequality

1x(1)] s( sup |f’°(s)|\] exp (I' mi(s) a’s), ostr<r,. (2.7
/ f

D=ssi-— g

Proof. Let us introduce the space X=C[0,¢ —1,; R"] and let
Te £(X) be defined by

[Tx](s)=| Jf

Jo Jr—s0

: [don(to+0,7)] x(6+1)do

for 0<s<t,—t, and x(-)e X. We have to show that 7— T is boundedly
invertible. For this sake we introduce on X the equivalent norm

Ix()l,= sup |x(s)|e ”,
Oss=1—1g

where y > 0 is chosen in such a way that the inequality

sup Ifr m(c)do+e ™ Jfr' m(o) do < 1

EYES | At fo

holds for some ¢>0. Then the following inequality holds for every
se[0,t,—t,]):
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f

J[—-0.,0

m 5

ILTx)(s) e ™ <)

[d.n(to+o0,7)] x(6+71)|doe ™"
]

<[ “mlto+o) sup Ix(0)idoe
0

O0<gt<so

* 5

+j m(to+0) sup |x(1)| doe

-

plp+ 5 — &

gJ m(t)dt( sup |x(¢)| e ‘”)e o

o OD<st<s—¢

+[ " om()dt sup |x(¢)l e

O0=<r=s

!

[0 mwase ”fim(r)dr] 1% ()1,

<

Hence T is a contraction with respect to [|:| and therefore I— T is
boundedly invertible. Y
If x(-) is a solution of (2.5), then the following inequality holds,
sup |x(t)] < sup [ f"(t— 1)
nsEt1=</ n=t1=!

+~!r m(s)( sup |x(x))ds, t, <1<t

1 WNETES
and hence (2.7) follows from the generalization of Gronwall’s inequality in
Hale [12, p. 15, Lemma 3.1]. |}

Remark 2.3. 1If the forcing term f(-) of (2.5) is in W''{0, ¢, —t,; R"],
then it follows from Remark 2.1 that the solution x(-) is in W"![¢,, ¢;; R"]
and depends in this space continuously on f(-)e W"!'[0, ¢, — t,; R"]. In
particular, this implies the existence of a unique solution to (2.1), (2.4) for
every initial function ¢ € C[ —h, 0; R"].

The rest of this section is devoted to the problem of continuous
dependence (of anything under consideration) on the initial time t,. This
turns out to be a surprisingly nontrivial problem. First note that the
continuous dependence of the solutions of (2.1) and (2.4) on ¢, has been
shown by Hale [12, p. 41, Theorem 2.2]:

LEMMA 2.4. Suppose that (H1) is satisfied, let tye R, T>0, and
$peC[—h,0; R"] be given, and define x(t, ty, ¢), to—h<t<t,+ T, to be
the unique solution of (2.1). Then

lim[ sup |x(t+s;t, @)—x(to+s;15,0)]1=0.

= pgs<7T
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The following simple example shows that the continuous dependence on
t, can break down for Eq. (2.5).

ExaMpLE. Consider the RFDE

x(1) = x(t — h(1)), (2.8)
where
0, 1 <0,
h(t)= ( 1, 011
1, =1

In this case assumption (H1) is clearly satisfied. The integrated equation
takes the form

*to 53 to, f)=f(6)+ [ 5= h(0): 105 1) X et — h) d.

The solutions corresponding to f(s) = x, are given by

= (I+S)xn, UQ.TSI,ifo:O,
ty b Bty Flmd !
Mo +8 00 J)=1, 0<s<1,if0<r,<1

and therefore do not depend continuously on ¢,.

In order to obtain the desired continuous dependence of the solutions of
(2.5) on the initial time ¢#,, we need a further hypothesis. Let 1 < p < 0.

(H2) For all —owo <ty<t,< o, there exists a constant K> 0 such that

~

1y 1 i/p
" 1L <k (] ()1 i (29)
0 to—h

vy 0

for al[ X € C[to—h, tl;Rn].

This hypothesis means that the map x— (L(t, x,), te R) can be con-
tinuously extended to a map from Lf _(—o0, 00) into L (— o0, co0). It
plays a crucial role throughout this paper and will be discussed in detail in

Section 3 and 4.
LEMMA 25. Let (H1) and (H2) be satisfied. Then the following
statements hold.

(1) For every ¢eC[—h,0; R"] the function f*(-)eC[O0,h; R"]
defined by (2.6) depends continuously on t,.
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(il) For every f(-)e C[0, T; R"] the unique solution x(t,+ -; ty, f) of

x(to+ 53 10, ) =f5)+ | |

5
0 [0,

0] [dr'?(to + g, ‘C)]

xx(to+0o+71; 1, [)do, 0<s< T, (2.10)

depends—in C[0, T; R"1—continuously on 1.

Proof. (i) Let f(-)e C[O0, h, R"] be defined by (2.6). Then it follows
from the Remark after Lemma 2.1 that f(.)e W"'[0, h; R*] and, since
VAR ,oyn(t, ) <m(t) we get

| (d:n(to+s, 7)1 d(s + 1)

—h,—s

| (s)] = U
<mty+5) 101l cr - noir7-

Therefore the functions f(-), a <1, < b, are equicontinuous. Moreover, the
following inequality holds for 1<t and s >0:

|fis+1—1)—f1(s)]

7] w01 de s do

‘JSJ [d.n(t'+0,1)] (o, 1) do
0 Y[~h —a]

t—t
<|
0

) e+ e o+ 41 1) = o +)) | do

do

[ dat+o01d6+1)
[—h —0]

do

+ [ [don(t + 0, 7)] $(o +7)
0 [r—t—oa, —0a]

<[ m@yd gl [ U med s 184 —0— g0
0 i/p
+K(£H¢auvm).

This proves statement (i).
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In order to prove statement (ii), suppose that a <, <# and note that,
by (2.7),

fb+ T

Ix(2o+ =5 20, Mo, 7.8 < If | cro, 7577 €XP (l m(t) df) =:C.

i

a

Moreover, it follows from the Remark after Lemma 2.1 that
x{to+ i tg, f)—f(-)e W'[0, T; R"] and

2 xto+5; 10, ) — 15))

as

"~

J Loy [t D] x(to+5+ 700 f)
5,0]

<m(t+s)- sup |x(to+0;ty, )

O0so<s

< K-m(t+s5).

