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1. Introduction 
The first objective of this paper is to study the stability of the solutions of the parameter dependent 
optimization problem 

(PI, min f(x,w) over x E Qd c Q 

with respect to changes in w E W, where W is a memc space. We consider the case where for 
w E W, f(.,w) is defined on an open subset D of the Banach space Q with D 2 Qad, and 
stability is studied with respect to a (semi-)norm that is possibly different from the original norm on 
Q. The necessity of considering two topologies arises because x may represent a parameter in a 
partial differential equation and hence it must enjoy sufficient regularity to allow for wellposedness 
of the partial differential equation. This determines the original topology on Q. On the other hand, 
the nature of the optimization problem might not allow for stability of the solutions x, of (P), 
with respect to this norm topology but rather only with respect to a weaker topology. 

In section 2 we adapt techniques developed by W. Alt [All and H. Maurer [MI to obtain stability 
results of the "two topology" optimization problem under a second order sufficient optimality 
condition. These results essentially assert that local solutions cannot vanish under perturbation and 
that they depend Holder continuously on the perturbation parameter w and secondly, that for every 
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global solution of the perturbed problem (P), there must be a nearby global solution of the 
unperturbed problem (PIwo and that these global solutions also depend Holder continuously on the 
parameter w. 

In the subsequent sections these results are applied to parameter estimation problems associated 
with elliptic equations given by 

(p), minimize / u(a)-z / 2 over a E qd. Y 

where Y is an appropriately chosen Sobolov space, z E Y, and u = u(a) is the solution of 

i - div (a grad u) + cu = f on R c Rn, 
(1.1) 

u = 0 on an, 

with c,f E L ~ ( R )  and a E Qad, where 

For dimension n = 1, H ~ ( R )  is replaced by ~ l ( 0 , l ) .  Concerning the stability of the solutions 
of (P), with respect to changes in z E Y, ,it is wellknown that z -+ zO in Y does not imply con- 
vergence of the solutions aZ to aZo in H~ (resp. in HI if n = I), in general ; see fu example 

mu]. The question naturally arises w h z : n ~  it is possible to choose a weaker and problem- 
dependent topology, for which z + zO in Y implies aZ + aZo in the weak topology. 

In section 3 we take up this problem and suggest a solution for several parameter estimation 
problems associated with two point boundary value problems. 
While the determination of this weak topology is of interest since it exhibits the inherent stability 
properties of an estimation problem associated with a partial differential equation, it might also 
indicate that for practical calculations the lack of stability with respect to a sufficiently fine topology 
for the parameter convergence cannot be ignored. One common remedy to this difficulty is the 
introduction of a regularization term. Thus we would replace (P), by 

where the regularization parameter P is a small positive number. Observe that only a seminorm as 
opposed to the full sem norm is used for regularization. This reflects our numerical experience with 
elliptic equations which shows that much better results are obtained with seminorms than with full 
norms. In section 4 we show that the solutions a t  of the regularized problems depend H6lder 
continuousIy (in ~ ~ - r e s ~ e c t i v e l ~  Lm) on ~ ~ - ~ e r t u r b a t i o n s  in the observation z. We explicitly 
specify the Holder constant in terms of [3, Qd and the distance of the unperturbed observation zO 
to the attainable set V = (u(a): a E Qad]. As expected this constant diverges as P LO. Explicit 
knowledge of the Halder constant allows the study of the convergence of the solutions a! of the 
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perturbed, regularized problems to the solutions a:o of the unperturbed, unregularized problems. 

For our analysis it is not necessary to require that the error free observation z0 is contained in the 
attainable set V. We allow the possibility of modeling error, which is reflected in dist(zO,V ) > 0. 
However, if dist(zO,v) is too large then the range of admissible regularization parameters for 
which the regularized problems are stable, may shrink to zero. - In section 5 we address this 
problem and assert that if there is some model 9 which has z0 in its attainable set, then "nearby" 
models S with modeling error still have good properties in the sense that there always exists a range 
of regularization parameter values for which the regularized problems for S are stable and the 
solutions a!(~) of the regularized problems with observation error converge to solutions a)(~) 

