Lyapunov Exponents of Control Flows!

FRriTz COLONIUS, UNIVERSITAT AUGSBURG
WOLFGANG KLIEMANN, IOWA STATE UNIVERSITY

Abstract. The use of Lyapunov exponents in the theory of dynamical systems or stochastic
systems is often based on Oseledeéd’s Multiplicative Ergodic Theorem. For control systems
this is not possible, because each (sufficiently rich) control system contains dynamics that
are not Lyapunov regular. In this paper we present an appreach to study the Lyapunov
spectrum of a nonlinear control system via ergodic theory of the associated control flow and
its linearization. In particular, it turns out that all Lyapunov exponents are attained over
s0 called chain control sets, and they are integrals of Lyapunov exponents on control sets
with respect to flow invariant measures, whose support is contained in the lifts of control
sets to U x M, where I{ is the space of admissible control functions and M is the state
space of the system. For the linearization of control systems about rest points the extremal
Lyapunov exponents are analyzed, which leads to precise criteria for the stabilization and
destabilization of bilinear control systems, and o robustness results for linear systems.
The last seciion is devoted to a nonlinear example, where we combine the analysis of the
global controllability structure with local linearization results and Lyapunov exponents to
obtain a complete picture of control, stabilization and robustness of the system.
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1. Introduction

The local study of ordinary differential equations and smooth dynamical systems via
linearization techniques and Lyapunov exponents goes back to Lyapunov (1892) and
is exemplified e.g. in the books by Nemytskii and Stepanov (1960), Cesari (1971),
Hahn {1967), Mané (1987) and many others. In the time dependent case, Oseledeé’s
multiplicative ergodic theorem (1968) shows, how to obtain results with probability one
about Lyapunov regular points, i.e. about Lyapunov exponents, invariant manifolds,
exponential stability, and behavior under small perturbations. Likewise, entropy theory,
bifurcation theory, strange attractors etc. can be closely related to Lyapunov exponents
of dynamical systems. While Oseledeé’s theorem is also a convenient starting point for
the local analysis of nonlinear stochastic systems in the form of stochastic flows (compare
e.g. many contributions in this volume), this is not the case for control systems.

Cousider a control system of the form

(1.1) #(t) = Xo (2()) + Eu;(t)X.- (z(t)), z(0)=zo€ M, teR

1Research supported in part by NSF grant no. DMS 8813976 and DFG grants no. Col124/6-1 and
Col24/8-1.
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on a finite dimensional, smooth manifold M with smooth vectorfields Xo,..., Xm. The
ui(+) are the admissible control functions in 2{ = {u: R — U C R™, locally integrable}.

Typical questions in control theory include: Given two points y,2 € M, does there
exist a control function u € U such that y = z(¢, z,4)? Does there exist a control u € U
such that the system can be stabilized at a given trajectory, e.g. a rest point? Is this
stabilization robust with respect to small (or large) perturbations of the vector fields? If
the trajectory of #(t) = X, (2(t)) has a complicated behavior, does there exist a u € U
such that the corresponding solution of (1.1) has a simple (desired) behavior? Can these
goals be achieved via feedback controls, i.e. « = f(z)? Compare e.g. Wonham (1979),
Isidori (1989), or Nijmeijer and van der Schaft (1990) for a range of control theoretic
topics.

Many techniques in control theory are global in nature, compare the literature men-
tioned above. If linearization techniques are used (e.g. around rest points for all
Xo...Xm), then the system is usually linearized with respect to z and wu, yielding
a linear control system of the form

(1.2) z(t) = Az(t) + Bu(t).

But the typical problems listed above show that linearization with respect to u is often
not appropriate, because one looks for the existence of some v € U with a desired
property, which is a global question in u. On the other hand, linearization with respect
to « around a rest point leads to a bilinear control system

(1.3) #(t) = Aoz (t) + Z uit)Aiz(t).

Since control systems contain matrix functions that are not Lyapunov regular, one
cannot use Oseledec’s theorem or similar approaches to describe the Lyapunov spectrum
of (1.3) and its implications for the local behavior of the nonlinear system. Other
spectral concepts, like the dynamical spectrum (compare e.g. Sacker and Sell (1978)
and Johnson et al. (1987)) or the Morse spectrum based on Morse decompositions of
projected, linearized flows (compare Sections 3. and 4.) are too crude to describe the
local behavior of (1.1) appropriately.

In this paper we present an approach to the study of global and local open loop prop-
erties of control systems, which is based on the concept of control flows on U x M for the
global ideas, and on the induced flows on U x TM and U x PM for local analysis. (Here
TM and PM are the tangent and the projective bundle over M.) It turns out that a
careful study of the control properties of the systems on M and on PM, using control
and chain control sets, and the approximation of spectral values via Lyapunov expo-
nents of regular elements (using ergodic theory or approximation by piecewise constant,
periodic solutions) allows the characterization of Lyapunov exponents for (topologically)
“thick” sets in & x M. OQur techniques are a combination of methods from the theory of
dynamical systems and from control theory, with many of them being inspired by ideas
from the theory of stochastic flows.

Our goal is to develop techniques to obtain exact criteria for nonlinear control systems
with respect to the problems mentioned above. For linear systems of the form (1.2)
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with U = R™ methods from linear algebra together with Lyapunov functions, Riccati
equations etc. can be used to solve this problem, and the explicit constructions yield
feedback controls via gain matrices automatically. But if U C R™ is bounded, then
the problem becomes ‘nonlinear’ {(compare Section 5.) and many techniques break
down, i.e. yield only sufficient conditions. For nonlinear systems, Lyapunov function
techniques still work for some problems (compare e.g. Sontag (1983)). Other authors
have developed approaches to stabilization using center manifolds of reference systems
(see e.g. Byrnes and Isidori (1989), Knobloch (1988)), and the feedback problem is
treated e.g. in Sussmann (1979) and Sontag (1989). The approach presented here uses
control flows and Lyapunov exponents as a unifying tool.

In Section 2. we describe the set up and the notations used throughout this paper, in
particular control flows on If x M, linearized flows on i x T M and their projections to
U x PM are introduced. Since our results rely on some previous work of the authors,
we review (with minor extensions) in Section 3. control sets, chain control sets and
their characterizations for the flows presented before. Section 4 introduces Lyapunov
exponents for (1.1) and characterizes the Lyapunov spectrum over control and chain
control sets in terms of ergodic theory for the associated flows. In Section 5 we demon-
strate for the problems of stabilization of bilinear systems and for robustness of linear
systems that the Lyapunov exponent approach does yield exact criteria for control sys-
tems (and also for classes of stochastically perturbed systems). Finally in Section 6.
the simple nonlinear, controlled Verhulst equation is treated with respect to controlla-
bility, stabilization and robustness, using the results from Sections 3.-3. The approach

developed there can be used for general nonlinear control systems with one-dimensional
stale space.

2. Control Systems, Control Flows, and their Linearizations

In this section we set up the basic concepts and notations, which will be used through-
out the paper. We will consider the following class of nonlinear control systems on a
para-compact connected d-dimensional Riemannian C°° manifold M

(21)  #t)=Xo (=) + D wi(®Xi (a()), teR, =(0)=az0€ M,

=1

where the Xo,...,Xn are C* vectorfields and the admissible controls are u := (u;) €
U := {u: R — U, locally integrable} with U C R™ compact and convex. We assume
that for all v € U and =9 € M the equation (2.1) has a unique solution ¢(-,zg,u),
defined on R with ¢(0,z¢,u) = z¢. Although most of our results remain true (with
appropriate modifications) for more general systems of the type z(t) = X (z(t), u(t)),
(2.1) is a particularly nice and popular class of nonlinear control systems, because the
controls appear linearly, compare e.g. Isidori (1989) and Nijmeijer and van der Schaft
(1990) for basic concepts and results in nonlinear systems theory.

Because the admissible control functions in (2.1) are time dependent, for each u € U
the vector field on the right hand side is time dependent, and thus a flow for these
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systems has to be constructed over the space if x M. This can be done as follows: On
U consider the natural shift defined by

(2.2) :RxU—-U, Bu()y=ult+:).

Then 6 defines a continuous dynamical system on I, if we equip &/ with the weak®
topology of L*(R,R™) = (LI(R,R”‘))*. U with this topology is compact and metriz-
able. Note that the weak* topology on If is well suited for the study of (2.1), because
convergence of 4, — u in I implies uniform convergence of @(+, Zg, un) — (-, Zo,u) in
M on compact time intervals, compare Colonius and Kliemann (1990%) for these facts
and a more detailed study of the shift space (U, 6).

To the control system (2.1) we associate a control flow in the following manner:

(2.3) S RxUXM-UxM, ¢lu,z)= 6w, o, z,u)),

where 8, is the shift on U, and (-, z,u) denotes the solution of equation (2.1) as
above. ¢ is a skew product flow on U x M, because ¢y, = ¢: 0 ¢, and (t + s, z,u) =
¢ (t,¢(s,z,u),85u). Infact, ¢ defines a continuous dynamical system on I/ x M, compare
Lemma 3.4 in Colonius and Kliemann (1990%).

If U carries a @-invariant probability measure, then (2.3) can be interpreted as a
stochastic flow, see Colonius and Kliemann (1990°) for the set up and some results on
ergodic theory of control and stochastic flows, which can be proved in this unifying
framework.