Therefore, the functions x{t,+ ¢y, f)eC[0, T;R"], a<t,<b, are
equicontinuous. Moreover, the following inequality holds for a<:<¢ <b

and 0<s<T+1t—1":

lx(#" + 552, f)—x(¢' +5; 0, /)
| fls+1—1t)—f(s5)

s+t =t o
+ 11 l [dn(t+o, )] x(t+0+75t, f)do
v0 [—0.0]

rS

i J

[don(t' +o,1)]x( +0+1,0, f)do
0 Jr-a.0]

do

L fls+1 —1)— f(s) +L:'_£ U[—am [dn(t+a,1)]x(t+a+71;8 f)

do

J. [don(t' +o,0)][x(t' +a+1,t, f)—x('+a+71;0, 1)]
[—a,0]

|

Y[t—t' —a,—o

do

{don(t'+o,t)]x(t' +0+1; 8, f)
)

r ot i/
S| fs+t—1)—f(s)| + CJ[J m(r)dr+K| ) |x(t; t,f)l”dtJ

+r m(t'+o)- sup |x(t'+t,f)—x(t'"+1;t, f) do.
4]

Ostsa0
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Applying again the generalization of Gronwall’s inequality in Hale [12,
p. 15, Lemma 3.1], we obtain

|x(t' +s;0, fY=x(t'+5;0, )

<| sup |fla+1' —1)— flo)

Ogags

+Cj m(t)dt+ K- C-(t' = 1)V

g
!

_ exp (J-: " m(T1) d‘L’)

for 0<s<T+t—1¢. This proves statement (ii). |

2.2. State Concepts and Structural Operator

The most common way of introducing the state of a retarded functional-
differential equation is to specify an initial function of suitable length which
describes the past history of the solution. The corresponding state of
system (2.1) at time ¢ is the solution segment x,e C[ —hk, 0; R"]. The evolu-
tion of this state determines a family &(¢4, s), t=>=s, of bounded linear
operators on C[ —A, 0; R"] defined by

®(t, 1) =x. € C[ — h 0; R"], (2.11)

where x(¢), t = t,— h, is the unique solution of (2,1) and (2.4). It is a direct
consequence of Lemmas 2.2 and 2.3 that @(z, s) is a well-defined, strongly
continuous evolution operator. More precisely, &(z, s) has the following
properties (see also Hale [12]).

PrOPOSITION 2.6. Let (H1) be satisfied.

(i) @(t,5) is a bounded linear operator on C[—h,0; R"] for all
1. s€ R with t=5.
() @(t,t)=1for all te R.
(iii) D, s)D(s,1)=D(t,7) for t=s5=.
(iv) For every compact interval [t,,t,] < R there exists a constant
M =1 such that ||P(t, s)| €M for t,<s<t1<t,.

(v) @(t, 5)¢ is a continuous function on the domain {(t,s)e R* | t > s}
for every ¢ € C[ —h, 0; R"].

An alternative state concept has been introduced by Miller [19] for the
description of Volterra integro-differential equations. The basic idea is to
define the state of the system to be an additional forcing term of suitable
length which determines the future behavior of the solution. This state con-
cept has been introduced independently by Bernier and Manitius [17],
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Manitius [17], and Delfour and Manitius [7] for time-invariant RFDEs
in the product space framework on the basis of a so-called structural
operator F. Later on, the forcing function state concept was used by
Diekmann [9, 10] to describe Volterra integral equations and time
invariant RFDEs in the state space of continuous functions. (See also the
work by Staffans, e.g., [22, 23].) An extension to neutral system has been
developed in Salamon [20] and Delfour and Karrakchou [6]. For time-
varying RFDEs the only results in this direction can be found in Delfour
[5] for a special class of equations with constant delays.

In this paper we introduce the forcing function state concept for the
integrated equation (2.5). More precisely, we define f(-)e C[O0, h; R"] to
be the initial state of (2.5). The restriction to the interval [0, #] is justified
from the fact that f*(s)=f"(h) for s=h if f(.) is given by (2.6), ie.,
results from the initial function x,=¢ e C[ —h, 0; R"] of (2.1). However,
we will allow for arbitrary continuous forcing terms f*(-)e C[0, h; R"] and
extend the function to [0, ov) by defining f*(s) = f*(h) for s= h.

The corresponding state at time t>¢, can be obtained by applying a
time shift to Eq. (2.5). The shifted equation takes the form

x(t+5)=f'(s) + JO‘ [

[dnlt+o,t)]x(t+0+1)ds, 520, (212)
1

[ o0

where f/(-)e C[0, h; R"] is given by

45— I r

fis)y=f"%t+s—1t,) +J [d.n(to+s5,1)] x(to+0+ 1) do

0 J[fa,rﬁcr-r(;]
(2.13)

for 0 < s<h and again f'(s)= f'(h) for s > h. Note that the shifted forcing
term f‘(-) contains all the information from the past history of the solution
at time ¢ which is needed to determine the future behavior of the solution
x(1+5), s 2 0. This forcing function f'(-)e C[0, h; R"] is considered to be
the state of system (2.5) at time ¢>1¢,. The evolution of this state deter-
mines the family ¥(¢, 5), t = s, of bounded linear operators on C[0, 4; R"]
defined by

!p(ts t(})fm:fle C[Os hs Rn]f (214)
where x(¢), t=1,, is the unique solution of (2.5) and f'(-) is defined by
(2.13).

ProrosiTION 2.7. Let (H1) be satisfied. Then

(1) P(1, 5) is a bounded, linear operator on C[0, h; R"] for all t,se R
with t = s,
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(iiy Y t)=Iforall teR,
(i) P(r,, 1) P(1, 1) = P(1,, t,) for t, =2t > t,, and

(iv) For every compact interval [t,, t,] there exists a constant M > 1
such that |¥(t, s)| <M for t,<s<t1<t,.

(v) If (H2) is satisfied, then ¥Y(t, s) is a strongly continuous operator
on the domain {(t,s)e R* | t=s}.

Proof. The statements (1), (iv) follow from the definitions and Lemma
2.2. Statement (v) is an easy consequence of Lemma 2.5.