of the observation error free unregularized problems for S . 
I 

Stability investigations which are comparable to those of the present paper were given in 
[Cl,C2,C3, CKl,CK2, EKN,KS,N,Ri] for example. Chavent, [Cl-C3] working in an abstract 
frame work studies the projection of zO onto the attainable set by geometric and Banach space 
analysis techniques. The results of Kravaris and Seinfeld [KS] are based on Tikhonov's lemma and 
Richter's approach in [Ril builds upon the observation that when u is replaced by zO equation 
(1.1) is a hyperbolic equation for a. In [EKN] and [N] various classical results from the 
wellknown theory of Tikhonov regularization for linear inverse problems are generalized to the 
nonlinear setting that is required for parameter estimation problems. These results are then applied 
to parameter estimation problems associated with two point boundaq value problems and under 

0 appropriate assumptions on the a-priori knowledge of the solutions of (PlZo rate of convergence 
for the solutions of the regularized problems to the solutions of the unregularized problem is 
proved. 

The present research continues the investigations of [CKl ,CK2]. It improves the earlier results by 
the fact that we can now work with two topologies, as explained above, and that we calculate 
explicitely the Holder constant, whereas in [CKl,CK2] we only asserted the existence of such a 
constant. Now we can clarify the relation between the solutions of the regularized perturbed 
problems and the unregularized unperturbed problem (cp. Corollary 4.7, below). Moreover in this 
paper we consistently use only a seminorm for regularization as opposed to the full norm that was 
used in [CKl,CK2]. 

Notation: By Hi(u) we denote the common Sobolev spaces over R with values in R as 
explained, for instance, in [Ad]. The space of essentially bounded functions endowed with the 
supremum norm is denoted by Lw(R). To specify the inner product and norm we generally use as 
an index the symbol of the Sobolev space, as for instance IqlH1. However, we write Iql- 

for IqlL, and with the L'(R) = HO(R) inner product and norm we frequently drop the index. 

In section 3 the function spaces are considered over bounded intervals J c R. In this case H~(J), 
lR 

2 
i E N is endowed with iplHi(J) = ( ; I L4,)) as a norm. Moreover we put 

i.0 
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2 Similarly H$J):= H~(J )  n H (J) is normed with 191H2JJ60) = lpttlL20y 

In section 3 - 5 free use of results from the theory of elliptic equations as explained in [G,LU], for 
example, is made. Throughout differentiability is understood in the sense of FrCchet- 
differentiability. 

2. Stability for Perturbed Optimization Problems 

In this section stability results for solutions of perturbed optimization problems are proved. The 
assumptions will allow applications to parameter estimation problems. We consider the family of 
problems 

(P), minimize f(x,w) such that g(x) E -K, 

where f: D x W + R and g: Q + Y, with Q and Y Banach spaces. Further D is an open 
subset of Q, (W,d) is a metric space and K is a closed convex cone with vertex at the origin in Y. 
Keep wO E W fixed. Then w0 is used as the unperturbed reference value of the parameter w. 
The index w will be dropped if no ambiguity can occur. We assume that 

is a convex subset of D. A point xO E Qad is called regular (with respect to the constraints) if 

We assume throughout that f and g are twice continuously Frechet differentiable with respect to 
x and that f is uniformly continuous with respect to w at wO; i.e. for all E > 0 there exists 6 > 
0 such that for all x E and all w E W 

(2.2) d(w,wo) < 6 implies If(x,w) - f(x,wO)I< E. 

We denote by ~(6) the corresponding modulus of continuity. Thus for some F0 > 0 and all 
6 E (O,FO) 

(2.3) E(F):= inf ( E  > 0 : (2.2)  holds for all x E Qad] 

is welldefined and positive. Clearly ~ ( 8 )  -+ 0' for 6 -t O+. Throughout we put 
v(w0) = ( w  : F(w,wO) < FO). 

We recall the following first order necessary optimality condition (see e.g. [MZ; W, Theorem 
5.3.21). The dual cone K* of K is given by K = (y* E Y* : <y*,y> 5 0 for all y E K). 
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Proposition 2.1 Let x0 be a local solutio.~ of (PIwo which is a regular point of Qad. 

Then there exists a Lagrange multiplier y* E Y*, i.e., y* satisfies 

(2.4) fx(xO,wO) + y* gX(x0) = 0, y* E K*, y* g(xO) = 0. 

