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In the s ta te  space approach to  stability  of uncertain systems the 
concept of stability  radius plays a  central role. In this paper we 
use the classical concept of Lyapunov exponents, which describe the 
exponential growth behavior, in order to  define a  variety of stability 
and instability  radii for families of linear systems i  =  [A +  u(t)];r, 
u (t)  € Up, p >  0. Here {Up , p >  0} can denote sets of real or complex 
m atrices, and the pertu rbation  u(t) can be determ inistic or belong to 
different classes of stochastic processes. We analyze the stability radii 
and their relations, using Lyapunov exponents of associated bilinear 
control systems. T he well developed theory of Lyapunov exponents 
for stochastic system s provides the background for the discussion of 
stability  radii of systems excited by random  noise. The example 
of the linear oscillator w ith uncertain restoring force is discussed in 
detail.

1 In trodu ction

It is the purpose of this paper to show that the concept of Lyapunov expo­
nents can be used to define and to analyze various stability radii of matrices 
with respect to deterministic or stochastic (time-varying) perturbations. 
We hope to demonstrate that the well-developed theory of Lyapunov expo­
nents for stochastic linear, parameter-excited systems [2, 3, 4] and also very 
recent results on Lyapunov exponents of bilinear control systems [8, 9, 10] 
(both theories are closely related) are of interest for researchers studying 
robustness properties of linear systems.
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Consider the family of linear systems in
i ( t )  =  [A +  u(i)]x(t), u(t) e  Up , p > 0 (1-1)

where {Up, p >  0} is an increasing family of sets of real d x d-matrices. The 
admissible perturbations (presenting uncertainties) for each p with values 
in Up are denoted by Up . For a stable matrix A, we define a (Lyapunov) 
stability radius TL with respect to {Up  : p > 0} as the lower bound of those 
p for which there exists u e  Up  such that the system (1.1) has a nonnegative 
exponential growth rate, i.e. a nonnegative Lyapunov exponent.

For deterministic perturbations u(-) the approach of this paper is an al­
ternative to the one in [13, 16], where instead of Lyapunov exponents, Bohl 
exponents are used in order to define a stability radius. For the theory 
of Lyapunov and Bohl exponents of linear time varying differential equa­
tions we refer to [11] and [12], The Bohl exponent is negative iff uniform 
asymptotic stability holds while negativity of the largest Lyapunov expo­
nent is equivalent to asymptotic stability. Hence, for a fixed time-varying 
linear differential equation, the Bohl exponent is — in general — larger 
than the largest Lyapunov exponent. This implies that for a system (1.1) 
the corresponding Bohl stability radius is not greater than the correspond­
ing Lyapunov stability radius. In fact, Theorem 5, below, states that for 
real perturbations the Bohl and the Lyapunov stability radii coincide. The 
(Bohl) stability radius studied in [16,13] is based on complex perturbations 
(for special families {Lp; p > 0}). Hence it presents a more conservative 
robustness estimate than the radius for real perturbations. It is shown in 
[16], that the complex (Bohl-) radius coincides with the stability radius re , 
which only takes into account constant complex perturbations. Below we 
will discuss in more detail the relation of our results to those in the lit­
erature. Here we remark only that (i) the Lyapunov exponents approach 
allows for a very general class of real perturbations and (ii) that stochastic 
perturbations can be analyzed within the same framework. The price for 
this is that contrary to [13, 15, 16], we do not obtain algebraic expressions, 
like associated Riccati equations, or explicit formulas, except in very special 
cases, (see e.g. Theorem 7, (2.1.2) and (2.2), Corollary 9 or the example of 
the linear oscillator, Example 9). For general systems with many degrees 
of freedom, reliable numerical methods are required (compare [14] and [18] 
for numerics in the case of time invariant rmcertainties).

Section 2 introduces concepts of stability radii via Lyapunov exponents. 
In Section 3 a basic idea for the description of Lyapunov exponents of 
(bi-)linear systems is presented: The separation of the radial and the an­
gular part of the solution, allowing the characterization of Lyapunov expo­
nents on the sphere (resp. the projective space), a compact manifold.

Section 4 presents some basic facts about the maximal and minimal 
spectral values of bilinear control systems, which are crucial for the char-
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acterization of Lyapunov (in-)stability radii of linear systems. This is dis­
cussed in Section 5. Two examples of 2-dimensional systems are presented 
in Section 6, in particular the linear oscillator with uncertain restoring force: 
It is a simple, but prototypical example exhibiting much of the (surpris­
ing) behaviour of bilinear systems, and thus of the robustness properties of 
linear systems.

In Section 7 stability radii for stochastic excitations are defined for two 
classes of stochastic processes: stationary ones and stationary, ergodiCjji£m=  
degenerate diffusions. While the theory for the first class paralie 
suits for the deterministic r^, Markovian uncertainties yield a o    d^wbl  
more complicated behavior: Their radius of stability for all mo      grees 
with r^, while the almost sure radius is in general greater. ThejSifference 
is explained via the theory of large deviations. Finally, Section^S discusses 
robust design, based on different information about the uncertainties.

2 Definitions of Deterministic Stability Radii    

In this section we define several stability and instability radii using the 
concept of Lyapunov exponents.

Denote by M (n, m; K) the set of n x m matrices over a field K, K = R 
or C. Let A  G M (d, d; R), let {Up , p > 0} be an increasing family of subsets 
in M(d, d; K) and denote

lip :={u : [0, oo) -+ Up , u measurable and locally integrable} (2.1)

Define for u E Up  and 0 To € Rd the Lyapunov exponent

=  limsup — log |<p(t,a:o, u)l (2.2)i—*oo t

where <P(-,XQ,U) solves

x(t) =  [A +  u(t)]x(t), t  > 0, a:(0) =  x0 . (2.3)P

Note that for fixed u, there are a t most d  different A(x0 , u), XQ /  0. Let for 
p E R+ =  [0, oo)

KP (A) := sup{A(ro, u); 0 /  XQ € Rd , u E Np }. (2.4)

Thus KP  denotes the supremal Lyapunov exponent of the control system 
(2.3) with controls u in Up . A corresponding Lyapunov stability radius of 
A  E M(d, d; R) is given by

r ^ A )  = inf{p > 0; np (A) > 0}. (2.5)
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Naturally, r t(A )  depends crucially on the family {Up  ̂p > 0}. For simplicity 
we suppress this dependence in our notation. For a stable matrix A  (i.e. 
Re A < 0 for all A in the spectrum cr(A)), r i(A )  is the lower bound of those 
indices p, for which there exists u £U P such that the corresponding system 
i  =  [A +  is not asymptotically stable.

Similarly, instability radii can be defined via

K*(A) =  inf{A(xo, u); 0 XQ € Rd ,u  € ¿Ip ] (2.6)
K*(A, X 0 ) =  inf{A(x0 ,u); u € Up } (2.7)

and
rJ(A ) =  inf{p >  0; < (A ) <  0} (2.8)

=  inf{p >  0; KP*(A , XQ) < 0 for all XQ 0} (2.9)

The radius r ^ A )  makes sense for totally unstable matrices A  (i.e. Re A >  0 
for all A € er (A)) and describes the lower bound of those indices p, for which 
there exists u G Up , making x  =  [A +  asymptotically stable for some 
xo 0. The radius is the dual of the stability radius TL in a precise 
sense, see Proposition 6, below.

On the other hand, the instability radius f ^ A )  makes sense for unstable 
matrices A  (i.e. there is A € cr(A) with Re A > 0) and describes the lower 
bound of these indices p for which one obtains asymptotic stability for all 
initial values To /  0.