The relation between the two state concepts can be described by
two structural operators F(¢): C[—h, 0; R"] — C(0, h; R*] and G(1):
C[0, h; R"] > C[—h, 0; R"]. The operator F(t,) maps the initial function
peC[—h0;R"] of (2.1), (24) into the corresponding forcing term
S )e C[0, h; R"] of (2.5) which is given by (2.6) and the operator G(t,)
maps this forcing term f“(.) into the corresponding solution segment
X, n€CL—h,0; R"] of (2.5) at time t,+ h. These two operators can be
described explicitly by the formulas

[F04)s)=O+ [ [ [dnt+o,0lplo+1)ds,  (215)

0 Y[—h —a]

[6(1) ")) =d(s—m—| |

1
“[—a,

, [dantt+a, 01 glo+c—h)ds (216)

for 0<s<h and ¢e C[—h,0; R"]. By Lemma 2.2 the operator G(t)~' is
boundedly invertible and its inverse is the desired operator G(¢).

ProrosiTiON 2.8. Let (H1) be satisfied. Then the following statements
hold.

(i) The operator G(t): C[0, h; R"] - C[ —h, 0; R"] is bijective.

(i) If (H2) is satisfied, then the operators F(t) and G(t) are strongly
CONtinUouUs.

(iii) D(t+h, t)=G(t)F(1), P(t+h, t)=F(t+ h) G(t).

(iv) F(1) P(1,5) = P(1,5) F(s), D(t + h,s + h) G(s) = G(1) ¥(4, 5),
t=s.

Proof. Statement (i) has been shown above and statement (ii) follows
from Lemma 2.5. The first equation in (iii) is an immediate consequence of
the definition of the operators F(¢) and G(¢). The other equation follows by
straightforward computation, and (iv) is an easy consequence. The equa-
tion F(1) D(1, ty) = P4, ty) F(t,) can also be interpreted in the following
way. If f(-) is given by (2.6), if x(¢), t =1, h, is the unique solution of
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(2.1), (2.4), and if f7(-), 1= t,, 1s defined by (2.13), then f*= F(¢) x,. This
fact can be established directly.
The relations of Proposition 2.8 can be summarized in Scheme 1.

s+ h, 5]

T T

- Fis) Gls) HN““’
C[—h, 0; R"] 2 0, ks 7] 255 C[— 4, 0; R7]
‘ &B{i.s) Wi s} [¢(1+h,s + R}
C[ -k, 0; R"1 2L cro, 1, 7] - €[ —h, 0; R"]
—~._‘EI__H H,,——-"“
P(r+ A1)
SCHEME 1

Finally, we remark that the operator F(t) is closely related to the
“hereditary product” which has been used in Hale [12, p. 151] for a special
class of time-varying RFDEs with constant delays. The operator G(¢) is
related to the operator 2 in Henry [13] and Hale [12, Chap. 6]. A more
detailed discussion of these relationships will be given in Sections 2.3 and 4.

2.3. Duality

In this section we give an interpretation of the adjoint operators F*(t),
G*(1), @*(t,5), ¥*(t,5) in terms of a certain transposed system which
takes the form of a Volterra integral equation of the second kind. In order
to give a concrete representation of the adjoint operators, we identify the
dual space of C[ -4, 0; R"] with the space NBV[ — A, 0; R"] of normalized
functions of bounded variation by means of the duality pairing

~0
(g.¢>=] [d.g7()](x)

geNBV[—h 0;R"], $eC[—h,0;R"].

The normalization is g(0)=0 and left continuity on the open interval
(—h,0) for geNBV[—h 0, R”"]. Analogously the dual space of
C[0, h; R"] will be identified with the space NBV[0, #; R"] via the pairing
Y, fo=[b[d " (s)] f(s), y eNBV[O, h; R"]. The normalization here is
¥ (h) =0 and left continuity on the open interval (0, 4).

Let us first establish formulae for the operators F*(¢): NBV[0,# R"] —
NBV[ —A, 0; R"] and G*(¢): NBV[ —h, 0; R"] — NBV[0, h; R"].

LEMMA 29. Let Yy eNBV[O, h; R”] be given. Then the following
equations hold for —h <t <0:
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[FHO1E)=$(0) = | "1 +5,1=5)=n"+5-9)1(s)ds, (217)

[G*(t) "W ](t)=¥Y(z +h)+_|.O nT(t+h+o,1—0)Y(o+h)do. (2.18)

Proof. Follows using the unsymmetric Fubini theorem. ||
The operators F*(¢) and G*(¢) are related to the transposed equation

n+h

z(t) —z(t)) = —J’ [n7(a, t—a)—n" (o, t, —a)] z(a) dot, 1<ty
(2.19)

This equation is sometimes called the “formal adjoint equation” and has
been used in the theory of functional-differential equations for a long time.
Equation (2.19) admits a unique solution z(?) in the space
NBVI[T,t,+h; R"], T <1t for every final condition of the form

2(t, +s) =y (s), 0<s<h, (2.20)

where y e NBV[O0, k; R"] (see, e.g., Hale [12, p. 148, Theorem 3.1]). This
motivates the definition of the state of system (2.19) at time < t, to be the
solution segment z'e NBV[0, h; R"] given by

+5), 0<s<h,
z!(s}:{z(r §) s< (221)

0, =
Equations (2.19), (2.20) can be rewritten in the form

4]
z(tl+z)=g’1(-c)—j n(t,+0,1—0)z(t, +o)do, 1<0, (2.22)

T

where g"(-)e NBV[ -4, 0; R"] is given by

g0 =90 — [ [n7(,+51—5)— 17ty +5,—s)] W(s) ds
" (2.23)
= [F*(t))¢ (7)), —h<1<0.

This shows that the dual of the forcing term operator is the forcing term
operator for the adjoint equation.

A comparison of formulae (2.18) and (2.22) shows that a function z(-)e
NBV([¢, —h, t,; R"] satisfies (2.22) if and only if

2R = G*(t,— h) g", (2.24)
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where 2z ~#e NBV[0, 4; R"] is given by (2.21). Since G*(¢, — h) is bijective
(Proposition 2.8), this shows that Eq. (2.22) admits a unique solution for
every g"'e NBV[ —A,0; R"]. As in Section 2.2, we may now define the
forcing term g" to be the final state of Eq. (2.22). The corresponding state
at time ¢ < ¢, can be obtained by means of a time shift. The shifted equation
takes the form

z(t+ 1) =g’(t)—f0 n'(t+o,t—0)z(t + o) do, <0, (2.25)

where g'(-)e NBV[ -4, 0; R"] is given by

gi(t)=g"(t—1t,+1)

0
—j nT(o t+1—a)z(a)do, —h<t<O. (2.26)

The forcing term g° of the shifted equation is now regarded as the state of
system (2.22) at time 7 <1¢,.