In this paper we are interested in linearization techniques for nonlinear control sys-
tems. Linearizing the system (2.1) with respect to the state variable z, we obtain a
system defined on the tangent bundle TM:

(T2)(t) = TXo(Tx) + 3wl TX(T2), tER,

=1

(Tz)(0) = (zo,v0) € Tz, M, the tangent space at 29 € M,

(2.4)

where for a smooth vectorfield X on M its linearization is denoted by TX = (X, DX).

d
Locally this means: If X; = 3 ay; (.7:)-353-:, denote the Jacobian of the coeflicient func-
k=1

tions by 4;(z) = (25£2). Then TX;(z,v) = (a;(¢), A;()v), and (2.4) is a pair of

coupled differential equations, given locally by

() = ag(z) + D _wi(t)ai(z), 2(0) = 2o,
(2.5) =
o(t) = Ag(z)v + Y _ ui(t)4i(z)y, v(0) = v,

i==]

Note that we have linearized (2.1) only with respect to the state z € M, and not with
respect to the control u € U. (Linearization with respect to z and u is common practice
in the control theory literature, but we are interested in results that are global in u € U{.)
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In particular, if z(t) = z¢ € M is a rest point for each vectorfield X;, 7 =0,...,m, then
the linearized equation is a bilinear control system. (Linearization with respect to
and u leads to linear control systems, which for unbounded control values u € R™ can
be treated by methods from linear algebra.)

The system (2.4) induces a control system on the projective bundle PM, given by

(Px:}(i’) = PXo(Pz) + zm: ui(H)PX:(Pz), té€R,

i=1

(Pz)(0) = (z0,50) € P.,M, the projective space at =y € M,

(2.6)

where PX is the projection of a vector field T'X on TM onto PM, i.e. the PX; read
locally

(2.)  PXj(z,s) = (a;{z), h(4;(z),5)), h(4;(z),s) = [4;(z) - sTAj(z)s-id] s.

Here T denote transposition, and id is the (dx d) identity matrix. The trajectories of the
control system (2.4) will be denoted by T'¢(-, T'z, u), and those of (2.6) by Py(-, Pz, u).

Note that using the same construction, it is also possible to lift the system (2.1)
to FM, the flag manifold over M, G¢(M), the frame bundle over M, or O(M), the
orthonormal frame bundle over M (see e.g. San Martin and Arnold (1986) or San
Martin (1986)), but we will not make explicit use of these systems in this paper.

Just as the underlying control system (2.1), the linearized system (2.4) on TM and
the projected system (2.6) on PM give rise to associated flows

(2.8) To): RxUXTM - UXxTM, Té¢(u,Txz)=(6u,Te(t,Tz,u)),
(2.9) Po: RxUXPM ->UxPM, P¢(u,Pzx)=(6u,Py(t,Pz,u)),

which are also skew product flows, defining continuous dynamical systems on i x TM
(and U x PM, respectively). In this paper we will be concerned mainly with the Lya-
punov exponents of (2.8) and their characterization via (2.9). This analysis will require
some characterizations of the flows T'¢ and P4 in terms of concepts from the theory of
dynamical systems. These results are presented in the next section.

3. _Conirol Sets, Chain Control Sets, and Subbundle Decompositions

Consider again the underlying control system on the d-dimensional manifold M
m
(2.1) 2(t) = Xo (z(2)) + Z ui(t)Xi(z(t)), teR, z(0)==z0€ M,
i=1

with « € Y. In order to avoid degenerate situations, we will assume throughout the rest
of this paper the following integrability condition

(H) dimﬁA{Xo-{-Zu,-X,-; (u;) eUlz)=d forallze M,
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where for a set A’ of vectorfields on M, LA{X} denotes the Lie algebra generated by
X. Associated with (2.1) are the positive semigroup S+, the negative semigroup S,
and the group G of solution diffeomorphisms generated by piecewise constant controls:
Denote by N = {Xo+ 3" u;X;; (u;) € U} the admissible (time independent) right hand
sides of (2.1), and define

* = {exp(tnYn) o -oexp(tiY1); i€N, t; 20, i=1,...,n € N},

(3.1)
§™ = {exp(tn¥n)o---oexp(t,Y1); Vi€ N, t; <0, i=1,...,n €N},
G = {exp(tnYn)o---oexp(t1Y1); i€ N, t; €R, 1 =1,...,n € N}.

The subsets of §*, §7, G with Z [ti} <t are denoted by SQ, 824 G<t, and similarly

for 3 |t:| =t by S, 87, G.. Under Hypothesis (H) we have for the system (2.1):

3.1. LEMMA.

(1) G acts transitively on M, i.e. Gz = M for allz € M.
(i) int %,z # ¢, and intSZ,z # ¢ for all t > 0, ie. the reachable set up to time
t > 0 (and the controllable set up to time —t < 0) has nonvoid interior on M for

all z € M. This property is often called ‘local accessibility’ in the control theory
literature.

(i11) The (positive) orbits up to time t > 0 on M, defined by

O"S't(a:) = {y € M; thereexist u € Y and 0 < s <t with y = ¢(s,,u)}

have nonvoid interior in M, and §%,z = Ok (z) forallt > 0, allz € M. Similarly
for the negative orbits OZ,(z).

For a proof see e.g. Isidori (1989) and Nijmeijer and van der Schaft (1990).

Lemma 3.1 shows that under integrability of N the manifold M is the state space of
appropriate dimension for the system (2.1), if (H) holds. This does not imply, however,
that {2.1) is completely controllable on M. We define the subsets, in which (2.1) is
controllable, as follows:

3.2. DEFINITION: A set D C M is called a control set of (2.1), if

(i) for every z € D there exists u € U such that (¢, z,u) C D forall t > 0,
(ii) for all z € D we have Ot(z) D D,
(iii) D is maximal with respect to the properties (i) and (ii).
If, furthermore, D = O+ (z) for all z € D, then D is called an invariant control set.

We are, in particular, interested in control sets with nonvoid interior, and for these
sets the following results hold:
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3.3. LEMMA.

(i) Let D C M be a control set with int D # ¢. Then
(a) for all z € D, y € int D there exist t > 0 and g € ST, such that y = gz,
(b) int D = D.
(ii) (a) Control sets are pairwise disjoint, and in general neither open nor closed.
A control set with nonvoid interior is closed iff it is invariant.
(b) If M is compact, then there exist at least one invariant and one open control
set in M, the invariant control sets have nonvoid interior, i.e. are closed.

A proof of these facts can be found e.g. in Colonius and Kliemann (1989).
The control sets of (2.1) are ordered in the following way: Let Dy and D; be control
sets, then we define

(3.2) D, < D, if there exist z € D; and y € D, with y € O+(z).

The relation (3.2) defines an order on the control sets, where the closed (i.e. invariant)
control sets are maximal elements of <, the open control sets are minimal elements.
If M is compact, then the maximal (minimal) elements are exactly the closed (open)
control sets, compare Colonius and Kliemann (1990°), Lemma 3.11.

For this paper, we are interested in control sets (with nonvoid interior) mainly for
three reasons:

(i) Control sets D C M can be lifted to invariant sets D C U x M, and the flow ¢,
defined in (2.3), restricted to D is a dynamical system with several interesting
properties.

(ii) Over the control sets D C M, the control structure of the system on the pro-
jective bundle PM (compare (2.6)) can be described, which allows us to give a
characterization of the Lyapunov exponents.

(iii) The control sets pD C PM of (2.6) can be lifted to & x PM, where an ergodic
theory for Lyapunov exponents can be developed.

As a next step, we will therefore study the lifts of control sets and the control structure
of (2.6).
For a control set D C M, with int D # ¢, we define its lift to U x M by

(3.3) D= ct{(u,z) €U x M; ¢(t,z,u) € int D for all t € R},

where the closure is taken with respect to the weak* topology in U and the given
topology on M. Since D is a closed, ¢-invariant set, we can consider the dynamical
system (D, ¢|p). Using this flow, control properties of (2.1) can be described in terms of
concepts from the theory of dynamical systems, such as topological mixing, topological
transitivity, chaos, compare Colonius and Kliemann (1990°%), Section 3.

In order to analyze the linearized systems (2.4) and (2.6}, we will need a condition
similar to (H) for the system on PM:

(PH)  dimLA{PXo+ Y wiPXi; (ui) € U}(z,v) = 2d -1 for all (z,v) € PM.
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Compare San Martin and Arnold (1986) for a detailed discussion of Assumption (PH)

and its consequences.

3.4. REMARK: If C C M is an invariant conirol set of (2.1), then, under (H), int C # ¢.
Hence, under (PH), all the consequences of the Lernmas 3.1 and 3.3 hold for the control
sets of (2.6) on the state space PintC, the projective bundle over the manifold intC C M.
In particular, if the system (2.1) is completely controllable on M, then C = intC = M,
and we can consider the system on PM. This is the case studied by San Martin and
Arnold (1986) and by San Martin (1986) in a stochastic context.

The following theorem is a slight generalization of Theorem 3.10 in Colonius and
Kliemann (1990%), using the ideas in San Martin and Arnold (1986) and San Martin
(1986). It shows that over the invariant control sets of (2.1) the control structure of
(2.6) is uniform:

3.5. THEOREM. Assume that (PH) holds, and let C' be a compact invariant control set
of (2.1). Then it holds for the projected system (2.6) on PintC:

(1) There are k control sets pD; with nonvoid interior in PintC and 1 € k < d; we
call these the main control sets of the system.

(ii) The main control sets are linearly ordered, where the order is defined as in (3.2),
where OF now denotes the positive orbit of (2.6). We enumerate the sets such
that pDy, <p pDy <p -+ <p pDy. In particular, pDy is the unique invariant
control set over C.

A more explicit description of the control sets p); is given in Section 5. for systems
linearized around a rest point.