Ln order to prove a stability result for the solutions of (P), the following second order sufficient 
optimality condition will be used. Recall that a seminorm M on Q is a mapping M: Q -+ R+ 
with M(Px) = PM(x) for p E R+ and M(x+y) 2 M(x) + M(y). 

(SSC) For a seminorm M on Q with M(x) S m&xl for some mo 
independent of x E Q, there exists y* E Y* satisfying (2.4) 

and for some a > 0 and r > 0 

[fxx(x,wO) + y*gxx(x)l(v-xO,v-xO) a ~ ( v - x ~ ) ~  

for all v E Qad and all x E Qad with M(x-xO) r. 

Lemma 2.2 Condition (SSC) implies 

f(x,wO) 2 f(xO,wO) + aM(x-xO)? 

for all x E Qad with ~ ( x - x O )  5 r. 

Proof: Let x E Qad with ~ ( x - x O )  < r. Then g(x) E -K and hence y*g(x) 2 0. Thus 

f(x,wO) 2 f(x,wO) + y*g(x), 

and, by the mean value theorem, 

f(x,wO) 2 f(x0,w0) + y*g(xo) 

+ [fx(xO,wO) + y*g,(xO)l(x-xO) 

+ [fXX(x, wO) + y*gxxG)l(x-xO,x-xO> 

with x:= txO + (1-Ox, t E [O,11. NOW (SSC) is used to obtain 

0 0 f(x,wO) 2 f(xO,wO) + [fx,(X,wO) + y*g,x(xO)l(x-x 7x-x ) 

2 f(xO,wo) + a ~ ( x - x ~ ) ~ ,  
which is the desired estimate. 

Lemma 2.3 Condition (SSC) implies 

for all x E Qad with M(x-xo) 2 r and all w E v(wO). 
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Proof: Let x E Qad with ~ ( x - x O )  I r and let w E ~ ( w 9 .  Recalling (2.3) we have 

If(x,w) - f(x,wO)l I &(d(w,wO)). 

From (SSC) and Lemma 2.2 one obtains 

f(x,wO) 2 f(xO,wO) + aM(x-xO)' 

and hence 

f(x,w) 2 f(x,wO) - lf(x,w) - f(x,wO)l 

2 f (xO,wO) + a~(x-xO) '  - €(d(w,wO)). 

The M-local extremal value function h(.) is defined by 

h(w):= inf (f(x,w) : g(x) EX, M(x-xO) l r )  . 

Lemma 2.4 Let xo and r > 0 be such that f(xO,wO) = J.L,(w'). Then the M-local extremal 

value function pr(w) is continuous at w0 with the same modulus of continuity as f with respect 

to w, i.e. 

I ~ ( w )  - pJw0)I 5 &(d(w,wn)) for w G V(w0) 

with &(.j given by (2.3). 

Proof: We first show that for all w E V(w0) 

kr(w) 5 pr(wO) + e(d(w,wO)) . 

By (2.3) we have for all w E V(wO) 

< f(x0,wO) + If(x,wO) - f(x0,w")I 

2 k ( w O )  + e(d(w,wO)) . 
On the other hand one obtains for all x E Gd with M(x-xO) 5 r and all w E v(w0) 

These two estimates imply the claim. 

Theorem 2.5 Let x0 E Qad satisfy (SSC). Suppose that (2.2) holds and that 60 > 0 has been 

chosen small enough so that ~ ( 8 ~ )  < a r 212. Suppose further that for all w with d(w,wO) 5 60 

there is x, E Gd with M(x,-xO) 5 r and pr(w) = f(xw,w). 

Then M(x,-xo) i r for all w satisfying d(w,wO) 5 60, i.e. x, is a local minimum of (P), (in 

the topology induced by the seminorm M) and 
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Proof: By assumption p,(w) = f(xw,w) and from Lemma 2.2 we have p,(wO) = f(xO,wO). 

Lemmas 2.3 and 2.4 imply 

a M(xw-xo)2 < If(xw,w) - f(xO.wO)I + &(d(w,wO)) 

< If(xw,w) - k(w) l+  lk(w) - &(wO)l + &(d(w,w0)) 

r 2 E ( ~ ( W , W ~ ) )  

2 2 ~(60)  

< a r 2 .  