The concepts TL,r*L ,fL  introduced so far, depend on the choice of the 
initial value in the following way: For (and r^) only existence of a point 
XQ with stable (or unstable) solution is considered, while for the system 
has to be stable for all XQ, but the corresponding u(-) may still depend on 
x0 .

Remark 1. One may also introduce the following additional uniform con­
cepts, cp. [9]:

KP (A) =  sup inf A(x0 ,u), k*(A) =  inf sup A(x0 ,u) (2.10)

and the corresponding radii

f L (A) = inf{p > 0; k p (A) >  0}, r£(A) =  inf{p >  0; k ^ A )  <  0} (2.11)

For a stable m atrix A, ?L (A) describes the lower bound of those indices p 
for which there is u G Up making x  =  [A 4- u]x exponentially unstable for 
all XQ 0; similarly for f ^ A ) .  The following inequalities follow directly 
from the definitions:

rL(A) < rL (A), r l(A )  < r ^ A )  <  r£(A) (2.12)
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The theory of (in-)stability radii in the above set-up relates to specific 
problems of (open-loop) exponential destabilizability and stabilizability of 
bilinear control systems: One simply considers u as a control function, 
which is to be chosen such that A(xo, u) is maximized or minimized. In the 
next two sections we recall some related facts from [9].

3 B o g o ly u b o v ’s P rojection  and L yapunov E xponents

In this section, we show how the Lyapunov exponents can be obtained 
from the projected system on the sphere. This is a standard argument 
for stochastic differential equations (cp. e.g. [6]). We denote the Euclidean 
norm on Kd =  Rd or Cd by | ■ |.

Any linear differential equation

x = M (t)x, a;(0) =  x n € Kd (3-1)

can be described in polar coordinates by its angular and radial part. A 
straightforward application of the chain rule shows that the angular part 
s(t) =  is decoupled and looks like

s =  h(M, s) = {M {t) -  -s*(t)[M (t) + M*(t)]s(t) Id}s(t)
X n (3 -2 ) 

s(o) =  so =  e  s ^  
ko|

on the sphere S d - 1  =  {x G R d ; k l  = 1}- Note that a linear vector field 
is homogeneous, thus it suffices to consider the system on projective space 
P  := P d - 1 , obtained by identifying opposite points on the sphere S =  S ^ 1 . 
Recall that S and P are compact manifolds.

The radial part becomes

k (t, rc0 )| =  ko | exp q{M (r),s(r, s o ))^ ] (3-3)

with q(M, s) := ^s*(M  + M*)s =  Re{s*Afs}. Thus we obtain for the 
corresponding Lyapunov exponent

1A(xo, A/) =  lim sup - /  q(M (r), S(T)) dr. (3.4)
l ^ x  t Jo

Hence in the time-varying case, the Lyapunov exponents are the long 
term averages of the function q, evaluated along the trajectories. For time­
invariant situations, the Lyapunov exponents (i.e. the real parts of the 
eigenvalues) are the averages of q in the direction of the eigenvectors. This
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fact allows some simple estimates of stability radii, compare Proposition 1 
below. To be more specific, let M  be a constant d x d-matrix and denote 
by E j, j  = 1,. . . , k  the eigenspaces and let Aj = p j + iv j € a (M ) be 
the corresponding eigenvalues. Let PEj be the projection of (the nonzero 
elements of) E j  onto P. Let Sj G PB,- be an eigenvector and denote the 
solution of the differential equation (3.2) in P  with initial value Sj by s(-, Sj). 
For K =  C, the corresponding trajectory is always a point in P; for IK =  
R, the corresponding trajectory may be a  point or forms a “circle” in P  
depending on whether Aj G R or not. In the latter case, s(-, Sj) is periodic, 
say with period Tj, and defines an occupation measure aj on the circle 
whose density is G K  set a i  =  t l l e  D i r a c  measure a t Sj.
One now has

pj =  A(sj,M )

{
^ -  [ q(M, s') daj = —  /  q(M, s(r, Sj)) dr  for s(-, Sj) a circle 
Ai J J-j Jo
J  q(M, s) daj = q(M, Sj) for s(-, Sj) a point.

Note that q(M, s) can be positive somewhere on the circle even if p j  is 
negative and vice versa. These formulas show that the exponential growth 
rates of solutions to time-invariant linear equations are obtainable by evalu­
ating q in eigenspaces. Formula (3.4) implies that q is also closely connected 
with exponential growth rates of solutions to time-varying linear equations. 
More precisely, define for a stable matrix A  and {Up  : p > 0} as above

P*(A) :=  inf{p; there is u & Up  with maxg(A +  u, s) >  0}

Then by (3.4)
P .W  < r L (A). (3.5)

The following proposition establishes a connection between the (unstruc­
tured) real and complex stability radii r® and rc of a  (stable) m atrix A  —  
as defined in [14] — and the function q: Recall that for IK =  R, C

there is D  G M (d, d, K) with ||D||2 <  P such) 
‘ that A  + D  is not assymptotically stable J ’

where || ■ H2 denotes the operator norm induced by the Euclidean norm on 
Kd . Recall also that S denotes the sphere in Rd , and that P  denotes the 
corresponding projective space.

Proposition 1. Let A  be a stable matrix in M (d, d;R). Then

r K (A) — inf < p >  0

0 <  min |g(A, s)| <  rc <  r® < max |g(A, s)| s€S sGS
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P ROOF. One easily sees (cp.e.g. [15, Lemma 4.1]) that

0 < r c  < rK < |/zn

where is the smallest real part of an eigenvalue of A. Clearly, we also 
have

|^ n | < m ax|g(A ,s)| =  max |q(A, s)|.

In order to prove the remaining inequality

min|g(A, s)| < rc,

we note that min|g(A, s)| =  0, iff there is SQ 6 P  with q(A, so) = 0; and 
for A  stable, it suffices to consider the case g(A, z) < 6 < 0 for all z in the 
complex projective space Pc- We use the characterization of rc from [15, 
Proposition 3.3]:

r C = “ “ {llA z ll2 + C 'U 2)2}-
where A u =  i(A  — A*). But for z € Pc

M 2 I|2 +  {Au z, z}2 = ( |( A  + A*}z, z)2 .

Hence
rc > min|g(A,z)|. defile

But in R2 and C2 one easily checks

min |Q(A, s)| =  min |q(A, z)|.

Q.E.D.

4 E x trem a l L yapunov E xponents and  th e  
C orresponding C ontrol Sets

In this section we relate the extremal Lyapunov exponents K , K * etc. of 
bilinear control systems to controllability properties on the projective space 
P. This discussion is based on [8, 9, 10].

Consider system (2.3)p  as a bilinear control system with controls u in 
Up, where Up  C M (d,d;R ). Under Bogolyubov’s projection, the system 
projected onto P can be described by

¿(0 =  s(t)) =  [A +  u(t) -  is* W(A +  u ^ t )  • Id]s(t),
s(0) =  s =  ^ 6 P .
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Throughout this section we will use the assumption

dim£A{h(u, •) | u € C7p }(s) =  d — 1 for all s g P, all p > 0, (H )

where CA  denotes the Lie algebra of vector fields on P  generated by {/i(u, •)> 
u g Up}. (H) implies (see e.g. [17]) that the system (4.1) is locally accessi­
ble on P, i.e. for all s g P and all T  > 0, the set O ^T (s) has nonvoid interior 
in P, where ^ ^ ( s )  is the set of points attainable in the time 0 <  t < T  
from s,

:=  6 P; there exists a piecewise constant control
u g Up  s.t. the corresponding trajectory 
of (4.1) satisfies ^ (/, s, u) = y for some 0 < t < T}.

In fact, for any “reasonable” choice of Up , (4.1)p is an analytic system and 
thus has maximal integral manifolds through each point s g P. (H) says 
that the whole space P is the maximal integral manifold.