THEOREM 2.10. (i) Let y e NBV[O, h; R"] be given, let z(t), t < t, + h,
be the corresponding solution of (2.19), (2.20), and let z' ¢ NBV[O0, h; R"] be
defined by (2.21). Then

z'=P*(t,, 1), 1<1,. (2.27)
(1) Let g(-)=g"eNBV[—h,0; R"] be given, let z(t), t <t,, be the

corresponding solution of (2.22), and let g NBV[ —h, 0; R"] be defined by
(2.26). Then

gi=>d%(,,1)g", I<1y. (2.28)
Proof. Straightforward, but tedious computation. |
Remark 2.11. (1) The equation
FX(t) P*(t,, t) = D*(t,, t) F*(1,) (2.29)
can now be interpreted in the following way. If g"'(-)e NBV[ —#, 0; R"] is
given by (2.23), if z(¢), t < t, + h, is the unique solution of (2.19)} and (2.20),

and if g'(-)e NBV[ —A, 0; R"] is given by (2.26), then g'= F*(1)z".
(1) Let us introduce the shift operator J. C[ —h, 0; R*"] - C[0, h; R"]
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by [J¢1(s)=¢(s—h), 0<s<h. Then J*: NBV{0, A R"] > NBV[—h,0; R"]
1s given by [J*y J(t)=y(t+h), —h<1<0. Hence

0

[G*e—h) W1 =yt +h)+ [ n"(t+0,1~0) (o +h)do

= [+ Q@) J*](r), —h<z<0,

where Q(1)e Z(NBV[ —h,0; R"]) is the operator introduced by Henry
[13]. Hence

I+ Q(t)= {(G(t ~ h)J)*} 1. (2.30)

This shows that the similarity relation in Henry [137] and Hale [12, p. 152,
Thm. 4.1] is nothing more than the intertwining relation

G*(t) D*(t,+ h, t+ h)y=¥*(1,, 1) G*(1,), (2.31)

which has a natural interpretation in the framework developed above.

We close this section with a commuting diagram summarizing Egs.
(2.29) and (2.31) (see Scheme 2).

Wi k)

NBV[0, £ R"} —2C " NBV[—#,0; R"] -2 NBV[O0, h: R"]
Y*:—-hs—h) 1. 5) W50

F*(1)

NBV[O, h;,gf:] B NBV[ —h, 0; R™] « 2 NBV[O0, #; R"]
-H_-""'—-—..___‘_. _’_—4—'_4__—_____‘——"

L=k

SCHEME 2

3. STRUCTURE THEORY IN THE PRODUCT SPACE

The structure and duality theory in Section 2 follows the traditional
mode to take the space C of continuous functions as a state space. Though
the “adjoint equation” is derived in a natural way, the basic disadvantages
of state space theory in C remain untouched. The space C is not reflexive
and the adjoint equation is, in general, not a differential-delay equation.
Furthermore, the variation-of-constants formula for the inhomogeneous
equation can only be understood in a generalized sense. This causes some
difficulty, e.g., in control problems where the input operator does not have
values in the state space C, but in a larger space.
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For autonomous systems there is now a well-established way to over-
come these problems. The state space C is embedded in the space M?” and
the operators describing the evolution of the initial function state x, and
the forcing functions state f* are shown to generate strongly continuous
semigroups. Then the adjoint equation is again a retarded equation of the
same type.

In this chapter, we study a general class of time-varying retarded
systems, for which both state concepts can be extended to M* spaces and
develop the corresponding structure and duality theory. In the special case
of time-invariant systems this theory is equivalent to the known structure
theory just mentioned.

In particular, the extendability of @ and ¥ to M ”-spaces turns out to be
equivalent to restrictability of @* and ¥* to spaces of absolutely con-
tinuous functions. Thus, differentiability of the adjoint equation is related
to the M’-extendability property. In fact, if M?”-extendability holds, the
adjoint equation is a functional-differential equation, where the right-hand
side is given by a linear continuous map L*(¢) on W'?[0, h; R"] (instead
of C, as in (2.1)).

3.1. Extendability to the Product Space

In this section we consider the functional-differential equation (2.1) in
the product space M?[ —h, 0; R"], that is, we want to allow for initial
conditions of the form

x(te)=0°%  x(to+1)=4¢'(1), —~h<1<0, (3.1)

where ¢=(¢% ¢')e M°[ —h,0; R"]. For this purpose we need both
hypotheses (H1) and (H2) to be satisfied in order to give a meaning to the
right-hand side of Eq. (2.1) in the case of discontinuous initial data. We
consider g€ M?[ —h, 0; R"] to be the initial state of (2.1) and define the
state at time 1 >0 to be the pair

#(1) = (x(1), x,) € M?[ —h, 0: R"]. (32)

The time evolution of this state of the RFDE (2.1) can be described by an
extended evolution operator @ ,,(1, t5) on the state space M?[ —h, 0; R"] as
we will see below. Correspondingly we have the natural injection 1 of
C[—h,0; R"] into M?[ —h, 0; R"] which maps ¢ into 14 = (¢(0), ¢).

In order to extend the forcing function state concept to the product
space we consider the integrated equation (2.5) with the forcing term
() € L{.[0, co; R"] given by

o= f |

[d.n(t,+0,1)] ¢'(0 + 1) do, s=0. (3.3)
]
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Here we have extended the function ¢' to all of R by defining ¢'(z) =0 for
¢ [ —h, 0]. Note that the function f*(s) defined by (3.3) is absolutely con-
tinuous on [0, 4] and constant for s> A We will consider the integrated
equation (2.5) with more general forcing terms in L{ [0, co, R"] which
are constant for s> h. These can be identified with pairs f=(f° /)
M?[0, h; R"] via

f(s), 0<s<h,

o il (3.4)

fﬂﬂ:{

We consider the pair fe M?[0, h; R"] to be the initial state of Egs. (2.5),
(3.4). Motivated by the development in Section 2.2 we define the state at
time ¢ > ¢, to be the pair

f(ey=(f"(h), f')e M?[0, h; R"],

where f'(-)e L [0, co; R"] is the forcing term of the shifted equation
(2.12) given by

r+3—1{p r

ifl(t'*‘s‘“to)'*‘!

[ [dn(to+0,7)]
0 [—o.t—0—t)
X x(ty+ 0+ 1) do, 0<s<h,
fi(s)= Hrh—ty » (3.5)
o) | [dan(tg+0,7)]
hd Yl—ot—a—1g

X x(ty+ 0+ 1) do, 52 h.