Now consider the linearized system (2.4) on the tangent bundle TM. We can extend,
at least over invariant control sets C of (2.1), the pD; to +D; C TM by taking in each
T, M the corresponding subspaces over P, D; := pD;lr, ar. For a control set p.D in PM,
and its extension 7D in TM define its lift to i x PM (and U x TM respectively) to be

(3.4) pD = ct{(u,Pz); Py(t, Pr,u) € int pD for all t € R},

and similarly for 7D. The question arises, whether the 1D’s define an invariant sub-
bundle decomposition of (U x TM,T¢). Unfortunately, this is in general not true, as
the following simple example shows:
3.6. EXAMPLE:

Consider the following: 2-dimensional system, linearized around a rest point (hence
we give only the second component of (2.5))

(3.5) B(8) = (é g) o() + u1(8) (2 é) o(#) + ua(t) (g 2) ot)

with U = [0, %] x [1,2]. To describe the control sets of the projected system on P,
parametrize P via the angle as P = {; 5* < 7 < 7}. Then the set pD; = (-%,0)
is the open main control set, and pDy = [i’-, 12’-] is the closed main control set. These
sets are connected by a continuum of control sets (with empty interior), which are rest

points on P of the equation corresponding to the controls u;(t) =0, uz(t) = 1, compare
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Example 5.8 in Colonius and Kliemann (1990%). Now note that for constant controls

u1{t) = a, ux(t) = B the eigenvalues of the systems matrix (‘]:; g) are given by

R N R

and we have one dimensional (real) eigenspaces for all (a,f) € U, if a # 0 and B # 1.
For @ = 0, # = 1 the (generalized) eigenspace is R%. Therefore the sets vD; and 7D,
do not define a subbundle decomposition of (I x TM,T¢), because subbundles are
necessarily constant dimensional.

In order to obtain the finest subbundle decomposition of (U x T'M, T'¢), which respects
the control structure of the system (2.6} on PM, we have to introduce generalizations
of control sets, called chain control sets:

3.7. DEFINITION: A set E C M is called a chain control set of the system (2.1) if

(i) for every = € E there exists u € U such that ¢(¢,z,u) € E for all t €R,

(ii) for all z,y € E, all ¢ > 0, and all T > 0 there are k € N, z9,...,zx € M,
Ugy ..., uk—1 €U and tg,..., 81 > T with z¢ =z, 74 = y and
d{p(ti,zi,ui),ziy1) < € for 1 = 1,...,k — 1. Here d denotes the Riemannian
metric on M.

(iii) E is maximal with respect to these properties.

3.8. LEMMA.

(i) Chain control sets are closed, connected, and pairwise disjoint.
(i) For every control set D C M there exists a unique chain control set E with
D CE.
(iii) Chain control sets are ordered by the relation

(3.6) E; < E; if there exists (u,z) € U x M with w*(u,z) C E;
and w(u,z) C Ej,

where w*(u, z) denotes the a-limit set of the trajectory (-, z,u), and w(u, ) its
w-limit set.

For a proof compare Colonius and Kliemann (1990%).

3.9. REMARK: While each control set is contained in some chain control set, it is
possible that one chain control set may contain several control sets (even with nonvoid
interior), compare e.g. Example 3.6, where E = P! is the chain control set. Also points
that are in no control set, may be contained in a chain control set. Control sets are chain
control sets, if they satisfy a certain isolation property, see the discussion in Colonius
and Kliemann (1990%), Section 4.

Define the lift of a chain coatrol set E C M of (2.1) toUf X M by

(3.7) £ ={(u,z) €U x M; p(t,z,u) € E for all t € R}.
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Similarly for the projected linearized system (2.6) on PM we can define its chain control
sets, which we denote by pE C PM. pE can be lifted to & x PM as above, and we
define the extensions to U« x TM by

(3.8) TE€={(u,Tx)ceU xTM; (u,Tz)¢ Z => Po(t,Tz,u) € pE for all t € R},

where Z is the zero section of the bundle M. The following theorem gives the desired
decomposition result:

3.10. THEOREM. Assume that M is compact, and that M is the chain control set of
(2.1).
(1) The control system (2.6) on PM has £ chain control sets pE;,...,pE; with
1 < ¢ < d=dimM. The order defined in (3.6) is a linear order, and we
enumerate the sets such that pE; <p -+ <p pEs.
(ii) The lifts 7&;, i = 1,...,£ are invariant subbundles of U x TM withUd x TM =

7€ @+ O &
(i) {p&:,...,pEe} is the (unique) finest Morse decomposition of the flow (U X
PM,Pé).

A proof of these results can be found in Colonius and Kliemann (1990%), Theorem
4.9.

Combining Theorems 3.5 and 3.10 we obtain the following

3.11. COROLLARY. Assume that (PH) holds, and let C be a compact, invariant control
set of (2.1). Then we have for the projected system (2.6) on PintC: Every chain control
set pE; contains a main control set pD;. In particular, 1 ¢ <k < d andint pE; # ¢
forall j =1,...,4.

The proof is an obvious generalization of Theorem 5.5 in Colonius and Kliemann
(1990%). A more precise characterization of the p.D; and pE; in terms of eigenspaces of
matrices in the systems group of the linearized system will be given in Section 5.

Using the preparatory material in this section, we now turn to the discussion of the
Lyapunov exponents of (2.1) and their characterization via ergodic theory.

4. FErgodic Theory for Lyapunov Exponents.

Counsider again the nonlinear conirol system

(1) 6= Xo (=) + 3 u)Xi (2(0)), tER, o(0)=s0€ M

i=1

and the induced systems (2.4) on TM, and (2.6) on PM. Again in order to avoid
degenerate situations, we will assume that the Lie algebra condition (PH) on PM holds.
Recall from Section 2. that the linearized flow T'¢ on U x TM is of the form T¢ =
(¢, D), where Do is a cocycle associated with .
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The (forward) Lyapunov exponent of the control flow ¢ on U x M at {(u,z) €U X M
in the direction of v € T M, v 5 0, is then defined by

(4.1) Mu, z,v) = limsup -1— log | De(t, z, u)vl).
t—oo

Sumla.rly, backward Lyapunov exponents A~ (u, z,v) for t — —oo are defined. Note that,
in general, the following facts hold for Lyapunov exponents (even of linear systems):
Mu,z,v) # A~ (u,z,v), the im sup is not a lim, and (exponential) stability of the
system does not necessarily imply stability of small perturbations of the vectorfield, see
e.g. Cesari (1971) or Hahn (1967) for examples in the context of ordinary differential
equations.

In order that these three properties do hold, Lyapunov has introduced the concept
of regularity. This concept is best expressed in Oselede¢ multiplicative ergodic theorem
(1968), where stationarity of the underlying flow ¢ (i.e. the existence of a ¢-invariant
probability measure P) is assumed, together with a certain integrability condition on
the cocycle. In this case, there is a ¢- invariant set of full P-measure, such that all points
in this set are Lyapunov regular, compare e.g. Ruelle (1979) for a presentation of this
theory, which is one cornerstone in modern entropy theory (cp. Maiié (1987)), ergodic
and stability theory of stochastic systems {cp. Carverhill (1985)), Arnold and Wihstutz
(1986)), stochastic bifurcation theory (cp. Arnold and Boxler (1989)), and other areas,
as also demonstrated by this proceedings volume. In the stochastic case, where the flow
¢ is induced by a nondegenerate diffusion process (over the Wiener space (2, F, P))
with invariant probability measure u on M, it can actually be shown, for all v fixed,
that the Lyapunov exponents are P ® u-almost surely constant, i.e. with probability
one only one Lyapunov exponent will be realized, compare Arnold et al. (1986) for the
linear case, and San Martin and Arnold (1986) for the nonlinear situation.

For control systems, the situation is completely different, because one always has to
deal with nonregular points: Let the vector fields Xg, ..., Xm in {2.1) be linear, i.e. the
system is of the form

(4.2) #(t) = Agz(t) + Z ui(t)Aiz(t)

with non zero constant d X d matrices Ag... Ap, Let the space of admissible control
values U C R™ be the product of intervals [j,i.e. U = X I;, such that at least one I has

nonvoid interior. Then there exists an admissible contzol function u(t) = (u;(¥)) € U,

such that the matrix function 4 + Z u;(t)A4; is not Lyapunov regular, compare e.g.
=1
Cesari (1971) or Hahn (1967). Since we are interested in the entire Lyapunov spectrum

for all (u,z,v) € U x TM, v # 0, we cannot use versions of Oseledec’s theorem. In the
following, we will relate the Lyapunov spectrum of (2.1}

(4.3) X = {Mu,z,v); (u,z,v) €U x TM, v #0}

to the control sets of the projected, linearized system (2.6) on PM via ergodic theory.
More detailed information about the linear case (4.2) is presented in Section 5.
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Our starting point is the following formula for the Lyapunov exponents

t

(4.4) Mu, z,v) = lim sup % / g (u(1),Pe(r,Pz,u))dr,
t—o0
0

where again Po(-,Pz,u) denotes the solution of the projected system (2.6) on PM,
with initial value Pp(0,Pz,u) = (z,v) € PM, ie. v € P, M. Note that A\(u,z,av) =
A(u,z,v) for all @ € R, @ # 0, and hence it suffices to consider (4.4) on U x PM. The
function ¢ is of the form

m

(4.5) g(w,2,v) = (v, VXo(2)) + ¥ uilv, VXi(2)),

1=1

where (-, -} denotes the (Riemannian) inner product on TM, and V is the Riemannian
covariant derivative (compare e.g. Baxendale (1986) for details).