Remark 2. (H) is always satisfied if int Up 4̂ 0, which covers the unstruc­
tured case (the interior here is w.r.t. M (d, d;R)). For structured systems, 
the interplay between the dynamics A  and the “uncertainty” Up  is crucial, 
see [3] and [4] for some details. Generically, (H) is satisfied, if Up  contains 
at least two matrices, see [3, Remark 2.3]. Note that, if (H) holds for some 
Pi >  0, then it holds for all p >  pi. We remark also that — in the stochas­
tic context — [21] presents a theory of Lyapunov exponents where (H) is 
violated. □

In general, (H) does not imply complete controllability of (4.1) on P. How­
ever, there are topologically nice sets where controllability holds.

Let
O + W  :=  J  O ^ x ) .  

T>0

Definition 1. A set D  C P is called a control set for (4.1) if D  contains 
more than one point, D  C O + (x) for all x  g D  and D  is maximal with 
respect to this property. A control set is called invariant if O ^ x )  C D  for 
all x  g D.

Theorem  2. Assume that the projected systems (4.1)p  in P satisfy (H ). 
Then for each p > 0:

(i) There is exactly one invariant control set Cp ; this set is closed, Cp  =  
rLepC’p (s ) and intCp 0, Cp  =  int Cp .

(ii) There is exactly one open control set C ~ .
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(Hi) Either Cp  = Cp (i.e. (4.1)p is controllable onP ) or Cp C\Cp =  0.

(iv) CP1 C CP2 and C~  C C~2 for px < pi-

We call C~ the minimal and Cp  the maximal control set of (4.1)p . A 
detailed theory of control sets for bilinear systems on P is developed in [10], 
where also the significance of the terms “maximal” and “minimal” becomes 
apparent. The proof of the theorem above can be found in [19] and [9].

Using the Lyapunov exponents of (2.3)p , we define the spectrum of the 
projected system (4.1)p  on the control sets C p and C~  in the following way.

For X  c  P, s G P let

Xp (s, X )  =  sup{A(s, u); u € llp , ^ ( t, s,u) G X  f.a. t > 0}
X*(s,X) =  inf{A(s, u); u &UP , i((t,s,u ) G X  f.a. t >  0}, 

where denotes the corresponding trajectory of (4.1)p , and let

a p  := in f^ c . A* (s, Cp ), u p := sups€C/> A(s, Cp ), 
a P '■= ^ ( ^ C p  ), := sups e c -  X(s,C^).

The minimal and maximal spectral interval of the system (4.1)p  are given 
t>y

I p  :=  [a 7>w p]’ a n d  I p ’-= \a P^p]
respectively. It turns out that three of the objects a p , u p , a ~ , w~ can be 
“globally” defined, without a restriction on the whole trajectory. This is 
the decisive property which allows to associate a stability radius with them.

Proposition 3. Suppose that the projection (4.1)p  of system (2.3)p  satis­
fies (H). Then

(i) Up =  supa e P Ap ( s ,P )=  Kp
(ii) a p =  infs e c„ A£(s,P)

(mJ a p  =  infi g pAp(s,P) =  K *

Furthermore, for 0 < px < p^, one has

^Pl — ^P? 5 ^Pl — ^ PZ ’ & P I  — &p3 ■

P ROOF, (i) is proved in [8], (ii) is obvious from invariance of C  and (iii) 
is proved in [9]; then the last assertion is obvious. Q.E.D.

Remark 3. If Cp fl C~ = 0, then a~ <  a p , w~ < u p , but u~ > a p may 
occur; thus the intervals Ip  and I~  may overlap. □

Remark 4. If, in the definition of w~, we remove similarly as in (i)-(iii) 
above the restriction on the trajectory, we obtain supa € C - A(s, P) which, 
however, equals u p . Hence for u~ , this restriction is crucial. o
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The proposition above shows in particular, that and a~  coincide with 
the previously defined KP  and K*, respectively. We obtain the following 
result, which establishes the connection to stability radii.

Corollary 4. Suppose that the projection (4.1)p  of system (2.3)p  satisfies 
(H ). Then

(i) r ^ A )  = inf{p >  0; wp  > 0}
(ii) r*L {A) =  inf{p >  0 ;« -  <  0} 

(Ui) T L (A) = inf{p >  0; Qp < 0}.

P ROOF, (i) and (ii) are immediate from Proposition 3. (iii) follows from 
[8, Theorem 4.2 and the proof of Theorem 5.1]. Q.E.D.

5 Som e P ro p erties  o f  L yapunov
(In-) S ta b ility  R ad ii

In this section we analyze the Lyapunov stability radius and discuss its 
relation to other stability radii. In [13], a  stability radius based on Bohl 
exponents for complex perturbations was discussed. Our first result in this 
section shows that for real perturbations the concepts of stability radius 
based on Bohl and on Lyapunov exponents coincide.

Recall that {Up -, p > 0} is an increasing family of subsets of and Up  
is defined by (2.1). For equation (2.3) and fixed u 6 Up  define the (upper) 
Bohl exponent as (cp. [13, Proposition 2.2])

k B (u} = l i m s u p l o g  ||$ u (i, s)||,
—S—*O© * -- $

where ^ u (t,s)  is the fundamental matrix of (2.3) with $ u (s,s) =  id. Let 
the Bohl stability radius rB (A) of (2.3) w.r.t. Up  be defined by

r B (A) =  inf{p >  0; sup kB (u) >  0}.
ueUf

Theorem  5. Suppose that for all p > 0 the projection (4.1)p  o f system  
(2.3)p satisfies (H ). Then the Bohl and Lyapunov stability radii rB (A) and 
rB (A) o f A  with respect to Up  coincide, i.e.

r B (A) = r L (A).

PROOF. The inequality r B (A) < r ^ A )  follows from k B (u) > A(xo,u) for 
all x0 0, u € W. We will show that the converse inequality follows from 
Lemma 5.4 in [8].

First observe that for all t > s and all u € U

=  S u ( .+ s ) ( i - s , 0 )
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where u(- +  s) is the shifted control function

«(■ + s)(r) =  u(r +  s), r  G R.

Hence for all u € U

limsup —i — log||$„(t,s)||
s ,t~ s —*oo * S

=  limsup — log ||# u ( ,+ i ) (t -  s, 0)||
s ,t—s—̂ oo I  3

< lim su p —-— logsup ||$„(t — s, 0)||.
s ,t—s—*oo f 5 v E U

Hence
sup kg(u) < limsup -  logsup ||$„(t, 0)|| =: 8 
ueu i-too t

where the supremum at the right hand side is taken over all piecewise
constant v G U. Now Lemma 5.4 in [8] claims that 8 = K, hence

supfcs(u) =  K =  sup X(XQ,U\ 
u ^ U  «6“

which immediately implies the assertion. Q.E.D.

Next we note the following duality result.

Proposition 6. Suppose that for all p > 0 the projection (4.1)p  of system
(2.3) p  satisfies (H). Then the stability radius r¿(A) of A  w.r.t. Up satisfies 

rL ( A ) = r U - A T )

where r ^ —A 1'} is the stability radius o f —A T  w.r.t. —U j, p >  0.

P ROOF. For the extremal Lyapunov exponents we have [9] that wp  of the 
system (2.3) equals — a~  for the following time reversed control system

x(t) = —[A +  u(t)]T r(t), t  > 0, u G lip. (5.1)p

Hence the assertion follows from Corollary 4. Q.E.D.