Thus M(xw-xO) < r and also the asserted estimate (2.6) follows. 

Remark 2.6 Suppose that f is Lipschitz continuous w.r.t. w at w0 uniformly in x E Qad. 

so that there exists L > 0 such that 

for all x E Qd and all w in a neighborhood V(wO) of wO. Then for w E v(wO) estimate 

(2.6) has the fonn 

(2.6)' M(xW-xO) 5 ($)In d(~,wO)~', 

since in this case ~ ( 6 )  < L6. - An inspection of the proofs shows that it suffices that (2.7) holds 

uniformly w.r.t. only those x E Qad which satisfy M(xO-x) 2 r for (2.6)' to remain valid. 

We proceed to discuss stability of globally optimal solutions. 

Corollary 2.7 Let the following assumptions be satisfied: 

(i) Q is weakly (sequentially) compact ; 

(ii) Q has a compact embedding into a Banach space X with norm I.IX ; 

(iii) f: D x W -t R is jointly continuous with respect to the X-topology 

on D and the metric topology on W ; 

(iv) There exist a > 0 and r > 0 such that for every global solution x0 
of (P)wo there exists y* = y*(xO) E Y* satisfying (2.4) and 

[fxx(x.wO) + y*gxx(x.wO)l(h.h) L a lhli 
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for all h E Q and all x E Qd with lx-xolX I r. 

Then there exists > 0 such that for all w E W with d(w,wO) I 61 and every global solution 
X, of (P), there is a global solution x0 of (P)wO with 

Proof: First we show that there exists 61 > 0 such that for all w E W with d(w,wO) I 61 and 

all global solutions x, of (P), there is a global solution x0 of (P),o with 1 xw-xO 1 < r. 

Suppose no< Then there exist a sequence wn converging to w0 and global solutions x, of 

(PIg such that 

Jx,-xOJX 2 r 

for all global solutions x0 of (P),o. By weak compacmess of Qad we may assume that 

x,, + x* weakly in Q and hence by (ii) 

Jxn-x*Ix -+ 0. 

But rids is impossible since it can be shown that x* is a global solution of (P),o . In fact, by 

optimality of xn for (PIw, one obtains 

f(x,,wn) I f(x,wn) for all x E Q 

and with (iii) 

f(x*,wO) I f(x,wO) for all x E Qad. 

Due to compactness of Qad in X and as a consequence of (iii) the modulus of continuiy &(a) of 
f w.r.t. w uniformly in x E Qad is welldefined for 6 sufficiently small. Decreasing 6, if 
necessary, we can assume that E ( . )  is defined on [O, The proof can now be completed with 
an estimate analogous to that at the beginning of the proof of Theorem 2.5. 

Remark 2.8 If there exist L s 0 and 62 > 0 such that 
If(x,w) - f(x,wO)l I L d(w,wO) 

for all w E W with d(w,wO) < 62 and all x E Qd with lx-xOIX S r, then (2.8) has the form 

for all w E W with d(w,wO) 5 S1 and 61 E (O&). 

Remark 2.9 The results and proofs of this section are similar to those in [All. The main 
difference between our treatment and that in [All lies in the fact that Q is endowed with two 
different topologies here. The introduction of the second, weaker, topology realizes the fact that in 
certain classes of examples stability of the solutions does not hold with respect to the natural norm 
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topology on Q so that one is obliged to resort to some kind of weaker notion of stability. - The 
results in [All also admit perturbations of the admissible parameter set Qad. 

This section is concluded with a technical lemma in which we give sufficient conditions on a point 
x E Qad to be regular in the sense of (2.1). It will be used frequently throughout the paper. 

Let L c Q be a closed convex cone with vertex at zero and let q* be a nontrivial bounded linear 
functional on Q and denote with 7 ~ :  Q -+ ker q* the orthogonal projection from Q onto the kernel 
of q*. For p E Q, pc R and y c Rf define 

g : Q + Y : = Q x R x R  
by 

g(x> = (p-x, 1xl2 - 12, q*(x) - p) 
and put K = L x R+ x (01 c Y. 