From Formula (4.4) it is clear that the Lyapunov exponents are defined on the tail
of the trajectory (u(-),Pe(:,Pz,u)), therefore we first examine the w-limit sets of the
flow P on U x PM. In the following, we will assume that the manifold M is compact,
but our results generalize immediately to the case, where U{D, D is a control set of
(2.1)} is a bounded set in the manifold metric on M, compare Colonius and Kliemann
(1990°).

4.1. DEFINITION: Let (S, ¥) be a continuous dynamical system on a compact metric
space S. The w-limit set of z € S is defined as

w(z) := {y € S; there exists t; — oo in R with ¥(¢;,z) — y}.

For a control set pD of (2.6), not necessarily with nonvoid interior, we define its
positive lift to U x PM as

(4.6) pDT := ct{(u,Pz) €U x PM; Pyp(t,Pz,u) € pD for all t > 0}.

Under our assumption that M is compact, we obtain the following properties of the
limit sets of P¢:

4.2. LEMMA.

(i) For all (u,Pz) € U x PM the limit sets w(u,Pz) are connected, compact, and

P¢-invariant, hence they contain minimal P¢-invariant sets.

(i1) For all (u,Pz) € U x PM there exists a chain control set pE of (2.6) such that
w(u,Pz) C p€, in particular mppyw(u,Pz) C pE.

(i) For all (u,Pz) € UxPM there exists a control set p.D of (2.6) such that w(u, Pz)N
pD*t # ¢, in particular mppw(u,Pz) N pD # ¢.

(iv) Let W C U x PM be a minimal P¢-invariant set, then there exists a control set
pD of (2.6) such that W C pD™.

(v) Let pD C PM be a control set of (2.6), then for any Py € pD there exists
(u,Pz) € U x PM such that Py € nppw(u,Pz).

(vi) The set {(u,z) € U x M; mpyw(u,z) C intC for some invariant control set C} is
open and dense in U x M.
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The proof of (i)~(v) can be found in Colonius and Kliemann (1990%, Lemma 5.3), and
(vi) is proved in Colonius and Kliemann (1991¢},

Next we construct and characterize P¢-invariant probability measures via the Krylov-
Bogolyubov construction: Let C(Z x PM,R) denote the continuous functions from
U x PM into R. For (u,Pz) € U x PM consider the Cesaro limits for time sequences
tr — o

tz
1
4.7) lim — f F(0,u,Po(r,Pz,u))dr = ] F(uv,y)diiyps
ta—roc Ly !
0 UxPM

for all F € C(UxPM,R). We will use the following notations for a continuous dynamical
system (S, ¥):

ML set of T-invariant probability measures for ¢ > 0,
¥ p

(4.8) % = {s € S; the Krylov-Bogolyubov measure y, is independent of the

sequence t; and ergodic},
¥ = {5 €Zy; s €supp p,}.

4.3. REMARK: The following properties of ¥-invariant measures are well known for
compact spaces S, compare e.g. Mané (1987), Chapter IL.6:
(i) T3 # 4, and £ has total measure with respect to M3, i.e. u(I§)° =0 for all
p € M3, (Here A® denotes the complement of a set A.)
(ii) Each g € M} has an ergodic decomposition: Each F' € L!(S, 1) is p,-integrable

for p-almost all s € Tf a.ndf(de,u,) du= [ F dp.
"1 S

In Crauel (1986) a characterization of (stochastic) Lyapunov exponents in terms of
invariant measures was given for linear stochastic systems. We will now generalize these
results to nonlinear control systems and, with the help.of Lemma 4.2, provide additional
insight into the support of invariant measures, and thus into the structure of realizable
Lyapunov exponents. In order to use the Krylov- Bogolyubov measures of the control
flow P¢, we first have to lift the function ¢: U x PM — R, defined in (4.5) to a function
on U x PM: Define for (u,Pz) e U x PM

h
(4.9) Q(u,Pz) = lixglienf -;;— / g (u(71),Po(r,Pz,u)) dr.
°

4.4, LEMMA.

(i) The function Q: U x PM — R is measurable and bounded.
(ii) For all (u,Pz) €U xPM

]

t
ﬁmsup}—/q(u(‘r}, Po(r,Pz,u))dr =Bmsup-1—/Q(P¢,(ﬁ, Pz))dr.
t—oo 1 2 t—oo U 4
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PROOF:

(i) Boundedness of @ follows from the boundedness of ¢ on the compact space U x
PM. Furthermore, @ is the “lim inf” of continuous functions

h
(u,Pz) — } [ ¢(u(7),Pe(r,Pz,u)) dr and therefore is measurable.
0

T T
(i) I suffices to show that for all T > 0 we have [ ¢ dr = [ Q dr: By definition it
0 0

holds that

T T . b
/Q (Pé,(u,Pz))dr = [E%lzionf i / q(u(r + o), Po(r + 0,Pz,u)) dodr,
o 0 0

and the function ¢ = g (u(t),Py(t, Pz, u)) is Lebesgue-integrable on [0, T]. There-
h

fore, for almost all + € [0,T] the limit I,xﬁlé + [a(u(r +0),Pe(r + 0,Pz,u)) do
0

exists and equals g (u(1), Pyp(7,Pz,u)), which proves the lemma.

4.5. THEOREM. For each (u,Pz) € U x PM there exists an invariant probability mea-
sure py pr with supp p, p; C w(u,Pz) such that
@ Mwz,v)= [ Qu,Py)dpup.= [ Mw,Py)dpyp.,
w(u,Pxz) w(u,Pz)
(ii) there exists a chain control set p E of (2.6) such that for all (w,Py) € supp pu,p:
we have Py(t,Py,w) € pE Nwppw(u,Pz) for allt > 0,
(iii) for gy pr-almost all (w, Py) there exists a control set pD of (2.6) with Po(t, Py, w) €
pD N mppyw(u,Pz) for all t > 0,
(iv) if pupz is ergodic, then the control set pD in (iii) is unique, and A(w,Py) is
constant for p, p,- almost all (w,Py) €U x PM.

PRrROOF:

(i) This follows directly from Lemma 4.4 and Birkhoff’s ergodic theorem.
(ii) is an immediate consequence of Lemma 4.2(ii).
(iii) follows from Lemma 4.2(iii) and the fact that for all (u,Pz) € « x PM there
exists a set I' C supp py pr With gy p.I' = 1, such that for all (w,Py) €I there
is a control set pD C PM with Pp(t,Py,w) C pD N wppyw(u,Pz) forall t > 0,
compare Theorem 5.5(ii) in Colonius and Kliemann (1990%).
(iv) This is implied by Lemma. 4.2(iv), and again Birkhoff’s ergodic theorem.

The following result is now a direct consequence of Theorem 4.5 and Remark 4.3.
In particular, it shows that all Lyapunov exponents can be obtained as integrals over
Lyapunov exponents of regular elements.
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4.6. COROLLARY.
1 t
(i) For all (u,Pz) € 3_p, we have A(u,Pz) = Jim 1Q(r)dr = Jim 3 [a(r)dr =
0 - 0

Mw,Py) for py po-almost all (w,Py).
(i1) For all (v,Pz) € U x PM it holds that

A(u,Pz) = / A(w, Py)dpy,pz,
w(u,Pz)

where
t

[ sri.

H

Aw,Py) = lim

o | bt

Next we define the maximal and minimal Lyapunov exponent of the control system
(2.1), which are realizable over a given set pA C PM:

k(pA) = sup{\(u,Pz); Py(t,Pz,u) € pA for all t > 0}

4.10
(410) &*(pA) = inf{\(u,Pz); Pyp(t,Pz,u) € pA forall t > 0}.

4.7. THEOREM. Let p AT = cf{(u,Pz) € U x PM; Pyp(t,Pz,u) € pA forall t > 0}
denote the positive lift of pA C PM tolU x PM, and assume p A* # ¢. Then there exist

ergodic P¢-invariant measures ups and ph, with supp ppa C pAY and supp up, C
p At such that

K’(PA) = f Q(UJ, Py)d.uPA}
UxPM

k*(pA) = f Q(w,Py)dpp 4-
UxPM

Furthermore, there are (u,Pz) € pA*, (u*,Pz*) € pA* such that pps = pup, and
Ppas = Huspge Where py p; and piy. p;» denote again Krylov-Bogolyubov measures
from (u,Pz) and from (u*,Pz*).

PRroOOF: Note first of all that, because p.AT is closed and positively P¢-invariant, we
have w(u,Pz) C pA* for all (u,Pz) € pAt. Hence, by Corollary 4.6.

k(pA) = sup / Qdu, pz; (u,Pz) € Zpy N pAt
rAt

Now the Krylov-Bogolyubov measures from points in X, are extremal points of the
convex set M','.'¢ (compare Mafié (1987), Section 11.2), hence the measures from points
in Zphy N pAT are extremal in {u € M;¢; supp p C p.AT}, which is a closed, convex
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set, hence there exist up4 and pp 4 as required. This proves the formula for £(pA), and
similarly for *(pA).
By Remark 4.3 we have [ Q dupa = [ (fQ dpwp:)dupa with (u,Pz) € T3,
rAt

pAt
almost surely with respect to up 4. Because up4 is ergodic, [ Q duy p: is up 4-almost ev-
erywhere constant, i.e. [ Q dups = [ Q@ dpy p: for upa-almost all (u, Pz), which proves
the other claim of the theorem.