The result above shows that it suffices to concentrate on r^ and f i ,  what 
we will do in the sequel.
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Remark 5. The duality concerning the Lyapunov exponents of (2.3)p  and 
(5.1)p  referred to above is not valid in general for individual control func­
tions u. It is a property of bilinear control systems satisfying (H), and 
relies on the fact, established in [8, Theorem 4.2 and Theorem 5.1], that for 
fixed p the supremal exponential growth rate np  = u p  can approximately 
be attained by using controls and trajectories having a common period. By 
the way, note that r ^ A )  w.r.t. Up  is the same as w.r.t. U j . □

Remark 6. From Theorem 2(iii) we obtain immediately r*L  = if Cp  D 
C~  /  0 for p = r*L . We will see later on in Section 6 that indeed depends 
crucially on the control structure of the projected system (4.1)p . □

Next we discuss the effect of unbounded parameter variations. We separate 
the bounded and the unbounded uncertainties:

x = [A + +  v(t)]a:(t), x(0) =  x 0 € Rd (5.2)p

where {Up ,p  >  0} is an increasing family of compact sets in M (d, d;R), 
v(t) — v i(t)A i, v,{t) G R, Ai € M (d, d;R), i = l , . . . , p  < d?. Thus 
Up = Up x ViAi; Vi G R for i =  1 , . . .  ,p} (note that we do not allow 
here “one-sided unbounded” uncertainties). Denote by

p
N p =  {A +  u +  v; u G Up , v = v,Ai, Vi E R for i = 1 , . . . , p) 

i=i

the possible constant right hand sides of (5.2)p  and by

p

N u  = ViAi, Vi G R for i =  1 , . . .  ,p} 
i=i

the unbounded part. For a matrix M  G M (d, d;R) define

M ° := M  — - traceM  ■ Id 
d

and let N °  =  {M°, M  E N p }, N u ’° =  {M ° ,M  E N u }. Define the systems 
group and semigroup generated by N p  as

Gp  = {e*”3 ” - - e ^ 3 1 -, Bi E N P , ti G R, i = G IN}
S p  = { e ^ 3 ” - e*1 3 1 -, Bi E N P , t i> 0 ,  i = l , . . . , n  E IN}.

Analogously denote the groups and semigroups generated by N u , N p , N u ,° 
by Qn , Gp, Qu ’°. The following estimates for K , K * are given in [2, Theo­
rem 2.3].
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Theorem 7. Assume that the family of systems (5.2)p  satisfies (H) for 
all p > 0. Then the following holds:

1. I f ^ 1 is not compact (in M { d ,d \^ ) ,  then K* =  — oo, KP  = oo.

2. I f ^  is compact, then —oo < K* < KP  < +oo.

2.1.1 I f  Qp  is not compact, andQp  is not compact, then K* < KP .
2.1.2 I f  Qp  is not compact, but Qp  is compact then

(i) if |  trace(A +  u) = c, then K* = KP  = c
(ii) if |  trace(̂ 4 +  u) is not constant, then

K* = -  min trace(A 4- u)p  d utu* v 7

< -  max traceM +  u) = KO . 
d ueu* ’ p

2.2 I f  Qp is compact, then Kp  = KP = 0.

Note that the group Qp C Gl(d, R) (the group of invertible d x d-matrices) 
is compact, if there exists T  € Gl(d, R) such that T N PT ~ X C so(d, R), the 
skew symmetric matrices; similarly for the other groups.

Theorem 7(1) implies in particular that the system (5.2)p  has K* =  
—oo, KP =  +oo unless there exists a basis in Rd , in which the unbounded 
part gives rise only to rotations. If we are in case (2), then in this basis 
the unbounded part does not contribute to the Lyapunov exponents at 
all (since s*Bs — 0 for skew symmetric B). Note also that if a system 
semigroup S p  satisfies S p is compact, then Qp = S p  and — under (H) 
— the corresponding system is completely (exactly) controllable on P, i.e. 
Cp = C~ =  P  (cp. [3, Corollary 3.2]). Hence the cases (2.1.2) and (2.2) 
above describe completely controllable situations on P.

This theorem has some immediate impheations for the analysis of r^.

Corollary 8. Assume that the family (5.2)p  satisfies (H) for all p > 0 
and that the stability radius of A  with respect to {Up ;p  > 0} is positive. 
Then the following are equivalent:

(i) r L (A) > 0,

(ii) S “ is compact,

(Hi) there exists a basis in Rd such that all elements of N u are skew sym­
metric.
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P ROOF. By Theorem 7(1), assertion (i) implies (ii), and by the remarks 
following Theorem 7, assertions (ii) and (iii) are equivalent. Finally (iii) 
implies (i), since here the unbounded part does not contribute to KP , in the 
basis chosen according to (iii). (Note by the way, that r/,(A) w.r.t. {[7p } is 
the same as r ^ T A T - 1 ) w.r.t. {T U p T '1 }, T  € Gl(d,R). Q.E.D.

Another consequence of Theorem 7 is the characterization of infinite s ta ­
bility radii: Let {Up ‘ p > 0} be defined by a norm, i.e. for given matrices 
B  G M {d, m; R), C  G M (k, d, R) let := {B D C  & M^d, d; R); ||D || <  p}, 
where || • || is any norm in M (m , k; R) (compare the structured or unstruc­
tured case in [13, 16]). If the assumptions of Corollary 8 are met, then 
r ^ A )  =  oo iff Theorem 7.2.1.2(i) holds with c < 0 for all p G (0, oo).

Next we consider the following “interval” case when the family {Up ; p > 
0} is given by

Up  = {M  G M(d,d-,W)- - p  < < p, (i, j )  G I  (5.3)
and m ij =  0, (i, j )  G d x  d \I }

here I  is a subset of d x d :=  { 1 ,. . . ,  d} X { 1 , . . . ,  d} such that ma  is allowed 
to be nonzero for a t least one i G { 1 ,. . . ,  d}.

Corollary 9. Assume that A  is stable, and for all p > 0 and Up  given 
by (5.3), Qp is not compact, but Q® is compact. Then the corresponding 
stability radius o f A  satisfies

r i(A )  =  - |  trace A.

where I is the number of diagonal elements which are allowed non-zero in 
Up.

P ROOF. By Theorem 7 case (2.1.2), it holds for all p >  0 that

Kp — ^  m axtrace(A +  u) =  i  [trace A  +  m ax trace u]. 
d u eu , v 7 d l  ueu f  J

Hence r^(A) = p iS  maxU ef/p trace u =  — trace A. Now Gp  compact and 
A  stable (hence trace A < 0) imply: For each p >  0 there is a t least one 
M  E Up with m a = p for I diagonal elements mu- Therefore r ^ A )  =  
— |  trace A. Q.E.D.

Now let A be an unstable matrix. From Remark 6 and < f t ,  we have 
that r i(A ) =  0 if G* is not compact and Cp  D C~ 0 for all p >  0.
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R em ark  7. Proposition 3 and Corollary 4 show that determining the time 
varying stability radius r L means solving a parametrized optimal control 
problem:

One has to find

1 f*inf{p >  0; sup lim su p - / q(A + u(r), s(r, s0 , u)) dr > 0} 
t—*oo * Jo

where s(r, s0 ,u) means the solution of the projected system (4.1)p  for initial 
state so and control u. In [8] it is shown that in fact it suffices to take the 
supremum over all piecewise constant control functions u and corresponding 
trajectories having a common period T  > 0, T  arbitrary. Similarly for f^ .

□

Thus the problem of finding can considerably be simplified; nevertheless 
it still requires optimization over function spaces. Thus contrary to what 
is known for the time invariant radii rc  and r®, we obtain explicit formulae 
for r£ only in very special cases, compare Theorem 7 and Corollary 9, and 
Example 8 in the next section. A general strategy is to solve (for fixed 
p > 0) the optimal control problem numerically and to extract the point(s) 
where KP = wp  =  0. This is demonstrated for the linear oscillator with 
uncertain restoring force in the next section. The computed Lyapunov 
exponents KP , TL , may also be used for design purposes, see Section 8.