Note that this expression is obtained by inserting (3.4) into (2.13). We will
see below that the evolution of the forcing function state 7(¢) of (2.5) can
be decribed by an extended evolution operator ¥,,(¢, t,) on M*?[0, h; R"].
Furthermore, the relation between the initial function %(¢) and the forcing
function state f(¢) leads naturally to extended structural operators F,,(r)
and G,,(t). More precisely, we have the relations

xX(t)y=@ (1L, s) X(s),
Sty =¥ ult,5) [(s),
J()=Fp() 2(1), 201+ h)=Gy(1) f(2)
(cf. Section 2). Of course, we have to make sure that all the expressions in
the above equations are well defined and that there exist unique solutions

of (2.1), (3.1) or, respectively, (2.5). More precisely we have the following
two lemmas. Their proofs are straightforward and omitted here.



338 COLONIUS, MANITIUS, AND SALAMON
LEMMA 3.1. Suppose that the hypotheses (H1) and (H2) are satisfied.
Then the following statements hold.

(i) For every ¢eMP[—h,0;R"] there exists a unique solution
x()eL’[ty—h,t;; R"] of (2.1), (3.1) which is absolutely continuous on
[0, t,] and depends continuously on .

(i1) For ty<s<t the operators F(t) and ®(t, s) given by (2.15) and
(2.11), respectively, admit unique continuous extensions

Fpo(t): MP[—h,0; R*] - M?[0, h; R"]
and
Dy (t,8): MP[—h,0; R"] > MP[—h,0; R"]
satisfying

1F(1) = F (1)1,
191, s) =D (1, 5).

(3.6)

(iii) The extended operators are uniformly bounded in the region

To extend the operators G(¢) and ¥ (¢, s) to the space M”[0, i#; R"], we
consider Eq. (2.5) with arbitrary forcing terms in L{ [0, co; R"].

LEMMA 3.2. Suppose that the hypotheses (H1) and (H2) are satisfied.
Then the following statements hold:

(1) For every feL{ [0, o;R"] there exists a unique solution
x(:)e LL [to, 00; R™] of (2.5) depending continuously on .

(1) For to<s<t<t,—h the operators G(t) and Y (t, s) given by (2.14)
and (2.16), respectively, admit unique continuous extensions G ,(t):
MP[0,h; R" > M?[ —h,0; R") and ¥,,(t,5): M?[0, h; R"] - MP[0, h; R"]
satisfying

IG(t) = GM(I)Ia
t¥Y(t,5) =¥, )

(3.7)

(1ii) The extended operators are uniformly bounded in the region
toS<s<t<t, —h

PRrROPOSITION 3.3. Suppose that (H1) and (H2) are satisfied. Then the

extended operators F,(t), Gu(t), Dyt s), Yt s) satisfy properties
analogous to those stated in Propositions 2.6-2.8.
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Proof. All the statements follow from the fact that :C is dense in M?”
and all the operators satisfy uniform bounds (Lemmas 3.1 and 3.2). |

3.2. Duality and Differentiability of the Adjoint Equation

The aim of this section is to show that under hypotheses (H1) and (H2)
the integral adjoint equation (2.19) can be transformed into a differential
adjoint equation of the form

Ht)= —L*(1, 2%), (3.8)

where z(-)e Wh9[ty, t, + h; R"], z'(s)=z(t +s) for se[0, h], and L*(z, -)
is a bounded linear operator from W"9[0, h; R"] into R", for almost every
t. This naturally leads us to consider a restriction of the state space
NBV[O0, #; R"] of Eq. (2.19) to the space W"[0, h; R"]. More precisely,
we consider the injection 1*: W"9[0, h; R"] — NBV[0, A; R"] given by

Y(s), O<s<h,

39
0, s=Ah. (=2

(z*w)(s)={

An analogous injection can be defined for functions defined on [ —A, 0].

We are given the natural duality pairing between the spaces C[0, #; R"]
and NBV[O, #; R"] as in Section 2.3 and the injections t and 1*. Requiring
that 1* be a dual operator of 1 in the functional analytic sense forces us to
identify the dual space of M?[0, k; R"] with W9[0, h; R"] via the duality
pairing

h

W fYwrome= =W 1+ [ V7)) s, p ' HgT =1 (310)

Similarly, we identify the dual space of M?[ — A, 0; R"] with W[ —h, 0; R™]
via the duality pairing

0
(& D wiomr=—g"0)°+ | &7(x) ¢ (x) dr. (3.11)

-

These identifications have a tremendous advantage, namely the results of the
previous section on extendability to the product spaces can be directly trans-
lated via duality into resuits on restrictability of the adjoint equation to the
Sobolev space W' Each of the operators F(t), G(t), ®(¢, s) ¥(s, 5) has a
continuous extension to the corresponding product spaces iff their dual
operators F*(t), G*(t), D*(¢, 5), ¥*(¢, 5) restrict to bounded linear operators
on the corresponding W 7 spaces. In particular, under Hypotheses (H1) and
(H2) we have the existence of @¥,(¢, s)e L(W"9[ —~h,0; R"]), P*(t, s)e
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L(W"0,h], R"), Fi(1)e (W0, h; R*], W"[—h 0; R"]), G¥(1)e
LW —h,0; R"], W-9[0, h; R"]) satisfying

1PY (1, 5)=D*(1, 5)1*%,
¥V (1, 5) = P*(1, 5) 1%,
*FX(1)=F*(t) 1™,
1*GX (1) =G*(1) 1>

This means that the adjoint equation (2.19) can in fact be studied in the
state space W"9[0, h; R"].

COROLLARY 3.4. Suppose that the Hypotheses (H1) and (H2) are
satisfied with 1 < p<oo; Let 1/p+ 1/g=1, and let t,< ¢ be given. Then for
every Yy e W"[1,, t; +h; R"] the unique solution z(-) of (2.19), (2.20) lies
in Wh[1,, t, + h; R"] and depends in this space continuously on .