4.8. REMARK: (On time reversal and backward Lyapunov exponents.)
~Consider now the control system (2.1) on the entire time axis R. Its associated time
reversed system reads with z*(t) = z(—1£):

(4.11) 3*(t) = —Xo (z*(t)) = > ui(t)X: (z"(t)), t € R, 2(0) = 20 € M.

=1

Define the backward Lyapunov exponents of (2.1) by

(4.12) A" (u,z,v) = limsup ! log || De(t, z,u)vl.
t

— — ) t

Note that

i

A\*(u,Pz) = liminf % / g* (u(r), Po*(r, Pz, u)) dr
¢

{
= lifm igf 'i— ] —q (u(7),Po*(r,Pz,u)) dr
0

t

= — limsup : /q (u(7), Pe(r,Pz,u)) dr,
t

——co
0

where ¢* and Py* correspond to the time reversed system (4.11). In particular, if the
lim inf in the definition of A*(u,Pz) is a limit, then —A*(u, Pz) is a backward Lyapunov
exponent of (2.1). Now for the time reversed system {4.11) all results developed above
hold with the obvious changes, and the assumption (PH) holds for (4.11) iff it holds for
(2.1).

We obtain from an extension of Birkhoff’s ergodic theorem (cp. Maiié (1987), Corol-
lary I1.1.4): If the Krylov-Bogolyubov measure p, p; is ergodic, then

i t
Mw,Py) = Jim ] Q(r)dr = Jim 1 / Q(~r)dr = A~(w, Py)
0 0

for pyps-almost all (w,Py). Therefore, if (u,Pz) € supp fypz, then Aly,Pz) =
A~(u,Pz), which extends the results of Corollary 4.6 and Theorem 4.7. Note, how-
ever, that if A(u,z,v) = A~ (u,z,v) for some v € T, M, then a basis {v1,...,v4} in
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T, M need not exist with A(u,z,v;) = A (u,z,v;) for all 1 = 1,...,d, i.e. the point
(u,z) € U x M need not be Lyapunov regular for the flow ¢.
4.9. REMARK: The connection of our results obtained so far with the multiplicative
ergodic theorem of Oseledeé is as follows: Consider the point (u,Pz) € U x PM and
the Krylov-Bogolyubov measure uy pz. The projection of uyp; onto U X M is a ¢-
invariant measure, denoted by py .. According to Oseledeé’s theorem, there exists a
set T' C supp pa,z with gy I’ = 1, such that all points in T' are Lyapunov regular.
(Note that the set I' may be very thin from a topological point of view, compare e.g.
Maiié (1987), p. 264.) Theorem 4.5 and Corollary 4.6 describe the way, in which the
Lyapunov exponents A(u,z,v) can be obtained from the finite Lyapunov spectrum of
regular elements of the flow (U X M, ¢, piu ). In particular, if uy p; is ergodic, then py :
is ergodic, and hence the set {Mw,y,v); (w,y) € I'} consists of at most d numbers,
which are also the Lyapunov spectrum of (u, r).

If the measure p, , is not ergodic, then the (finitely many) numbers {A(u,z,v); v #
0} are p, pz-averages over the Lyapunov spectrum of I', which now may depend on
(w,y) €T.

We are now ready to apply our results to the analysis of the Liyapunov spectrum
(4.3) X = {Mu,z,v); (u,z,v) € U x TM, v # 0}

of the control system (2.1). In control theory, one considers the dynamics, i.e. the
vector fields Xg,...,Xm, and the set of control values, i.e. U C R™, as given. The
problem then is to find an admissible control function u € U, such that a certain goal
(like controllability, stabilization, etc.) is achieved from an initial point z € M. The
goal in our context is to describe the Lyapunov exponents that can be realized from a
point z € M using all u € I{. The standing assumption is still that (PH) holds, and
that M is compact. We start analyzing the Lyapunov spectrum of (2.1) by considering
it from the point of view of chain control sets.
Let E C M be a chain control set of (2.1) and denote

(4.13) PE = {PE; pE is a chain control set of (2.6) and xypE C E}.
Define the corresponding spectrum over £ as

(4.14) X(E) = {Mu,z,v); (u,z) €EECU XM, ve T, M}

For a chain control set pE C PM of (2.6) denote its spectral interval by
(4.15) I(pE) = [x*(p E), s(p B,

where k and k* are defined in (4.10). We have the following result:
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4.10. THEOREM.
(i) X(B) CU{I(pE); pE € PE} =: I(E).

(ii) ¥ C U{I(E); E is a chain control set of (2.1}}.

(iii) For a chain control set E C M of (2.1), let “<p” be the order in PE as defined
in (3.6). Then for two sets pEy, pE; in PE we have: pE; <p pE; implies
I(pE}) < I(pE,;), in the sense that k*(pE1) < 8*(pE2) and k(pE:) £ k(pEs).

¢

(iv) In particular, if M is the chain control set of (2.1), then X C |J I(pE;), where
=1
the pE; are as in Theorem 3.10.

PRrOOF:

(i) Denote by m: PM — M the projective bundle over M, and note that (u,z) € £
implies Py (¢,(z,v),u) € #~'[E] for all t € R, all v € P, M. By Lemma 4.2(ii)
we therefore have that w(u,z,v) C p€ for some chain control set pE in PE.
Theorem 4.5(1) now says that A(u,z,v) € I(pE).

(il) For (u,z) € U x M the w-limit set w(u, z) is contained in some lifted chain control
set £ and myw(u,z) C E by Lemma 4.2(i1}. Hence the proof goes through as in
(1).

(i), (12r} 'Ib‘his follows from Theorem 3.10 and its proof in Colonius and Kliemann
(1990°).

The spectral intervals I(p E) over different chain control sets need not be disjoint, as
the following simple example shows:

4.11. EXAMPLE:
Consider the following 2-dimensional linearized system

(4.16) 8(8) = wi(t) (g ‘j) o(£) + ua () (g é) o(t) + us(t) (2 g) o(t)

with U = [0, 2] x [%, 1] X [—%, 1] . The control sets of the projected system on the projective
space P in R? are given by

. 1
pD1=?{P{<vl>eR2; vgzavl,a€<‘-\/§;— “)}:
Uy 2
L1 2 1
pD2 = Tp Vg cR y Y2 = avy, a € "2—1\/5 )

where mp denotes the natural identification of points in R? as subspaces, i.e. as elements
in P. The chain control sets are

pEy = pD;, pEy=pDy,

compare Colonius and Kliemann (1990°, Theorem 3.16) for a general technique to com-
pute control sets and chain control sets for systems with 1-dimensional state space, and
Colonius and Kliemann (1991%) for the details on this example.



349

Y1 ’lf.g) the possible right hand sides of
uz Uy

(4.16). Let A;(u) and A2(u) be the (real parts of the) eigenvalues of A(u) with Aj(u) <
A2(u). Then {Ai(u), v € U} = [~1,2] and {Az(u); u € U} = [},3]. Since these sets
are contained in the spectral intervals over pE; and pE;, we obtain I(pEy) D [—~1, %]
and I(pE;) D [4,3], in particuler I{(pE;) and I(p E;) overlap in an entire interval.

Theorem 4.10 says that, in order to find the entire Lyapunov spectrum X of a nonlin-
ear control system (2.1), one only has to consider the spectrum over the chain control
sets E of (2.1). In particular, take any z € M and any chain control set E C M with
O+Hz)NE = ¢. Then {A(u,z,v); ue U, ve T, M}NI(E) # ¢, ie. some Lyapunov
exponent in I{E) can be realized from z € M, if E can approximately be reached from
z. A similar statement holds for {A(u,z,v); v € U} with given (z,v) € P. M, with
respect to reachability in the projected system (2.6). This, of course, does not mean
that all Lyapunov exponents in I(E) can be realized from z € M, if Ot(z) N E # ¢,
compare e.g. Colonius and Kliemann (1991%) for a counter example. However, the con-
trol structure of (2.1) and (2.6) gives more information on the Lyapunov exponents that
can be realized from z € M or Pz € P, M. This is the topic we will discuss throughout
the rest of this section.

Let D C M be a control set of (2.1) with int D # ¢, and denote

For constant v € U denote by A{u) =

(4.17) PD = {pD; pD is a control set of (2.6) with
mt pD % ¢ and mpplD C D} .

Define the spectrum over pD and D by

X (pD) = {Mu,z,v); (z,v) € pD and mpyw(u,z,v) CintD},

(4.18) 2(D)=U{Z(eD); oD € PD}.

4.12. THEOREM.

(i) The closure of the X(p D) are intervals. Furthermore, for all (z,v) € pD we have
{Mu,z,v); v € U} D X(pD), i.e. the Lyapunov exponents in X(pD) can be
realized from all (z,v) € pD.

(ii) For all (z,v) € O~ (pD) we have {A(u,z,v); u € U} D X(pD), where O~ (pD)
denotes the (open) negative orbit of the set pD for the control system (2.6).

(iii) Let “<p” be the order on the control sets of (2.6). If for some (z,v) € PM
we have Ot (z,v) N pD then {M(u,z,v); v € U} D U{X(pD"); intpD’ # ¢ and
pD <p pD'}. In particular for each (z,v) € PM there exists an invariant control
set pC C PM such that {\(u,z,v); v € U} D X(pC).

(iv) Forz € M let D C M be a control set with OF(z) D D, and int D # ¢. Then
{AMu,z,v); u €U, v € P,M} D X(D), and similarly for the results in (iii).