Lemma 2.10 Let [ker q*ll n L * (01 and assume that q*(L) c R', q*(p) < CI, and 

1 d p )  1 + $ I ho 1 c ? where ho E (ker q*)' n L with q*(hJ = 1. Then the set 
Qad := ( X  E Q : g(x) E -K) 

is non-empty and every point x of & is regular i.e., 
0 E int(g(x) + gl(x)Q + K) for all x E Q,d. 

Proof: The existence of h,, with the specified properties follows from [ker q*]L n L # (0) and 
q*(L) c R'. Moreover Q can be expressed as Q = ker q* @ span(ho). The orthogonal projection 
from Q onto [ker q*]L which we denote by % is given by 

x2(x) = q*(x)hg for x c Q. 
In order to show that Qd is non-empty, we define 

2 = p + (p-q*(p))h,,. 
Observe that 

p-i = (q*(p)-p)ho E -L 

lit2= I ~ ( p ) 1 ~ + p ~ l h ~ 1 ~ < ?  

and q*(i) = p. Thus i E Qd Now let x E Qad be chosen arbitrarily. We have to verify that 

Put 

where Ilq*ll denotes the norm of q* and define B = {(i,r,i) E Y : l((i,r,s)lly 161. Without loss 
of generality we endow the product space with the supremum norm in this proof. We shall show 
that 
(2.10) B c (p-x-h,-oh,+L, I x 1 - ?+2(x,hl+oho) +R+ ,oq*(hd)) : hl E ker q*, o e R), 

from which (2.9) follows. Let (i,;,:) E B be chosen arbitrarily. We put a = s and verify that 
there exists (h,,lj+) E ker q* x L x R+ such that 
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This will imply the claim. Observe that by the choice of 6 we find that p - q*(p) + q*(x) +s 2 0. 
Hence 1, defined by 

I = (p - q*(p) + q*(i) + i)ho 
is in L. Choosing h, as 

hl = dp-X-i) 

we obtain equality in the fust coordinate of (2.1 1). For the second coordinate in (2.1 1) w observe 

Hence there exists rt E R+ such that equality holds in the second coordinate of (2. 
the proof. 

1). This ends 
0 

Remark 2.11 The conclusion of Lemma 2.10 remains valid if some of the constraints involved 
in defining Qad are deleted. If the linear equality constraint is not present, then the assumptions 
q*(p) < v and lvl2 + lho12 p2 < f are replaced by Ipl< y. 

3. Stability for the Estimation Problem in a Natural Norm 

In this section we apply the results of section 2 to parameter estimation problems associated with 
elliptic boundary value problems. We consider 

(3.1) - (au,), + cu = f on (0,l) 

for f E L' together with appropriate boundary conditions. Unless otherwise specified, all function 
spaces are considered over the interval (0,l) in this section. Let q denote one of the coefficients a 
or c in (3.1) (the other one is assumed to be fixed). We assume that q is known outside of an 
interval I:= (a$) c [O,ll; if a = 0 or p = 1, these points are included in I. Let 1' denote 
[O,l] \ I .  The parameter estimation problem consists in determining the unknown coefficient q 
over I from an observation z. This observation z corresponds to the solution u(q*) of (3.1) 
evaluated at the "true", but unknown coefficients q*. Due to modelling and observation error, z 
may not coincide with u(q*). In this case q is determined as the coefficient which gives the best 
fit of u(q) to z. Thus we consider the least squares problem 

where Qd = Q&) is the set of admissible parameters defined on I, with Qd c Q, Q a Hilbert 
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space, and z is an element of the output space Z, which is also a Hilbert space. The space Q is 
chosen such that its elements are sufficiently regular so that, together with lower pointwise bounds 
on q guaranteeing ellipticity of the operator Au = - (au,), + cu, solutions u(q) of (3.1) exist in 
Z The observation z is called attainable if z is contained in the attainable set V:= (u(q) : q e G). 
We shall not require attainability of z in our analysis. 

Henceforth we concentrate on the stability of the solutions of (P), with respect to perturbations in 

the observation z. It is wellknown that q + u(q) from Q4 c Q to Z is not continuously 

invertible (in a multivalued sense), in general [EKN,Ru]. This implies that the solutions q, in 

Qd c Q of (PI, do not depend continuously on z, in general. In [CKl,CK21 we used Tikhonov 

regularization to define problems that are "near" to (P), and for which the solutions depend con- 

tinuously on the observation z. Here we show that the problems (P), themselves exhibit some 

weaker form of continuous dependence of the solutions q, of (P), on the observations z in Z. 