In order to rewrite the integral equation (2.19) into a differential
equation of the form (3.8) let us first assume that this transformation is
possible and that L*(z, -) is a bounded linear map from C[0, #; R"] into R”
for almost every te[t,,t;]. Then there exists a function n*(¢,-)e
NBV[O0, #; R"] such that

~

L) = T, ©)] 9(e) (3.2)

V]

for Y e C[0, h; R"]. We assume that n*(.,-) is a bounded measurable
function, that n*(¢, 7)=0 for <0, n*(t, 1) =n*(¢, h) for 1> h, and that
n*(1, -) is right continuous on the interval (0, &). If yy € W"9[0, h; R"] then
we can rewrite (3.12) in the form

L*(t,y) = n*(1, h) Y(0) + [f [n*(e, ) —n*(t, D1 d() . (3.13)

L |

Every functional on W7[0, /; R"] can be represented in this form but the
corresponding function n*(s, -) need only be in L?[0, #; R"™"]. Inserting
(3.13) into (3.8) and integrating the latter equation we get

2t + 1) —2(0) = [ D16+, h) 2(t, + )

T

+ f: (n*(t,+0, h)—n*(t,+0,0)] 2(t,+ a + 0) di] do.

(3.14)
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Our aim is to show that under Hypotheses (H1) and (H2) there exists
a function n*(z, 7) such that (3.14) is equivalent to (2.19). A sufficient
condition for this equivalence would be that

sty + kR
| [T 1~ ) - 7(e s — 2)] 2(2) da

Yy

= J‘;i (n*(a, h) 2(2) + L" [n*(e, h)—n*(a, )] Ha+6) dO] dx (3.15)

holds for all z(-)e W"9[1,, t, + h; R"]. The next lemma characterizes the
identity (3.15).

LEMMA 3.5. Let n*(-, - )e L{ [[ty, 0)x R, R"*"] be given such that
n*(t, t)=0 for 1 <0 and n*(t, 1) =n*(t, h) for 1= h. Then (3.15) holds for
all t, 2521ty and all z(-)e W"[t,, t, + h; R"] if and only if

~l

j n*(x,r——a:)da-i—( n7(a, s —a)du=0 (3.16)

for tp<s<t.

Proof. Let us fix 1, 2 t, and redefine n*(z, -)=0 for ¢>¢,. Then (3.15)
1s equivalent to

sl 4+ A sty +h B
n*(a, h) do z(t, + h) — | n*(a, 0 —a) da 2(6) dO

5 Jy Jy

= j"n*h ‘:T]*(d, h} Z(a)+J'll+h [n*(a, h)—ﬂ*(a, g_a)] 2(9) dﬁ] do

II

*(oc h)z(o)+ | [n*(o, h) —n*(a, 8)] Z(a + 68) db

mt
4
ot + h

[ [Tty —a)—n7(, s—a)] z(a) do

vs

A

=| 7o ty—a)—n"(o s —a)] duz(t, + h)

L413
all +h p8

_[ [n7(e, t,—a)—nT(e, s — a)] de 2(0) dO

5

But this equation holds for all se [y, 7;] and all z(-)e W"[1t,, t; + h; R™]
if and only if

~r ~f

nia, t—o)de  (3.17)

n* (o, t — ) da+'[ Mo, s— o) do =

Js vy
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for to<s<t, and s<t<1,+h For 1, <s<1t<1, this identity is equivalent
to (3.16) and therefore (3.16) is necessary for (3.15). Conversely, if (3.16)
holds for 1, < s <t then we obtain for 7> ¢,

j | n*(o, t— o) do + [ ni(a, s—a)do

vy

= | n*o t—a)dn

Y

i
J na, 1, — o) du

=j n'{(a, t,—a) da.

But if #*(«, -) is defined to be identically zero for a > ¢, then this identity
is equivalent to (3.17) with 1 =¢,. |

The existence of a function n*(1, 1) which satisfies (3.16) can be obtained
as a direct consequence of Hypothesis (H2).

THEOREM 3.6. Suppose that Hypotheses (H1) and (H2) are satisfied with
p=1 and let t,€ R be given. Then there exists a (unique) locally bounded,
measurable function n*(1,t)e R**", te R, 1€ R, such that

(1) n*(t,1)=0 for 1<0,
(1) n*(r,t)=n*(1, h) for 12 h,
(iii) Egq. (3.16) holds for s< 1.

Proof. Let us fix 1,>1,. Then it follows from Hypothesis (H2) in
connection with the Riesz representation theorem that for every te [, 1,]
there exists a function K()(-)=K,(t)(-)e L*[t,—h, t;; R"*"] such that
K, (t)(a)=0 for a¢ [t,—h, 1] and

[ L x)da=| K (t)a)x(@)da (3.18)
“In “r—h
for all x(-)e C[t,—h, t;; R"]. It follows also from Hypothesis (H2) that

r

g —

esssup [K()(@)l|,x,= sup

n-h<a<y lx{-)l =1

K(t)(o) x(ox) da| < K (3.19)
h

for some constant K >0 which is independent of te [ ¢y, ¢;].
Now let us consider the columns of K(r)(-) as functions (in ¢) on the
interval [1t,, t;] with values in L?[t,—h, t,; R"]. Equation (3.18) shows
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that these functions are weakly continuous and therefore strongly
measurable:

K(-)e L*[tq, t,; L*[to—h, t;; R"*"]]
=L [[ty, t,] % [to—h, £;]; R"™"].

The latter identity is standard in the theory of partial differential equations
and can be established by using Fubini’s theorem in connection with the
density of the continuous functions in both spaces. More precisely, there
exists a square integrable function K(-, -) on [¢,,¢,]1x[to—h, t;] with
values in R"*" such that

K(1, )=K(t)e L*[to—h, t,; R"]

for almost every re [, t,]. In particular K(z, ) is measurable on the
square. Furthermore, it follows from (3.19) that

-1—2f 5 |ﬂ+£ K(tr,0)| dodi <K

J £ S—E

for all te[ty,t,], se[to—h, t,], €>0. Since the Lebesgue points of the
function K(-, -) are of full measure in the square [z,, ;] % [, —h, ;] we
conclude that K(-, -) is essentially bounded. Our next step is to establish
the equation

ol ml

J K(t,a)da+J n(a, s—a)de=0 (3.20)

L} s

for to<s<t For this purpose we define 5(z,-)=0 for 1<1t,. Then
it follows from (3.18) that the following equation holds for x(-)e
Wity —h, t; R"*"] (compare the proof of Lemma 3.5)

_J’ aley—hydoxtto—m)~ [ [ (e, 0—a) da 2(0) o
to—h Jig-nJo

B [.l l_—ﬂ(al—h)x(a)—k-.}r: [, — h)~nlx, 7)] X(a-l-r)dr] dot

Yrg—h

~ [ L(a, x,) d

:J K(z, a) x(a) dat)

J‘: | K(n ) x(1o— h)+ f ) L: K(t, a) da %(8) dO.
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This proves Eq. (3.20). Note that, up to a set of measure zero, the function
K(t, @) 15 uniquely determined by (3.20). Furthermore, K(¢, s) is independ-
ent of ¢ for t > s+ h or, more precisely,

K(1, s) = K(i, s), s+h<t<l. (3.21)
In fact, it follows from (3.20) that
K{(z, s) — K(1, s)

d . a :
=— | nle, s—a)as —— f n(a, s —o)ax
as Js

dS Js

J n(e, s —a) do

d
ds

d ! .
=— | n(e,—h)de,  since t>s+h
ANEH]

=0.