(v) The set {(u,z,v) €U x TM; M u,z,v) € X(pC) for some invariant control set
pC in PM} contains an open and dense subset of U x TM.
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PROOF:

(i) For the first claim see Colonius and Kliemann (1991%). Let A = A(u',z’,v') €
X(pD),i.e. (z',v") € int pD. Then, by Lemma 3.3(i), for each (z,v) € pD there
exists a control w € U such that Py(t', (z,v),w) = (z',v'). Define the composite
control w' as

, { w(t) for ¢t € [0,]
w'(t) =
u'(t—t'y fort e (t',o0).

Then A(w',z,v) = A(v', 2/, v").

(i) This is proved in the same manner as (i).

(i) The first statement follows from the definition of the order <p, compare Defini-
tion (3.2). The statement about invariant control sets follows from the discussion
after (3.2) and the fact that under (PH) invariant control sets of (2.6) always
have nonvoid interior, compare Lemma 3.3.

(iv) follows. directly from (i)-(iii).

(v) By Lemma 4.2(vi) and Theorem 4.5(v) the set {(u,z,v) € U x TM;
rpmw(u, z,v) C intpC, pC some invariant control set in PM} is open and dense.

For all these (u,z,v) one has A(u,z,v) € X{(pC).
| |

4.13. COROLLARY. Let C be a (compact) invariant control set of (2.1). Then for each
(z,v) € PintC, the projective bundle over int C, there exists a unique index 19 such that
io = min{s € {1...k}; OFz,v)NeD; # ¢}, where the pD; are defined in Theorem
3.5. Furthermore, {A(u,z,v); u € U} D X(pD;) for all i > 14, and T(pD;) < Z(pDj)
if ¢ £ j, with the order defined as in Theorem 4.10.

The proof follows directly from Theorem 3.5 and Theorem 4.12(iii).

Because all control sets are contained in some (unique) chain control set (compare
Lemma 3.8), each set X(pD) (and X(D)) is contained in some I(pE) (and X(E),
respectively). In particular, over an invariant control set C of (2.1), we have by Corollary
3.11 that each I(pE;), j = 1,...£ contains some X(pD;) for: =1...k.

As the result of our discussion we see that the entire Lyapunov spectrum of a nonlinear
control system (2.1) under Assumption (PH) can be found in spectral intervals over
the chain control sets of (2.6). By Theorem 4.7, the boundary points of these intervals
are themselves Lyapunov exponents, corresponding to some ergodic Krylov-Bogolyubov
measures of ({ x PM,P¢). On the other hand, the set of (u,z,v) € U x TM such that
A(u, z,v) is attained over some invariant control set pC in PM contains an open and
dense subset of Y x T'M.

Linearizations of nonlinear conirol systems around rest points lead to bilinear control
systems, as described in Section 2. For these systems, the picture is much more complete,
compare Colonius and Kliemann (1990¢, 1991%). In the next section, we will apply some
of our results to the study of typical problems in the systems theory of bilinear systems
(and linear feedback systems). A nonlinear example is considered in Section 6.
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5. Some Applications to Linear and Bilinear Systems.

Bilinear systems appear as linearization (with respect to the state variable) around
a rest point of the nonlinear control system (2.1). Also, as we will see below, they are
the feedback models of linear control systems. Lyapunov exponents of bilinear systems
indicate the stability, stabilizability, and robustness properties of linear systems.
Consider the bilinear control system with bounded controls

(5.1) z(t) = Agz(t) + Zm: ui(t)A;z(t), te€R, z(0)=zp€R?

i=1

where (u;) = u € U as defined in Section 2. The Ay,...,A; are given constant d x d-
matrices. (In Colonius and Kliemann (1990?), a more general system with bounded and
unbounded controls is treated.)

In linear systems theory for equations of the type

i(t) = Az(t) + Bu(t), y(t)=Cz(t), u(t)elU CR™

(with A dxd, Bdxm, Ckxd constant matrices), one is usually interested in a
feedback control u(t) = F(t)Cz(t) to achieve a certain goal, like stabilization. The
systems equation then reads

£(t) = Az(t) + BF(t)Cz(t)

which is a system of the form (5.1). If the feedback matrix F(f) can take any value
in the m x k-dimensional space, methods from linear algebra can be used to solve the
typical control problems, see e.g. Wonham (1979). If, however, the set of admissible
feedback values is bounded, nonlinear techniques, like e.g. the ones developed here, are
appropriate.

As in Section 2. we consider the projected system on the projective space P4~1 in
R4, and equation (2.7) reads now

(5.2) 5(t) = h(u(t), s(2)) = ho(s) + Y ui(t)hi(s)
=1

with k;(s) = (4; — sTA;s-Id)s, 7=0,...,m.
The Lyapunov exponents of (5.1) are for (u,z) € Y x R%, z #0

(5.3) A(u,z) = limsup % log |¢(t, z, u)|
t—co

t
= lim sup l/q(u(‘r),.sa('r,s,m)) dr, s= I ¢ pa-i,
t—oo t) {lz[l2

m
where |- | is any norm in RY, and ¢(u, s) = go(s) + 3 wi(t)gi(s), with g;(s) = sTA;s for
i=1

j=0,...,m.
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NOTATION: In this section we will use the variable z for the state of the bilinear system
(this was denoted by v in Section 2.}, (-, -, +) for the solution of {5.1) (which corresponds
to T in Section 2.), s and s{-,+,-) for the state on the projective space, and for the
solution of (5.2) respectively (which correspond to v € P, M and Py in Section 2.).
Furthermore, the projective space pd — 1 in R? will be denoted by P. These changes
are made so that we can use the usual notation in the literature for linear and bilinear
systems. Similarly, for control sets (and chain control sets) on P we will simply use D
instead of pD (and E instead of pE, respectively).

First of all, we will characterize the control sets and chain control sets of (5.2) more
precisely via generalized eigenspaces of elements in the systems semigroup. Denote
again by S the positive semigroup of (5.1) (compare (3.1)), and note that g € S* acts
on P in a natural way via s - T;Tigs' For ¢ € §* denote by u(g) € U a (not necessarily

unique) periodic control function, associated with g. For a main control set D of (5.2)
(i.e. a control set with nonvoid interior, compare Theorem 3.5) define

(5.4) D{(u(g)) = {z € P; s(t,z,u(g)) € D for all { € R}.

Then we have the following supplement to Theorems 3.5 and 3.10:

5.1. THEOREM. Assume that Assumption (H) holds for the system (5.2).

(i) For every g € intgS and every A € spec g there exists a main control set D C P
such that the (generalized) eigenspace E(g, A) satisfies P (E(g, A)) C int D; where
for a subspace X C RY its projection onto P is denoted by P(X). Furthermore,
the interior of the main control sets consists exactly of those elements x € P,
which are eigenvectors for a (real) eigenvalue of some g € int S™.

(ii) For every g € S* and every A € spec g there exists a main control set D with
P{E(g,\))ND # ¢, and for every main control set D and every g € ST there is
a A € spec g with P (E(g,))) N D # ¢.

(1ii) Foreveryg € intS™ and every main control set we have D (u(g)) = P (©AE(g,A)),
where the sum is taken over all A € spec g with P {E(g,A)) Cint D.
(iv) Let E be a chain control set of (5.2) and denote by £ its lift to U x P. Then
E=cl{(u(g),z) eU xP; g €int §* and = € P D; (u(g)) for i with D; C E}.
L]

The proof of this theorem can be found in Colonius and Kliemann (1990%), Theorem
3.10, Theorem 3.13, and Theorem 5.6. (Note that under Assumption (H) intgS # ¢.)
This theorem allows us to reduce the analysis of (main) control sets and chain control
sets to eigenspaces of elements in the systems semigroup, and it also implies that the
Lyapunov spectrum over the main control sets can be approximated by (real parts of)
the eigenvalues of the ¢ € int ST, i.e. by the Lyapunov exponents corresponding to
piecewise constant, periodic control functions. But the right hand side of (5.1) for
this class of controls is Lyapunov regular. We continue by stating some implications
of these facts for the stabilization of (5.1). We will be concerned here only with the
extremal Lyapunov exponents of (5.1), the complete picture is described in Colonius and
Kliemann (1991%), where also the existence of stabilizing feedback controls for bilinear
systems is considered.
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Denote, as in (4.18), by X(D) the Lyapunov spectrum over a main control set D of
(5.2). By Theorem 3.5 the main control sets of (5.2) are linearly ordered Dy < « -+ < Dy,
and by Lemma 3.3 we have: D; =: C~ is the open control set, Dy =: C is the closed,
invariant control set (with int C # ¢). It can actually be shown (compare Colonius
and Kliemann (1991%) that the spectral sets X(C) and X(C~) are intervals, and by
Theorem 4.7, their boundary points are Lyapunov exponents corresponding to ergodic,
invariant measures of the flow (;,3(¢,,u)) on U € P. Define the following extremal
Lyapunov exponents

(5.5) k=sup X(C), k=inf ¥(C), «*=infX(C7).

As the following result shows, these three exponents can be characterized as global
quantities of the control system (5.1), while sup X{C ™) has to be described through an
invariant set of the flow on i x P, compare again Colonius and Kliemann (1991%).

5.2. THEOREM. Assume Assumption (H) for the system (5.2).

(i) k= sup sup M(u,z)=sup sup A(u,z) = sup Mu,z) for all z # 0,
z€int C uveld z#0 ueld ucld

(ii) €= sup inf AMu,z) =sup inf A(u,z),
z#0 uEU

z€int ¢ vEU
A o |
() &= 8. o) =3 A

(iv) Foreache > 0 and allz € P, Z € int C, z* € C~ there exist g,§,¢* € int St
such that

Au(g)yz)>r—eg, Au(§),z)<ik+e Mu(g"),z") <" +e.