6 E xam p les

In this section we will discuss the relations between the Lyapunov stability 
radius defined above and the stability radius for matrices under constant 
complex- or real-valued perturbations. In particular, we will consider the 
linear oscillator with uncertainties in the restoring force.

We use the following set-up. Let A € M (d, d; R) be stable and let 
B  e M (d, m; R), C  G M (k, d; R) be given. Denote for p > 0 and K =  R or 
C

U ®  := {BD C -D  e  with ||D ||2 < p} C M (d,d,K)
:= {B D C ,D  G M (m , fc,K) with ||D ||m  < p} C M (d,d,K )

here || ■ ||2 is the operator norm induced by the Euclidean norm on K2 and 
|| • ||m  is defined by

IPIIm =  max |d0 |, D  =

corresponding to the case of interval uncertainties. We denote the Lyapunov 
stability radii of A  with respect to the families p >  0} and p >
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0}, where Up2 ), Up™) c  M (d, d; R), by r^2) and r̂ ™) respectively. We 
denote the stability radii of A  with respect constant complex- and real- 
valued perturbations in and Up™) by

„ (2 ) (2) (m ) (m )
r C ’ r R ’ r C ’ ' B ’

The objects studied in [13, 16] are r ^ )  and by [16, Proposition 2.2 
and Proposition 5.2] is also the Bohl stability radius with respect to 
complex-valued time-varying perturbations. Hence

r(2) 
c

(2) 
Lr

The inequality < ]]Z>||2 implies

(m )  
cr .(2) 

JR ’
(m ) 

r L
(2) 
L ■< r

Furthermore the inequalities

c
■ O ) r (2) <  _(2)
R > r C — r R ’ L — r R >

(2) <  r R

are obvious from the definitions. The following Examples 8 and 9 show 
that

r (™) 
r L

_(2) _  (2 ) _  (2) 
r C — r L — r R

and
(™) _  _ (2)  
C — r c

(” ») _  _ (2 )
L — r L

(™) _  r (2) 
R —  ' Rr < r < r

are possible. We do not know whether r^™) < r ^ 1) is possible. 
We now start the analysis of two-dimensional examples. 
Consider the matrix

D = di d2
da d4

G M (2,2;R).

To obtain explicit formulas for the projected system on P, we write

f cos \  m  r„s =  I . J G P, G O, 7r). \  sin <p /

Then one computes

h(D, tp) = - d 2 sin2 p + d3 cos2 p  +  |( d i  — d^) sin 2<p

— ^(d i + d4 ) +  i (d i  -  d4 ) cos2y> +  | ( d 2 +  da) sin2ç>,
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here h and q are first defined as in (3.2) and (3.3), and then the induced 
maps with the second argument in [0, TT) are denoted by the same symbols. 

Note that
=  m a x |d i |

<  P I I 2  =  I  S t i  +  ^ ( ^ 2  +  d 3 d 4 )2 +  | ( d ?  +  d 2  -  d l  -  

<  2 p | | m

Hence it may not come as a surprise that the strict inequality 
can occur, as the following example shows.

Example 8. Consider
—a 0

0 —a
Clearly q(A, ç>) =  —a, and

max maxg(U, ^) =  2p.
D e u {pm y  vCP

The maximum is attained for di = p, i = 1 , . . . ,4  and <p = TT/4. The 
eigenvalues and eigenvectors of

d d  
d d

are Aj =  0, A2 =  2d, ei =  | TT, e2 =  4^. Since q(A + D,<p) = q(A, <p) + 
q(D, <p) = —a + q(D, <p), we have

max max <7 (A + D,<p) = —a + 2p 

and hence
.(”•) _  £
L 2'

On the other hand

=  a (see [18, pp. 41]),

and hence
/ ”») _(2) _  _(2) _  _(2)r L < r C — r L ~  r » •

Note that for the matrix D  above ||P||2 =  2d.

The next example shows the more surprising fact that
. M  _  (2) (m ) _  (2) (m) _  (2)
r c  — r c  <  r L  — r L  — r R

can occur.
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E xam ple 9 (T h e  linear oscilla tor w ith  u ncerta in  restorin g  force)

Consider the linear oscillator described by

ÿ + 2bÿ +  (1 +  u)y =  0

or with x = ÇXI,X2)T = (y, ÿ)T

• (  0  1 1 . I 0  0

-1  0

where u(t) e  [—p, p], p > 0, i.e. Up  = {  Q J  ; a  € [—p, p} J  and b 6 R  

is a constant. This yields structured stability radii (cp. [16]) with

A = ,B  = , and C =

Since the perturbation is one-dimensional, the equalities = r .
are obvious.

Projection onto the sphere gives in polar coordinates with
s =  (cos^?, s in ^ )T , <p € [0,2?r) (compare for this example [2, Section 6]):

tp(t) = — sin2 ip(t) + [b2 — 1 — u(t)] cos2 <p(t) 
q(A + u ,p )  =  i(b 2 — u) sin2ç? — b.

We restrict our attention to the case where 0 < b <  2. Then one easily 
finds

min|q(A,g?)| =  - ^ b 2 + b.

Figure 1 presents the different stability radii for b € [0,1] (for b >  1 we have 
rc =  rR =  r £ = l ) , a s  well as two estimates (Note that in the following 
we suppress the dependence on the matrix A, instead we indicate by the 
argument b, that all entities depend on the actual value of the damping b).

(a) is the real stability radius TR(5)(= 1), which follows from elementary 
considerations;

(b) is the time varying radius r^ b ) ,  its computation is described in [2] 
as the level curve 7 =  0 (cp.[9]);

(c) is the complex radius rc(b), computed using the program STABRAD, 
see [18];

(d) is the estimate via miup |g(A, y>)| =  b — ^b2 ;
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Figure 1. Stability radii for the linear oscillator

(e) is the estimate pt (b) =  2b — b2 according to (3.5). 
□

For p | 0 and 0 <  b < 1 we have for the maximal Lyapunov exponent Kp (b)
K p{b) =  ~ b +  / ?  +

x v l  — tr
see [2, Section 6]. Hence for b small one obtains

r £ (h) ~ it b

and also (by numerical evidence, compare Fig. 1)

r c (6) ~  2b.

We have

0  < rc(b) < ri(b )  < rn(b) =  1 for 0 <  b < 6o
0 <  rc(b) <  ri(b ) =  r^ b ) =  1 for bo < b <  h
0 <  rc (b) =  r L (b) =  r^ b ) =  1 for bY < b.
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-bo

Figure 2. Instability radii for the linear oscillator

b

The Lyapunov stability radius rx(b) is monotone increasing in b for b >  0 
(this follows directly from the explicit formulae for K^b) in [2, Section 6]). 
From the numerics presented in Figure 1, it also seems that rc(b) is mono­
tone. For the relative sizes we have from the numerical results:

rç(ty

rç(b) 
ri(b)

e  (o,i]

e  [¿,1]

monotone in b,

with 0 < Æ ~  0.5, not monotone in b.