Putting things together we obtain that the function

n*(a, 7) =Kl (% +1, @), A=ty T2t (3.22)

satisfies all the requirements of the theorem. We have to show that n*(«, 1)
is independent of ¢,. For this purpose we point out that as a consequence
of (3.18) we obtain

K,O(!, CJC)=1<:0(t1’ a)+Ku(ta d) (323)

for t,<t; <t and ae R This identity shows that for a>¢,, a+1t21, <1,
we get

Kje+t,0)=K,(a+1,0a). |

In conclusion we see that if (H1) and (H2) hold with p=1, then the
integral adjoint equation (2.19) is equivalent to the differential adjoint
equation (3.8), in which L*(¢, ) is defined by (3.13), where n* can be
obtained from (3.16).

As a symmetric counterpart of this result, we can also rewrite the
original RFDE

X(t)=L(t, x:)s tztO!
x(tg+ 1) =d(2), te[—h 0]
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as an integral equation, namely
x() = x(to) = J L(s, x,) ds

rf

K, (1, o) x(o) do
h

Y9 —

[ TRl 0= Koy 1o, 0] (@)

where the latter equation follows from (3.23). By using (3.22) we obtain

x(t)—x(19)= J-: [*(a, t —a)—n*(a, to—a)]7 x(x) da. (3.24)

4. CHARACTERIZATION OF
THE FUNDAMENTAL EXTENDABILITY HYPOTHESIS

In this section we investigate concrete conditions on system matrix
n(-, -), as well as, in a more specialized situation, conditions on the
behavior of point delays A/(¢) which guaranteec that the fundamental
extendability hypothesis is satisfied. In addition, we write a differential
adjoint equation for the special case of equations with finitely many time-
varying point delays which satisfy the conditions mentioned above, but do
not necessarily make the functions r — h(t) strictly increasing.

4.1. A Condition for General Systems

PrROPOSITION 4.1, Let 1<p<oo and suppose that there exists
ke L{ (—o0, ), l/p+1/g=1, such that for all —0<ty—h<a<b<
1, < o0

(" 1906, b— 1) =1(t, a— 1)| dtgr k(1) dt. (4.1)

)] a

Then the fundamental extendability hypothesis (H2) is satisfied.
Proof. Observe that for xe C[ty—h, t,; R"], 1€ [t t,],

0

f(:)::f_ d.n(t, ) x(t + 1)

h

]

[ an,t—0x)

t—h

dn(t,t—1) x(z).

("
|
th—h
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Now let {a?'}?_, be a subdivision of [7,—A, t,]. Then the Riemann-
Stieltjes sums f~:= 3", [n(t, a) —1)—n(1, a}_, —1)] x(a}’) converge for
almost every te[1,, t,] to f(¢).

Since |f™(-)] are measurable, nonnegative extended real valued
functions, Fatou’s Lemma implies that

r )| de<liminf [ |fY(0)] de. (4.2)

]
0 v

However, using assumption (4.1) and Holder’s inequality, we find

[“irronar<]" ¥ 10 al =0 —nit, @) — 0] x(a)) d

) o oj—1

N H
& ¥ Lr(a;’”}lf n(t, @ —t)—n(t, af_, — )| dt
j=1 0
<
J

g N \
< [ ( Y. |x(a))] XIa}”_.,a,’-"](t)) k(t) dt

ok Nj=1

I~z 0

(@) [ k() de
1 a1

N

Z lx(a,’-")l X[a}."’_],a;"](']hp Ll’k(')“q'

i=1

<.

-

In the limit for N —» oo, we get from (4.2) the desired inequality

-

‘1

0
Jr | den(t, 1) x(2+ 1) de < xl, 1)l !

4.2. Composition and Integrability

In this subsection we study conditions on the functions z: [, #;] -
[74,7,] and a: [¢,, ;] — R under which the map

X—+-Xo7

defines a bounded linear operator from L?[1,,1,] into LPft,, t,]. With
these results we prepare the next section in which we Investigate systems

with point delays.

THEOREM 4.2. Let k>0 and 1<p<oo be given and suppose that
1 [to, ;1= [0, T, @:[ty, 1,1 — R are measurable functions. Then the

following are equivalent:
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(1) Ifx(-)eL?[1q,t,] then a-xo1€ LP[ty, t,] and

qu la(t) x(t()|? dr<K? [ |x(z)]” dr. (4.3)

0] J o

(i) For every open interval I < [1,, 1,] the following inequality holds:

[ ()? de < KPA(D). (4.4)

Jr-in

Proof. Condition (4.4) follows from (4.3) by choosing x(-)=y,(-), the
characteristic function of the interval I. In order to prove the converse
implication let 4 be a measurable set. Then

[ Jatoir dr < keaa). (4.5)

For every ¢ >0 there exists an open set § > 4 such that A(6\ 4) <e&. Since
8 can be represented as a disjoint union of open intervals 8 =), I,, we
get

- =2

P (F P = | P
o, O di<| a7 dt= ¥ J:_lm (1)} dt

=l Py

<Y KPAI)=K"A(0)< K"A(A)+ K’e.

i=1

Hence (4.4) follows.
As a consequence we have for every set N« [1,, 7,] with A[N] =0 that

[ Ja(n)Pdi=0

“r‘l(N)

and hence a(¢) =0 for a.e. tet~!(N).
The proof can be completed by proving (4.3) first for every simple
functions and then for every element x of L?. |

Our next result is a necessary condition for (4.4) in the case that the
function 7 is absolutely continuous.