The proof of this theorem is contained in Sections 4. and 5. of Colonius and Kliemann
(19909).
5.3. REMARK:

(1) It follows from Theorem 5.2 that x* < & < . But the intervals ¥(C) and X (C ™)
can overlap, 1.e. K = inf X(C) < sup X(C ™) is possible, compare Example 4.11.

(ii) The growth rates x and & can be realized from each z # 0: For « this is Theorem
5.2(i), and for & the statement follows from Theorem 4.12 and Theorem 5.2(ii).
However, in general x* cannot be realized from z ¢ C~, compare Example 3.6.
Note that in this example we have only one chain control set £ = P, and thus
the only spectral interval over a chain control set is in this case I(P) = [s*,«],
I(P) being defined in (4.15). Therefore we see that the intervals of Lyapunov
exponents over chain control sets can be too big to characterize precisely the
stabilization behavior of (5.1). (Section 6. in Colonius and Kliemann (1990¢)
contains an example, where C N C~ # ¢, E = P, and x* can be realized only
fromz e C~.)

(iii) Theorem 5.2(iv) says, in particular, that there exist Lyapunov regular matrix
functions, whose Lyapunov exponents are arbitrarily close to the extremal expo-
nents & (or &, *). This means that small perturbations of these functions will
have the same stability behavior, compare Hahn (1967), Theorem 65.3.

As a consequence of Theorem 5.2 we obtain the following result on stabilization and
destabilization:
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5.4. COROLLARY.

(i) The system (5.1) is (exponentially) destabilizable via an open loop control in U
from some z 3 0 (and hence from all z # 0) iff & > 0.

(i) The system (5.1) is (exponentially) stabilizable via an open loop control in U
from all z # 0 iff & < 0, and from some z # 0 (and hence from all ¢ € C™) if
k* < 0.

(i11) The system (5.1} is (exponentially) stabilizable (or destabilizable) iff there exists
u € U with Ay + Zu;(t)A; Lyapunov regular such that £ = (Ag + Zu;($)A;) z is
exponentially stable (or unstable, respectively).

Note that this corollary applies immediately to the problem of (de-)stabilization of
linear systems via bounded, time varying output feedback.

It remains to compute the quantities x, &, x* from (5.5). In specific cases, this can
be done explicitly (compare e.g. the linear oscillator with controlled restoring force
in Section 6 of Colonius and Kliemann (1990%)), but in general one needs numerical
procedures to compute these numbers. The problem can actually be formulated as an
optimal control problem with infinite time, average cost criterion (compare Colonius
and Kliemann (1989)), for which algorithms are available.

5.5. REMARK: The problem of stabilization of bilinear (or, in general, of nonlinear)
control systems can also be approached via high gain techmiques, which require fast,
unbounded controls. Results in this direction have been obtained e.g. by Meerkov
(1980), Bellman et al. (1985, 1986), Knobloch (1988), Colonius and Kliemann (19902,
Section 7), or by Arnold et al. (1983) and Arnold (1989) in a stochastic context.

The remainder of this section is devoted to another important topic in systems theory,
namely robustness, which can be approached e.g. via Lyapunov exponents. Assume we
are given a linear control system

(5.6) #(t) = (Ao + A(t))z + Bu, teR, z(0)=azg€R,

where A(t) represents the uncertainty about some (or all) parameters of the given
systems matrix Ag. The problem is to find criteria, under which for all uncertainties
the system is stable (for B = 0) or stabilizable (e.g. via output feedback). We will
restrict ourselves here to the stability question (for stabilization criteria using Lyapunov
exponents see Colonius and Kliemann (1990/)).

More precisely, define the uncertainty range U, C R™ for p > 0 by

Up = {u € R™; Ju| < p},
where | - | denotes any norm in R™ (often the Euclidean norm or the interval norm

u; € [pai, pfi], @i <0 < f; for i = 1...m, are used.) The uncertain system (without
input) is then modeled as

(5.7,) z(t) = (Ao + Zug(t)A,-) z =: A(u)z, (ui(t)) €U,

i=]
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If Ay is a stable matrix (i.e. all real parts of its eigenvalues are negative), then the
system (5.7) is stable for all uncertainties, if p is small enough. The problem is to find
the smallest p, such that for some uncertainty with values in U, (5.7) becomes unstable,
which leads to the following definition:

Denote by U, = {u: R — U,; locally integrable} the set of uncertainties of size p,
and again by A(u,z) = lim sup } log |¢(t, z, u)| the Lyapunov exponents of the solutions

t—o0
of (5.7,).

5.6. DEFINITION: Let Ap € g#(d,R) be a stable matrix. Then the (Lyapunov) stability
radius of 4¢ with respect to the uncertainty structure in (5.7,) is defined by

ri(Ag) =inf{p > 0; sup sup A(z,u) > 0}
r#0 ueld,

=inf{p > 0; «, > 0},

where %, is defined as in (5.5) with U/, as the set of admissible controls.

Similarly, instability radii can be defined using % and &*. In the literature one finds
a wide variety of stability radii, e.g. for only constant uncertainties u(t) = u € U,,
or for U, C C™, or for {U,; p > 0} just an increasing family of subsets in R™, etc.
(compare e.g. Hinrichsen and Pritchard (1990}, or Colonius and Kliemann (1990°)). In
this brief exposé we will only be concerned with stability radii, and only with those that
are defined through all time-varying uncertainties with values in U, given as above.

We will again assume a nondegeneracy condition on the vector fields of the projected
system on P, which in this context reads {with h(u,s) defined as in (5.2)):

(H,) dim LA{h(u,-); u € Uy}(s) =d—1forall s € P and
some (and hence all) p > 0.

We first note some uniformity and smoothness properties of the stability radius rp:

For a function u € U, denote by ®,(¢, s) the fundamental matrix of (5.7,), and define
the Bohl exponent for this equation by

kg{u)} = limsup

s,l—s—o0 t—s

log || ¢u(2, s)Il-

This exponent indicates uniform asymptotic stability of a linear, time varying differential
equation, while the largest Lyapunov exponent kp(u) indicates asymptotic stability,
hence, in general, kg{u) > kz(u). This is not true for the corresponding stability radii,
compare Colonius and Kliemann (1990¢), Theorem 5:

5.7. PROPOSITION. ri(A) =rg(A4):=inf{p > 0; sup kp(u) > 0}.
u€ld,
Furthermore, the maximal Lyapunov exponent ki(u) need not be continuous, nor

even semi continuous in u € U or u € Y. However, under Assumption (H,), this effect
is smoothed out in the extremal exponents «, for {U,, p 2> 0} as above:
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5.8. PROPOSITION. The function p — &, is continuous and increasing. In particular,
the set {p > 0; £, = 0} is a closed, connected subset of [0,00) and rp(A) = inf{p >
0; 5, =0},

The result is proved in Colonius and Kliemann (19907). Note that p ~ &, can be
constant on intervals in [0, c0), i.e. the function need not be strictly increasing.
The following result on the uniformity of rp (A) with respect to the initial value = # 0

is an immediate consequence of Theorem 5.2: Denote by x,(z) := sup A(u,z) the
uCld,

maximal Lyapunov exponent of (5.7,), which can be realized from a point z # 0.
5.9. PROPOSITION. For all z € R4, z # 0 we have r1,(4) = inf{p = 0; x,(z) = 0}.

5.10. REMARK: Willems and Willems (1983) proved several results about the robust-
ness of linear systems with respect to stochastic uncertainties. In our context, we have
the following results, compare Colonius and Kliemann {1990°) for the precise set up.
Let M be a compact smooth manifold and D,: M — ¢g£(d,R) a family of smooth maps
with D,[M] = U,. Denote by Stat the set of all stationary processes with values in
M, and by Diff the stationary, ergodic, nondegenerate diffusion processes on M. For a
process §; in Stat let (¢, x,&:) be the solution of ¢ = A(D,(¢:))z (compare (5.7,) for
the definition of A(.)), and define A,{{;,z) = limsup 1 log |¢(t, z, &)l
t—oo

#p(€1) = ess sup sup Ap(€es ),y
0
where the essential supremum is taken over the measure induced by &; in U,

. 1
§P(§‘-‘: p) = 5‘;% hinsup ; 1GgEG(p(t7$: &)IP) -

Then we have for stationary processes in Stat

ri{A) =inf{p > 0; sup &,(£) >0}
& €Stat

=sup{p 2 0; sup g,(&,p)<0forall 0<p<oo},
£, €Stat

and for processes §; in Diff;

rr{A) = sup{p = 0; g,(&:,p) <0 for all 0 < p < 0}
<inf{p > 0; sup x,(&) =0},
Diff

£

where we conjecture that the last inequality is actually an equality. (The connection
of these results with large deviation theory is explained in Colonius and Kliemann
(1990°).) These findings show that the Lyapunov stability radius of (5.7) (and therefore
also the Bohl stability radius by Proposition 5.7) is also the stability radius for stochastic
uncertainties, both in the pathwise and in the pth-moment sense. This is just one way,
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in which Lyapunov exponents for control systems and for stochastic systems lead to a
unifying approach.

6. A Nonlinear Example: The Controlled Verhulst Equation.

In this section we will analyze a simple one-dimensional nonlinear example under the
aspects discussed in Section 5. for linear and bilinear systems, where we will make use
of the results in Sections 3. and 4.