For the linear oscillator discussed above we can also compute and r  £, 
now of course for b < 0. Figure 2 presents the curve r^(b), which is easily 
obtained from r^Çb), compare Proposition 6. The curve for is more 
complicated, since it depends on the control structure of the projected 
system. It turns out that

C = C~  =  P  iff p +  1 > b2 cp. [9]

Thus according to Remark 6, if b G [—>/2,0]. For b <  — V2, one
has r*L  < r£. Figure 2 presents the curve r L (b).
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Finally, we consider the uniform radii and introduced in Remark 1.
If A  is stable, i.e. b > 0, then

=
—b if

—b — V'—l — p + b? if

P 
b2 -I
P

hence Ap  < 0 for all p > 0, i.e. TL  = OO. Thus uniform destabilization is 
not possible in this situation: For all u g Up , p G (0, oo) there always exists 

such that X(xu ,u) < 0.
By duality one gets for unstable A, i.e. b < 0, that =  oo.

7 S to ch a stic  S tab ility  R adii and Large D ev ia tion s

In this section we introduce two stochastic stability radii and discuss their 
relation to r^. We also analyze how a stochastic system behaves, if its 
stochastic stability radius is larger than r/,: This indicates the “presence 
of large deviations”. Since the case with unbounded uncertainty can be 
reduced to the bounded case, using Theorem 7, we restrict ourselves to 
bounded situations. In order to be able to compare stochastic stability 
radii with , we use the following set-up:

Let M  be a finite dimensional compact, connected (Riemannian) real 
analytic manifold and

Dp  d;R)

a  family of (real-) analytic maps for p >  0. Assume again that the family 
Up := D P{M) is increasing. On M  we consider two different classes of 
stochastic processes:

Stat: the stationary processes with values in M , i.e.
Denote by D(M ) the Skorohod space of piecewise continuous func­
tions £ : [0, oo) —► M , right continuous with left hand limits, and 
by B(M ) the Borel a-algebra of D (M ). Let 0t : D(M ) -» D(M) be 
the shift on D(M ) for each t > 0, i.e. 0^(-) =  +  ')• Then every
(strictly) stationary process with values in M  and right continuous 
trajectories with left hand limits is given by a ^-invariant probability 
measure v on (D(M ), B(M')'), i.e. 6t v = v for all t > 0. (This fact is 
known as Kolmogorov’s construction.) In particular, if £ G D(M) is 
a periodic function with period T, then rj(t) =  f  (t +  r) is a stationary 
process with T  uniformly distributed in [0, T].
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Diff: the stationary, ergodic, nondegenerate diffusion processes on M , i.e.

d ^  = X 0 ^ d t  + X ^ t )  o dWi,
1— 1

where X Q, • • •, X r  are real analytic vector fields on M  with 

& imCA{X i , . . . , X T}(m) = dim M

for all m G M . “o” denotes the symmetric (Stratonovic) stochastic 
integral.
Again the process can be viewed as a flow with flow-invariant 
ergodic measure iz, on the space fl x M , where (Q,B(Q), P) is the 
Wiener space of continuous functions w: [0, oo] —> Rr , with its Borel cr- 
algebra and the Wiener measure P. Here is defined as : Q x M  —+ 

x M , 4?<(w,p) =  (0i u,p(t,a>,p)'), with ► Q, 0tw(-) =  w(t +  
•) — w(t), the Wiener shift, and y>(t,w,p) the (pathwise) solution of 
the stochastic differential equation at time t  with initial value p  6 M .

For background information on differential equations driven by stationary 
processes see e.g. the survey paper [20].

For a matrix A  G M (d, d; R) we now consider the systems

x =  [A +  D p (£t )]x, x(0) =  so € Rd , (7.1)p

again with assumption (H) as in Section 4 for the class Stat, and with the 
assumption

dim£A{Xo 4- h, X i , .. . , X r }(m, s) =  dimAf 4- d — 1 ( ff '}
for all(m, s) G M  x }

for the class Diff.
We define stochastic stability radii for the classes Stat and Diff in the 

following way:
The Lyapunov exponents of (7.1)p  are

AP (so ,6 )  =  tJ—im̂oo  7Z1og |^ (t,x 0 ,6 ) |  

where p  solves (7.1)p .
By Oseledec’s Theorem these random numbers exist with probability 1. 

Define
«>(&) :=  ess sup sup Ap (x0 ,€<) 

Xo#0
where the essential supremum is taken w. r. t. the measure v  associated 
with and let the stability radius with respect to  & be

:=  inf{p >  0; KP (&) > 0}.
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Define the stability radii w.r.t. the classes Stat and Diff

r s t a t  := inf{p > 0; sup Kp ^ t ) > 0} 
Ci e s t a t

r D iff ~  inf{p > 0; sup KP (^) > 0}. 
Ct eDiff

Obviously r s t a t  <  »’Diff- Similarly, stochastic instability radii can be defined

< (& )  : =  e s s i n f  ^ „ ^ ( ^ o ,^ )

«pt&^o) :=  essinf Ap ( i 0 , 6 ),

and

r*(6 ) := inf{p > 0; K*(6) < 0} 
r(6 ) := inf{p > 0; K*(^, â o) < 0 for all x 0 ±  0},

and analogously for r* and f  w.r.t. Stat and Diff using the inf’s.

Remark 10. We have defined stochastic stability radii in complete anal­
ogy to deterministic ones, using the unifying concepts of Lyapunov expo­
nents. It is important to notice that Lyapunov exponents of a stochastic, 
stationary process do not only depend on the statistics of &. In fact, if 
e.g. the generator L  =  X o + 1 52 °f a  stationary, ergodic, nondegenerate 
diffusion process is given (and therefore the statistics are determined), 
there are in general many ways to take square roots of the second order 
part of L, and hence different choices for the vector fields in the associated 
stochastic differential equation. The Lyapunov exponents of depend on 
the associated stochastic flow (the multipoint motion as described in the 
definition of the classes Stat and Diff), i.e. for diffusion processes on the 
vector fields X 0 , . . . , X r - It is Oseledec Multiplicative Ergodic Theorem, 
which shows that for stationary stochastic processes a theory of Lyapunov 
exponents can be developed in complete analogy to the deterministic Lya­
punov regular case —  with probability one, see [20] for more details and 
examples concerning this point. □

The stability radii rstat and »’Diff are defined via the almost sure Lyapunov 
exponents of the system (7.1)p . We will also consider the Lyapunov expo­
nents of the p-th moment (0 < p  < oo)

9p(xo,&,p) =  Jim | l o g x 0,6 )| p ), <p solves (7.1)p , 
I—*OO I

9p(^t,p) =  sup gp (x0 ,£t,p),
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and the corresponding stability radii

r [p l(€t) =  sup{p > °! 9p(£t,p) <  0}, 0 < p  < oo 
r I o o l(€i) =  sup{p > 0; 9p(£t,P) < 0 for all 0 < p < oo}

and for the classes Stat and Diff, 0 < p < oo

= SUP{P > °> S U P  9P(&,p) < °} 
r e s t â t

r Diff =  SUP{P > °, S U P  9p^t,P) < °},
6  eD iff

analogously for rgtat’ r Diff- particular, in the engineering literature, p-th 
moment stability is often considered.

The situation for the class Stat is relatively simple:

T heorem  10. Let A  € M(d, d;R) be stable. Then under the assumptions 
above

~ P R tat >  r S ta t =  ^ S ta t =  rL  for all p  > 0,

where r^ is taken w.r.t. Up = D P(M ). I f  the initial values x 0 can be taken 
as bounded random variables, then furthermore ^rgP

a t  =  Tg^t  for all p > 0.

PROOF. The key for the proof of this theorem is the fact that the extremal 
Lyapunov exponent ajp (as well as a p ,a ~ )  can be approximated by Lya­
punov exponents of periodic solutions of (4.1)p , compare [8, Theorem 5.1], 
and [9, Theorem 4.2]. Now a periodic solution s°(t, u°) gives rise to a s ta ­
tionary process as outlined in the description of the class Stat above,
and A(s°) =  by Corollary 4.4 in [2]. The equality rstat =  r L follows
from this.