This will be accomplished by endowing Q also with a coarser topology. Clearly, it is desirable for 

the gap between these two topologies to be small. 

We denote by z0 E Z the unperturbed reference observation and suppose that 

Q c X, X a Banach space with norm 1.1 . X 
Open neighborhoods of points x in a Banach space are denoted by V(x). 

Definition 3.1 The parameter q in (P),o is called output least squares stable (OLS-stable) with 

respect to (Q$, X, Z) at the local solution qZo of (P),O if there exist neighborhoods V(Z? in Z 

and V(qd in X and a constant k > 0 such that for all z v(zO) there exists a local solution 

QL of (PIZ in V(q$ and for every such local solution % of (PIZ in V(q$ we have 

We point out that - while we do not insist on uniqueness of the solutions of (P),o - the following 
local uniqueness property holds: Lf 0 is a local solution of (P),o such that OLS-stability holds 9 
at 9, then q is locally (w.r.t. the X-topology) unique. 

z0 

(i) Estimation of the coefficient a 
We consider the estimation of the coefficient a in 

(3.2) - (au,), + cu = f in (0,l) 
u(0) = u(1) = 0 

where f E L2, f + 0, and c E L2, c 2 0 are fixed. 
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Theorem 3.2 Assume that a is a local solution of (Plzo, and that z0 E H: n H ~ .  
z0 

Then the following assertions hold. 

(i) If (HI) is satisfied and if 14 - ux (a O) 1, is sufficiently small, then the coefficient 
2 1 a in (P i0  is OLS-stable w.r.t. (Q$ (I), L (I), Ho) at azo . 

(ii) If (H2) is satisfied and I z0 - u (a o) 1 is sufficiently small, then the coefficient 
% 

2 a in (P) 0 is OLS-stable w.r.t. (Qtd (I), H1(l), H ~ )  at azo . 

The proof of this and the following theorems is given at the end of this section. 

We could not obtain an analogous result for L~ as an output topology; (technically, this appears to 
be due to the fact that the H-' norm of the product of two functions cannot be bounded by the 
product of the corresponding H - ~  norms). 

2 While the Ho observation space might be of analytical value only, the H: observation criterion 

proved to be numerically effective when (P), was solved with an augmented Lagrangian method, 
even when only pointwise data were used and a discrete approximation to the least squares term 

I ux - 4 1 22 was used [MI. In the proof of T h e o ~ m  3.2, the condition on the distance of u(a$ 
L  

to zO is given explicitly in terms of kl  , kz , f and & (see (3.11), (3.17)). 

(ii) Estimation of the coefficient c 
We consider the estimation of the coefficient c in (3.2) where a E HI,  a > 0 is fixed. Let I be 
defined as above and let v be a fixed element of L~ satisfying v 1 0  a.e. and Ivl 

~ ~ ( 1 )  < Y. 
Define the set of admissible parameters by 

2 Qad:= IC E L (I) : c 2 v on I, Icl l y}. 
~ ~ ( 1 )  

Unless otherwise specified the elements c of Qad are identified with their extensions to functions 
in L~ (0,l) obtained by 

c(x):= v(x), x € IC . 
The problems 

0 (PI:, min l u(c) - z 1 
0 '  for i = 1 or 2, z E H: , have a solution c E Qad . 

z0 
The following assumption will be used: 

(H3) There exists a constant k > 0 such that u(c ) > k on [u,P]. 
zO 

Theorem 3.3 Assume that c is a local solution of (P)~ for i = 1 or 2 for which (H3) holds 
zO ZO 
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and that 1 u(c d - 2 1 . is sufficiently small. Then the coefficient c in (P)~, is OLS-stable w.r. t. 
z *b 

(Q (I), H~-~(I ) .  ~ b )  for i = 1 respectively 2. 