Consider the controlled Verhulst equation in R*

(6.1) £(t) = Xo (2() + u(t)Xa(t) = aa(f) — =(t)? + u(t)=(2),

with @ € R and u(t) € [4,B] C R. For u = 0, this equation undergoes a transcritical
bifurcation at « = 0, where the rest point z° = 0 changes from stable to unstable as «
increases. We are here concerned with stabilization and robustness properties of (6.1),
in particular in the vicinity of the bifurcation point.

6.1. REMARK: Equation {6.1) can be solved explicitly: In the half spaces {(~00,0) and
(0,00) set y = 1, which leads to the linear differential equation § = —(a 4+ u(t))y + 1.
Retransformation of the solution of this equation leads to

exp {at + Julr)ar}

o(t,z,u) = - .
14 [exp {as + fu(-r)dr} ds
0 0

for all u € U and all = # 0. From this expression, the asymptotic behavior of the
solutions, including their Lyapunov expounents and possible finite explosion times can
be computed. We will not use this solution (except for one statement in Remark 6.2.},
but rather present a method that relies only on the zeros of the right hand side of (6.1)
for constant v € U, and which, therefore, can be used for any one-dimensional control
system.

For one-dimensional systems it is convenient to picture the systems dynamics with
rest points and signs of the right hand sides in the U x R plane, which yields in the case
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of equation (6.1) the following ‘bifurcation diagram’:

Here, for constant u € U, the arrows indicate the direction of the vectorfields, the solid
line corresponds to stable rest points, and the broken line to unstable ones. Define the

corresponding two functions of zeros by

a+u
(6.2) n = { g
a2(u) = { a-+u

We start by analyzing the control sets, chain control sets, and their respective regions of
attraction for the system (6.1). In Kliemann (1980) a general approach for finding the
control sets of one-dimensional control systems was described, and extended in Colonius
and Kliemann (1990°) to chain control sets. (For this approach, Assumption (H) is not
needed, and, in fact, it is violated here at the rest point z° = 0.) Using the results in

Colonius and Kliemann (1990°), we obtain:

foru £ —a
foru> —a
foru < —a

for u > —a.

Dy = (z1(A), z1(B)) if A< —q,

Dy = {O}v
(6.3) D - { (z2(A),z2(B)] i A< —a, B> —a,
{22(44), 2‘2(8)}
and
El :::5“; if B< —a
D, fB<=aor A>—a
(6.4) B = { [21(A4), z(B)] otherwise

Ey=D; HA>—a.

if A>—«a,
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The sets D; (and E;) for 1 = 1,...,3 are the possible control sets (and chain control
sets, respectively) of (6.1).

The regions of attraction A(D;) of the control sets (and similar for the chain control
sets) are defined by

(6.5) A(D;) = {(u,2) € U x R; mpw(u,z) C Dy}

Note that, in general, there may exist (u,z) € U x R, whose w-limit set intersects
several control sets. These points are in no region of attraction, but they are a ‘thin’
set according to Lemma 4.2(vi). For chain control sets this cannot happen, compare
Lemma 4.2(ii).

We have defined the regions of attraction of (chain) control sets as subsets of i/ X R,

and not of the state space R for reasons that will become clear from the following results
for the system (6.1);

(i) If a control set is also a chain control set E, then there exists a compact neigh-
borhood N of E such that for all (u,z) € U x N we have either w(u,z) C € or
w(u,z)NE = ¢, i.e. € is either an attractor or a repeller of the flow (U x R, ¢).
(For the definition of £ compare (3.7).)

(ii) If a control set D is open and E = D is a chain control set, then there is a
(compact) neighborhood N of E such that for all (u,z) € U x (N \ E) we have
w(u,z)NE = ¢, i.e. £ is a repeller. In this case, we have the following control
behavior in D:

(a) For all u € U there exist z,y,z € D with
o ¢(t,z,u)e Dforallt>0,
. tangogo(t,y,u) =0¢ D,_
o tlirggcp(t,z,u) =—o00 ¢ D,

and these are the only three possibilities for points in I x D.
(b) For all x € D there exist u,v,w € U such that
¢ mrw(u,z) C D,
s Trw(v,z) = {0},
¢ Tprw(w,z) = {—oo}.
Note that, because of the continuity of the flow ¢, if wpw(v,z) = {0} or
mrw(w,z) = {—oco} then the same holds for open neighborhoods of z, and
of v or w.
In particular, (a) and (b) show that regions of attraction have to be defined on
U x R and that these sets can have a very complicated structure.

(iii) It remains to discuss the invariant control sets C, which are not closed, and the
variant control sets D with 0 € D. The closures of these sets are not chain
control sets, and hence their lifts to 2/ x R are neither attractors nor repellers.
(Note that the corresponding chain control sets E; = [21(A4), 22(B)] are neither
attractors nor repellers, too.) For the invariant control sets C we have in this
case:

{(a) For all z > 0 there exist u,v,w € U such that
o mrw(u,z) Cint C,
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o mrw(v,z) = {0},
o mprw(w,z) = C U {0},
and there are u € U such that for all z > 0 one has w(u,z) = {0}.
Similarly, we obtain for the variant control sets D: The possible limit behavior from
z € D is the same as in (ii)(b), and there are u € U such that for all z > 0 one has
w(u,z) = {—o0}.
The proof of (i)-(iii) follows from the construction of (chain) control sets in Colonius

and Kliemann (1990°), and Proposition 4.8. therein.

6.2. REMARK: Let D be a control set of (6.1}, then for all §-invariant (probability) mea-
sures p on U there exists a ¢-invariant measure u(du, dz) = py(dz)p(du) on U x R with
supp ¢ C D%, and all ¢-invariant probability measures have support in U {D*; D is a
control set}, compare Colonius and Kliemann (1990°), Theorem 4.3 and Corollary 4.9.
In fact, it can be shown using the explicit solution in Remark 6.1, that for each u € U
there are exactly two ergodic invariant probability measures of the type uu, compare
Arnold and Boxler (1990). These findings are a starting point for a bifurcation theory
of stochastic and control systems.

We now turn to the question of stabilization at the rest point z° = 0. This will be
done via linearization around z°, which together with the global control analysis above
will give a complete picture in Proposition 6.3.

We have DX3|z~0 = @, DX}|;—0 = 1, and hence the linearized system at z° reads

(6.6) o(t) = (e +u(t))v(t), u(t)e€4,B]

Since the system (6.1) is one-dimensional, we do not need the projected system (2.6),
but we can analyze (6.6) directly:

For constant u € [A4, B)] the linearized system is (exponentially) stable iff © < —a,
(then the Lyapunov exponent is A(u) = a+u), and (exponentially) unstable, iff u > —a.
For u = a we have A(u) = 0, a bifurcation takes place in (6.1) at this point, and z° = 0
is attractive in (6.1) for z > 0. Because of the monotonicity of the vector field X + uX,
in u, it suffices for the analysis of the stabilization behavior of the nonlinear system to
consider constant controls. We obtain the following results:

6.3 PROPOSITION.

(i) The system (6.1) is (locally exponentially) stabilizable at z° = 0 iff A < —a, the
maximal rate of convergence is A(A) = a + A.

(ii) If (6.1) is stabilizable at z® = 0, then the maximal stabilization manifold (for
U=[A,B))is M* =(z,(A), +0). Forz ¢ M? and allu € U, u # A on a set of
positive Lebesgue measure, we have p(t,z,u) — —o0.

(iii) Foru = A Lebesgue almost everywhere, the system is stabilizable at z° = 0 from
z € (0,00)

(iv) The system is not exponentially stabilizable at z° = 0, iff A > —a (for all z # 0).
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The proof is a simple application of linearization theory with stable and unstable
manifolds {(for constant u € U), together with the global results (i)-(iii) above. It is
interesting to note that for B > —a there exists a second invariant control set, denoted
by Dj in (6.3), which also has a nonvoid region of attraction with points outside of D3
by (iii) above. This rises the question, whether the system (6.1) can be stabilized e.g.
at rest points or periodic solutions in Dj.

Finally, we discuss briefly some robustness properties of the nonlinear system (6.1).
Consider the system

(6.70)  &(t) = az(t) ~ z(t)* +u(t)z(t), u(t)€pd,pB], A<0<B, p20,

where now u € U, is interpreted as an uncertainty in the parameters of the vector field
Xo = az —z2, compare (5.7p) for the set up in the linear case. For the stable rest point
z% = 0 of X, (i.e. @ < 0) a local and a global stability radius can be defined: Denote
by AMu), u € U again the Lyapunov exponents of the linearized system (6.6), and define
the local stability radius by

(6.8) r1(z%) = inf{p > 0; sup A(u) > 0}.
ueld,

This radius corresponds to the existence of a stable manifold M* with z° € intM?*, but
it does not indicate, how large this stable manifold is, i.e. for which z € R the long term
behavior of ¢(t,z,u) is the same as that of ¢(t,z,u = 0) with respect to the stability
of 2°. We therefore define global stability radii for 2 € R by

(6.9) r(z%; ) = inf{p > 0; there exists u € U with mrw(u,z) # {z°}}.

Note that for linear systems the stability radius is always independent of z # 0 by The-
orem 5.2(i), whereas the instability radii, based on & and «*, may depend on z, compare
Colonius and Kliemann (1990¢), Corollary 4 and Example 6.2, as well as Corollary 5.4.
above.

From Proposition 6.3 we obtain immediately:
6.4. PROPOSITION. Consider the nonlinear, uncertain system (6.7p) with a < 0.
() ru(e%) =%
- forz >0
(i) r(z%z)={ =%= forz € (a,0)
0 for z < a.

Similarly, local and global instability radii, i.e. the smallest p such that (6.7p) is
stabilizable for a > 0, can be analyzed.
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