Next, consider for given XQ €  Rd , xo 0 and £t in Stat the function p  i—> 
p3p(æo, £t,p). This function is continuous and increasing on (0, oo]. Denote 
its limit at +00 by 5P (x0 ,& ,oo), and let pp (^,oo) =  supI o # o  gp (x0 , &, oo). 
Then we have by definition gp (x0 , &, p) < 0 for all 0 < p < oo iff gp (^t, oo) <  
0. Corollary 4.4 in [2] now says =  rstat, and the inequalities r^J- >  
r stlt and r su.t -  r stat are obvious, hence r ^ !

t  =  r S ta t-
The inequality ^ r ^ a t > rg ^ t  follows directly from the monotonicity of 

pi/p^o, &,p) for p  >  0.
Finally, if XQ can be taken as a random variable, then we can associate 

with the periodic solution s°(t, u°) a stationary and XQ such that

E’( |p (t,x 0 ,& )|p ) i  =  Ip ^ x o .^ ) !  w.p.l
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by defining x 0 accordingly to the uniform distribution on [0, T], where T  
is the common period of u° and s°. This proves the last statement of the 
theorem. Q.E.D.

R em ark  11. In order to characterize the stochastic instability radii, we 
define the Lyapunov exponents of the p-th moment for p < 0 as —
^ x Q*ogP (xo,£t,p), and

r [-°°](£t ) _  inf{p > 0; gpiCt,?) <  0 for all -  oo < p <  0}, 

similarly for the classes Stat (and Diff). Then the same techniques and the 
corresponding references as in the proof of Theorem 10 yield

rstat =
^ r s L  > r s7a7] =  r stat =  r L all p < 0,

where the equality holds again if XQ can be chosen to be a (bounded) ran­
dom variable. A p-th moment characterization of r is obtained in the 
following way: Recall that by Proposition 3, the instability radius TL (and 
hence rstat) are obtained over the invariant control set C C P. Define 
gp(£t,P;C) = infX o ec  gP(xo,&,p), and similarly r[- o °l(ft; C), ^ “ ’(C). 
Then

> ¿ ^ ( C )  =  rgt a t (C) =  r Sta t for all p < 0,

where the equality holds under the same condition as above. □

The theory for the class Diff is considerably more complicated (and inter­
esting), because we cannot use the periodic solutions of (4.1) as diffusion 
process that satisfy our assumptions for Diff. In fact, the Lie algebra as­
sumption yields that every ft G Diff has an invariant probability measure 
with C°° density, which is strictly positive on all of M . This implies (see 
e.g. [19, Proposition 3.2 and 3.4]) that all solutions of (7.1)p , projected 
onto P, enter the maximal control set Cp  in finite time w.p.l (even with 
finite expectation). Therefore, the Lyapunov exponents for € Diff are 
independent of the initial value and they are attained in Cp . Furthermore, 
for each ft and p the Lyapunov exponents are a.s. constant, and depend 
only on the (unique) invariant probability of the pair process (ft, s t ), where 
st is the projection of (7.1)p  onto P (see Hasxninskii’s formula (4.1) in [3]). 
We thus have for ft € Diff

Ap(zo,ft) = Ap(ft) G R for all x0 #  0, w.p.l

and
Ap(ft) € Ip = [<>p, wp],

see [3] for proofs of these statements. We thus have
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Figure 3. Stochastic stability radii for the linear oscillator

T heorem  11. Let € Diff, denote Up  = DP(M ). Then under the as­
sumptions above

(i) > rDiff >  rstat =  rL  for A  stable.

(ii) f ^ t ) =  r ‘ (^ )  >  f Diff =  r£ iff >  rstat =  f L  for A  unstable.

P ROOF, (i) is clear from the definitions and Theorem 10. To show (ii), 
note first that for unstable matrix A  and a given & G Diff we have — 

because the Lyapunov exponents of (7.1)p  are independent of the 
initial value x 0 . This also means rDiff =  r Diff- The rest follows from 
Remark 11 Q.E.D.

R em ark 12. We conjecture that r D iff =  and r£ iff =  r^. For a charac­
terization of r (^ )  = r£, G Diff, see Theorem 12 below. □

Theorem 11 and Example 9 show that r^  is in general not a good estim ate 
for a stochastic stability radius. The linear oscillator shows that the real 
radius r® is not suitable either:
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E xam ple 13. Consider again the linear oscillator from Example 9

HW + 2by(t) +  [1 +  D p ^ t ^ t )  =  0

where M  =  S 1, the one dimensional Euclidean sphere in R2 , Dp  : S1 —+ 
M (d, d; R) given by

n  r t (  0  °ADp (m)7  = p \y  — cos m „0  J1 ,

where & is the standard Brownian motion on S1 . □

Figure 3 presents the stability radius r (^ )  for this system, computed nu­
merically via the law of large numbers (see “Hasminskii’s formula” , (4.1) 
in [3]). For b small, < r (^ )  < r®, while for large b one has r® < r^ t) . 
Note that for small b, r(&, b) increases like const ••$/&, compare [5].

We now turn to the analysis of thep-th moment stability radii. Through­
out the rest of this section, which is based on the results in [2], we will 
assume that the following hypothesis (H"), which is slightly stronger than 
{H') holds:

dim£A{Xo +  h + X i , . . . ,  X r }(m, s ,t) =  dim M  + d 
for all (m ,s ,f)  G M  x P^"1 x R. ( ’

(H ') and (H") are equivalent e.g. if M  x Pd - 1  has a compact universal 
covering space (which is true e.g. if M  is simply connected and d > 2).

First of all let us mention that

— gP(x0 ,& ,p) = gp ^ t ,p )  for all x 0 0, 0 < p  < oo,

— gP(%L •) : —* R is convex, analytic with gP (£t,O) = 0, g'p (£t,O) =
AP (6).

T heorem  12. Let G Diff and suppose that A  is stable. Then

(i) = pr p̂K^t) = r L  =  ri001^ )  i f f  gP^ t ,p )  = p ■ XP(^t) for all
0 < p  < oo. This situation occurs exactly in the cases 2.1.2(i) and 
2.2 of Theorem 7.

(ii) ri00! ^ )  =  r^ for all G Diff.

The typical situation for deterministic and stochastic stability radii is char­
acterized in Figure 4. (The reader should refer to the text for conditions, 
under which the strict inequalities hold. Note that re, as defined in Sec­
tion 6, is positive, if A is stable.) The corresponding moment Lyapunov 
function gp (£t, •) is indicated in Figure 5.
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0 rc
r L =  r s t a t  =  rt00! ^ ) ,  

6  e  Diff

a.s. stable
all moments stable

a.s. stable 
stable for 

small moments 
unstable for 

large moments 

a.s. unstable 
all moments 

unstable

Figure 4. Typical order of deterministic and stochastic stability radii

If r^ < p < r ^ t ) ,  then the system (7.1)p may “exhibit large deviations” : 
Define the rate function Ip (r, £t ) := supp 6 K {rp — gp (^t,p)}, denote

p) f o r p / O  
for p =  0

and let
=  pli—m►—oo7P (&,p), yP ^ t )  =p— *4l-i0m0 7P (^ ,p ). 