Proof of Theorem 3.2 The proof is given in several steps. 
(i) Let us f m t  summarize some facts that will be used in the sequel. There exist constants K1 , 
K2 and Kg such that for f E L~ the following inequalities hold 

for all a E Q, i = 1 or 2. To verify (3.5) observe that by the mean value theorem for every 

a E qd there exists 5 E [0,1] such that ux(<) = 0. Hence we obtain 

X 

Since IflH-, 5 I I f(s) ds 1 ,  we easily obtain (3.5) from this estimate. 
x:& 0 

For a E H1 (0,1), a > 0, the mapping a + u(a) is twice continuously (Frkhet-) differentiable 
from H' (0,l) to H2 (0,l) and the first derivative u, (a)(h) in direction h E H' (0,1), resp. the 
second derivative u,(a)(h,h) in direction (h,h) E HI (0,l) x (0,l) are characterized by 

(ii) We show that the shifted set of admissible parameters 
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is non-empty and that every point in is regular. Let us first consider the case i = 1 and 

O < a < p <  1. Then Q L C Q  isgivenby 

P 
% = { a ~  ~ ' ( 1 ) : a ~ v - i ,  l a (  ~ ' ( 1 )  '" a dx = 0, a(a) = a($) = 0 

We apply Lemma 2.10 with 

( 2 The mapping g: Q -1 Q x R x R is given by g(a) = p - a, I a 1 - J ,  q*(a)). 

Observe that q*(L) c R', q*(p) < m - a dx = 0 = p and 
,,A 

lnpIH+I)= I d ~ - i ) / ~ + ~ ) <  /v-;I  I C Y  ToapplyLemma2.10weneedtoargue H 

that (ker q*)' n L # (0 ) .  Let y be the unique solution of 

By the maximum principle y e L. A short calculation shows that y e (ker q*)L and hence 
h ~ =  q * ( ~ ) - l ~  satisfies h,, E (ker q*)' n L and qZ(h,,) = 1. Thus Lemma 2.10 implies the 
assemon incase O< a< p <  1 and i = 1. 

We now discuss the necessary changes when 0 = a P < 1, and i = 1. The case 0 < a < $ = 1 
is treated analogously and 0 =a < j3 = 1 cannot occur with (HI) holding. Thus I = LO,$) and 

We proceed as in the case 0 < a < $ < 1 only with Q chosen as Q = ( a  e ~ ~ ( 1 )  : a@) = 0 )  
and h,, = q * ( ~ ) - ~ y ,  where \V is the unique solution of 

In fact y(t) = 1 - (ep + e-P)-'(et + eVt) and v E L A (ker q*)L n Q. The assertion again follows 
from Lemma 2.10. 

Next consider the set Q:~ = {a - i : a E Q: 1. It is given by 
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If a = 0 or p = 1 the corresponding boundarj condition in Q: is omitted. Since by 

assumption / v - a 1 c 7, it follows from Remark 2.11 that Q& is non-empty and 
that each of its elements 1s a regular point. 

(iii) We show that under the assumptions of Theorem 3.2(i) there exist constants k > 0 and r > 0 
such that 

forall a ,  Q$ with Ia-azO1 = Ia-azolL2(I) 6 r  andall h E  H = { h E  Q :  ~ ; h d ~ = O } .  

0 1 0 
Here h E H is obtained as the extension of h to [0,1] by putting h = 0 on 1'. 

The two terms on the left hand side of (3.7) are estimated separately. We shall use the fact that 
the Laplacian A is an isometric isomorphism from @ onto its dual K' and that P = D A-' D 
can be extended to a bounded linear operator on L ~ .  Here D stands for differentiation. 1 Moreover 

2 P is an orthogonal projection with (I - P ) cp the constant function with value 0 cp ds in L , 
see e.g. UKI. 

1 2 If {a,) is an arbitrary sequence in Qd converging smngly in L to an element a* E 4. 
then {a,} converges weakly in H' to a*, since Q; is bounded in H1. Consquendy u(a,) 
converges weakly in H~ and hence strongly in C' to u(a*). By (Hl) one can therefore choose 
r, such that I a - azo I L2(1) S r I  and a E Qad imply that 0 < k, d U, (a) 6 4 on I. 

1 By (3.4) and (3.6) we find for a E Gd with 1 a - a,o 1 Lz(n 6 rl and h E H 

and therefore 

(3.8) 

To estimate the last term we put 
Q' = ( X  E (a#) : h(x) 2 0 )  and R- = (x  E (a$) : h(x) < 0). 