LEMMA 4.3. Let the functions t: [ty, 1] - [15,7,] and a: ¢y, t;] = R

be given and suppose that t is absolutely continuous and that (4.4) holds for
every open interval I < [ty, 1,]. Then the inequality

1
#0125 le()]” (46)

holds for almost every te [y, ]
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Proof. For every ¢ >0 we have

f+E
Jf 1(s)| ds= VAR 1

! [reee]

=AMttt +¢€]))

2

1
e la(s)|” ds
KPP J; We[t, e +&])

1 I+ F
> ls) s

and therefore (4.6) follows if we divide this inequality by ¢ and let ¢ tend
to zero. |

The following example shows that condition (4.6) is not sufficient to
guarantee (4.4).

ExaMPLE 44. Let a(t)=1 and define 7: [0, 1] > [ —1, 1] by piecewise
linear extension of t(2 ")=(—1)"2"" for n=0,1,2,.. (Fig.2). Then
|2(1)] = 3 for almost every r€ [0, 1] and therefore (4.6) holds. But for every
&> 0 the inequality

Mt Y(—ee))z D 2¢3

AL
holds and hence (4.4) is violated.

In the next lemma, we present a sufficient condition for (4.4) to hold
under slightly stronger assumptions on the function 1.

FIGURE 2
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LEMMA 4.5. Let the functions t: [ty t,] = [t9, 7,1, ®: [to, 2, ] = R" be
given, and suppose that © is absolutely continuous and that i(t) satisfies the
inequality (4.6) for almost every te[t,,t,]. Furthermore, suppose that i
changes its sign only finitely many times. Then (4.4) holds for every open
interval I < [ty, 1,] (with a different constant k).

Proof. Without loss of generality we can assume that #(¢)>0 for
almost every te [t,, #,] and hence, by (4.6), i(¢) = K 7 |a(t)|?. Then the
following inequality holds for 1o <a<b<r1,:

.v-'ll

(&)
| Jlfdi<K? [ #1) de=K(b—a)

“t=la) Yt Ha)
This proves (4.4). |

Our final counterexample shows that T need not be piecewise monotone
in order to establish the inequality (4.4) even if a(¢)=1.

EXAMPLE 4.6. Let a(z)=1 and define 7: [0, 1] — [ -1, 1] by piecewise
linear extension of (2 ")=(—1)",/27"for n=0, 1,2, .. (Fig. 3). On the
interval [2 "' 2 "] the slope of this function 7 has the absolute value

W2 -2 Y22 3) 2
2 G T s = g ~=| =(2+\/2)\/2'

FIGURE 3
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Hence the following inequality holds for every open interval Ic[—1,17:

o M) & ( i )‘" .
pA D)< — — 1 = A(]).
st £ () =0

Therefore (4.4) holds with K= 1.

4.3. Systems with Time-Varying Point Delays

In this section we make use of the results in the previous section in order
to investigate retarded systems with point delays described by

X(t)= i A1) x(t—h[1)), 121, (4.7)

where /; < [ 1y, #,] are closed intervals, the coefficient matrices 4,: I, » R"*"
are integrable, and the delays 4,: I, — [0, 4] are Lipschitz continuous and
satisfy the inequality

e<|l—hft) <1/e (4.8)

for some £>0 and almost every tel;,. Furthermore we assume that the
functions 1 — A,(¢} do not change their sign on I, that is

(1—-h(tN1—h(s))=0, tsel,. (4.9)

Then the requirements of Lemma 4.5 are satisfied and therefore the RFDE
(4.7) satisfies Hypotheses (H1) and (H2) of Section 2. In order to derive
the adjoint equation in the context of Section 3, let us first define the closed
intervals

I¥={t—h(t)|tel}n[to—h 1] (4.10)

)

LEMMA 4.7. For every je{l,.., N} there exists a unique function
h*. 1¥ — [0, h] such that

h*(r—h(t)=h(t), rel,. (4.11)

These functions also satisfy

his+h*(s)=h*s), sel¥, (4.12)
L={s+h}s)|sel*}, (4.13)
L+ h*(s)= : € [, 1/e]. (4.14)

1 his+ h;*(s))
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Proof. 1t follows from (4.8) that the function f(t) = ¢t — h,(z) from I, into
I? is strictly monotone and therefore continuously invertible. The functions

h*(s)=f; '(s)—s,  sel¥

J

of course satisfy

L={f"s)|sel*}={s+h¥s)|sel*},
hAs)=f7s) =SS U = b (f7 () =h(s+h*(s)) [0, h],
RE(E—h(0) =R} =] "(f(1) = 1) = h(2).

Differentiating the identity A*(s)= k(s + h}*(s)) we get
hX¥(s)=hi(s+ hX(s))(1 + h*(s))
and hence
(1 + A = hs + hX(s))) =1, (4.15)

which proves (4.14). |

Associated with the RFDE (4.7) are the functions

— A1), < —hyr), tel,
0, otherwise

(1, r)={

of bounded variation in 7 in the sense of Lemma 2.1. In order to construct
functions #*(¢, 7) of bounded variation in T which satisfy (3.20) we differen-
tiate this expression and define

d !
* —_ == T —
nr(s, t—s) o J[ n,(a, s —a)du (4.16)

5

for almost every s <t and 5n*(s, 7) =0 for £ <0. Then the next result shows
that 5*(s, 7) is in fact of bounded variation in t and therefore satisfies the
requirements of Lemma 3.6, In particular it determines the differential
adjoint equation.

LEMMA 4.8.

AT(s+h¥((L+AXS),  t=hHs), sel,
0, otherwise.

nr(s, r)={
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Proof. First consider the case that ¢— A,(¢) is increasing and note that

—Al(a), s<a—hla), ael,
0, otherwise.

n¥(a, s —a)= {

Now let €, and se I*. Then s <« — hy() if and only if s + #*(s) < a. This
implies

; —.[ - Af(a)x,j(a)da, s+hr(s)s, sel},
J nl(o, s —a)do= &=

.

locally independent of s,  otherwise.

Hence we obtain from (3.16) that

AT+ AXONL+AXS),  1—s2hX(s) self,

s, t—s)= { .
' 0, otherwise.

This proves the statement of the lemma in the case that r+h(r) is
increasing. The case of a decreasing function ¢+ hA/(f) can be treated
analogously. |

Combining the previous result with Lemma 3.5 we obtain that the
adjoint equation of (4.7) is described by the differential delay equation

z'(s)=—_z AT(s+hX*(s)(1 +A*(s)) z(s + h¥(s)),  set.  (4.17)

This formula has also been derived in [12], with different methods.

Remark 49. It remains an open problem to find necessary and
sufficient conditions for the existence of an evolutionary system on M7,
analogous to Delfour’s result for autonomous systems [25].
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