If 7p(&) <  then Ip  >  0, finite exactly in the interval (7p(&), 7p(&)) 
and strictly convex and analytic in this interval. The following is a  conse­
quence of a large deviations principle, suitable for our purposes:

Theorem  13. Let E Diff with (H") holding. Then for all p > 0, the 
family of measures

t

obeys a large deviations principle with rate function Ip (r ,( t )
(here <p(i,Xo,£t) is the solution of(7.1)p ). In particular for A  stable:
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Figure 5. Typical moment Lyapunov functions for different p-values

(i) I f  p 6 (r^, there exist constants a > 0, k > 1 such that for all 
c > 0 and all 0 < |XQ| < c

1 
k < P{sup |y>p (t, x0 , 6)1 >  c} < k 

i>0

(ii) I f  p € (0, r^), then there is a constant K  > 1 such that for all x 0 0

sup|<Xi,*o,6)l <  ^l*oI 
t>o

with probability 1.

A  precise formulation of a large deviations principle is given in [2],
This result can be interpreted as follows: If p & (*£,*(6)) then the 

system (7.1)p  exhibits large deviations, i.e. for all c > 0 and all t > 0, 
we have P{j^j|9?(t, XQ, 6)1 > c} is positive (and decays exponentially for 
t  —+ oo), while for 0 < p < r^ this probability decays faster than any 
exponential function, in fact in this case To, 6)1 is bounded for all
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t > 0. Thus the theorem shows that for p € (ri,,^ ^ )) the system is 
still stable with probability one, however arbitrarily large deviations in this 
range of p occur with positive probability.

Remark 14. It is worth noting that r̂ 00^^) does depend neither on the 
statistics nor on the dynamics of the diffusion process C € Diff, since it 
always equals TL and hence depends only on Up =  D P (M). o

Remark 15. For an unstable matrix A  we know from Theorem 11 that
=  rD if f. A  large deviations theory that ties the instability radius to 

the moment Lyapunov functions for p < 0 can be developed in complete 
analogy to Theorems 12 and 13, compare [2], in particular Section 3 therein.

□

8 Remarks on Robust Design

In this section we draw some conclusions from the theory presented so 
far for a robust design technique, in which stability radii and Lyapunov 
exponents play a central role.

Stability radii can be viewed as a measure of robustness for the stability 
of a given system x = Ax, depending on the nature of the uncertainty. Most 
of the results above deal with TL, the Lyapunov radius for time varying 
deterministic disturbances, for a family of sets Up of uncertainty matrices. 
This concept of stability radius appears to be important because

• information about uncertainties is usually given in terms of the size 
of possible variations of parameters in A,

• structured variations, i.e. dependent or independent disturbances in 
the parameters of A  are covered by this model,

•  complete ignorance about a parameter can be included as unbounded 
perturbation,

•  no prior knowledge about the time dependence of the variation is 
assumed,

•  stochastic, stationary perturbances lead to the same stability radii,

•  stochastic, Markovian variations can be included in the theory in a 
consistent fashion, in particular, their stability radius for all moments 
leads to the same radius.

The disadvantage of is that, in general, it can only be computed for 
a given system using numerical methods, i.e. by solving a parametrized 
optimal control problem for periodic trajectories.
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The theory developed above, allows to incorporate information into a 
robust design which has two aspects:

• How large can the disturbances of A  be, such that the system is still 
stable (this is covered e.g. by looking at stability radii),

• how fast does the system stabilize under a “typical variation” D £ Up . 
The second aspect is particularly important for the design, if different pa­
rameter constellations lead to the same stability radius. One then would 
choose the parameters in such a way that perturbations are damped in 
a maximal way. The notion of stability radii covers only the first aspect 
above. For the remainder of this section we discuss some strategies for this 
problem.

To outline the ideas let us separate the system parameters (i.e. the 
entrances of A) into three categories:

• structure parameters (not affected by uncertainties, not tunable by 
the designer, e.g. the first row of A  in Example 9),

• tunable parameters (not affected by uncertainties, e.g. the damping 
b in Example 9),

• uncertain parameters (e.g. the restoring force in Example 9).
Note that the set of tunable parameters, say denoted by ©, consists of 
constants, while the uncertain parameters are allowed to be time varying 
here. Let the range of the uncertainties as usual be given by Up . Then the 
design problem may be formulated as follows: Given a family of systems

x — A(6, u)x, 0 € 0, u G Up , p > 0,
find all parameters 6 G 0  such that the stability radius (with respect to 
Up ) > r c r;t , a critical radius, or such that ri(0) becomes maximal, if 
0 is chosen in 0 .

Additional design criteria can be given e.g. by deterministic or stochas­
tic information on the uncertainty. Then one would not only maximize 
the (deterministic or stochastic) stability radius, determined by the corre­
sponding Lyapunov exponents; one would also like to minimize Lyapunov 
exponents of “typical” perturbations.

As an illustration of these general remarks consider again the linear 
oscillator from Examples 9, 13:

( * 1 ( 0  A _  (  0  1 W  * 1 ( 0  A

\ x 2 (t) J  -2 b J  \ x 2 (t) J

Consider b €  [0,2] =: 0  C R as a tunable parameter and u as an uncertain 
parameter, u(t) G [—p, p\, p > 0, i.e. Up =  < f  Q j  , a  G [—p,p] ?•
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8.1 A strategy motivated by deterministic considerations

Figure 6 shows the level curves of the Lyapunov exponents np (b) as de­
scribed in Example 9. Again, from the explicit formulae in [9], Section 6, 

Figure 6. Level curves of K  for the linear oscillator

we obtain: For each p g (0,1), the curve Kp (b) has a unique minimum 
bp , i.e. there is a unique damping value bp such that (timevarying) uncer­
tainties of size Up =  [—p, p] are exponentially damped in an optimal way 
for bp. Figure 7 shows the location of these values. Note that increased 
damping with b does not necessarily lead to faster damping of disturbances 
(overdamping) for fixed p. Note also that this strategy leads to optimal bp 
values for bp G (b0 , E>i), where the complex stability radius re is less than 
1; i.e. maximization of rc does not lead to optimality in this sense.

It follows from Section 7 that the same design is optimal, if one wants 
to dampen out, at a maximal rate, all moments of the solution ip(t, XQ, Çt), 
caused by stationary ergodic nondegenerate diffusions with values in Up  or 
all stationary processes with values in Up . We would like to mention that 
for p > 1, Kp (b) is strictly increasing in b.

Note that in this example the choice of the “tunable parameter” b may
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Figure 7. Optimal damping with timevarying uncertainties

be interpreted as the choice of a certain feedback: Define

4>=(-l-°J) M -a )  c = (0 1 )

Then the choice of the tunable parameter b means choosing a  feedback 
F  = b for the system

x = A QX + Bu, y = Cx 

such that
X = (AO + B F C )X  = ( 1 _ U

Q _ ^ \ X

has certain desired properties.

8.2 A  strategy m otivated by the stochastic a.s. Lyapunov 
exponent

Figure 8 presents typical level curves of a.s. Lyapunov exponents Xp (x0 , £t : b) 
for a specific excitation (see Example 13). Of course, these values were 
again obtained numerically via the law of large numbers. Recall that for

€ Diff we have Xp (xQ,^ t -b) = Kp (£t ,b), and thus we see from the numer­
ical results, that the stochastic stability radius r{^t ,b) increases to oo for 
b —> oo and for each p G (0,oo) the curve Kp (S,t,b) has a unique minimum
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Figure 8 . Level curves of a.s. Lyapunov exponents

Figure 9. Optimal damping with stochastic uncertainties
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5P (= These (numerical) findings are supported by the asymptotic
expansions of stochastic Lyapunov exponents for small and large p’s, see 
e.g. [5]. (For numerical methods for the computation of stochastic Lya­
punov exponents we refer the reader to the work of Talay, e.g. [22].) The 
location of the optimal values bp is shown in Figure 9. Obviously, the de­
sign strategies in 8.1 and 8.2 above do not agree. An optimal robust design 
depends not only on the requirements imposed on the system, but also on 
the prior information available on the uncertainties inherent in the system 
parameters.
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