Then we obtain 
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P P 
= $ L h d " +  (kl-kJ 1 hdx = (kl-$)i-hdx 6 (k2-kl)j lh ldx.  

(1- a 
This estimate is used in (3.8) 

2 K: 14 (a; 1) 1 2 1 h I ,2(,, -(k,-k212 I h I ,2&3-a) 2 HA 
and thus we find that 

2 
for all a E Qd with 1 a - a 0 1 2(1) 5 rI and all h E H . z L 

We turn to the second term on the left hand side of (3.7). 
For a E QL and h E H we obtain by (3.3) - (3.6) 

Since a + ux(a) from Q&, endowed with the ~ ~ - t o ~ o l o ~ ~  to L" is continuous, there exists 

r E (0, rll such that (3.11) with aZo replaced by a holds uniformly for all a E Q;d with 

I a - aZo 1 5 r. From (3.9) and (3.10) we deduce the existence of a constant k > 0 such that 

for all ae & with 1 azo - a / L2(1) l r and all h E H , provided that (3.1 1) holds. 

(iv) We verify Theorem 3.2(i). It can be seen that (2.2) is satisfied. Let E: QL + & 
be given by E(a) = a + i .  Clearly E is a homomorphism when Q& and Q& are endowed 
with the ~ ' - t o ~ o l o ~ ~ .  The problem 
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is equivalent to 

in the sense that a, is a local solution of (p), if and only if E K )  is a local solution of (PI, 

(Both, in (P), and (p), it is understood that a resp. ~ ( a )  are extended to (0,l) by setting the 

coefficient equal to v there). Let ifl = 9 - a with 9 as in the statement of Theorem 3.2(i). 

We show that for f: QL -t H1 given by 

fia) = I (EG)) - zo 1 4 
condition (SSC) is satisfied so that Theorem 2.5 is applicable. This will imply Theorem 3.2 (i). 

By (ii) and Proposition 2.1 there exists a Lagrange multiplier y* = (yf, y i , y i )  E Q x R x R 

satisfying (2.4). Hence it suffices to argue uniform positivity of the second Frkhet derivative of 
1 f + y* g. Observe that for every 5 E and h E Q 

since y; z 0. For all a E Q$ and h E Q we find 

0 0 r, 6 )  (h.h) = 2 I rl ( ~ a ;  ;.%I 1 + 2 <u(a) - zO, ((EI: h.h)> fG 
From (3.7) we conclude that 

forall i s  Q; with I G - ~ ~ I ~ ~ , ~ )  = li-bIL20) 2 r andall h e H .  

Therefore we obtain 

(v) We now prove part (ii). First we ascertain the existence of constants k > 0 and r > 0 such 
that 

By (H2) one can choose rl > 0 such that I a - azo I H1 < r1 and a E ed imply that 

Using (3.3) and (3.6) we obtain for a E Q$ with I a - aZo 1 H1 5 rl and h E Q 
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We turn to the second term on the left hand side of (3.14). For a E QL and h G Q we obtain 
by (3.3) and (3.6) 

and hence 

Let us assume that 

2 1 2 Since a + u(a) from C& endowed with the H -topology to H is continuous (observe that 
1 2 uXX = - (CU - f - a.p,)), there exists r E (o,rl] such that (3.17) holds uniformly for all a E & a 

with I a - aZo I < r. From (3.15) and (3.16) we deduce that there exists a constant kl > 0 such 
that 

for all a E ed with 1 a - aZo I L2(1) 5 r and all h E Q. provided that (3.17) holds. With (H2) 
holding, the mean value theorem implies that a = 0 and P = I cannot o c c u  simultaneously. 

2 2 
Hence I h, I L2(I) 2 5 I h I for some k2 > 0 and all h E Q and (3.14) follows from (3.18). 

The assertion of Theorem 3.2(ii) now follows with the same arguments as in (iv). This ends the 
proof. 
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8 ,  Remark 3.4 In the definition of Q$ we chose m = I, a dx. This choice which was made for 
P A  

convenience, effects only step (ii) of the proof. If m # I a  a dx and the additional assumption 

is made, then again Lemma 2.10 is applicable in step (ii) of the proof and Theorem 3.2 remains 
valid. 

Proof of Theorem 3.3 
(i) First some facts are summarized which will be used further below. 
There exist constants K1,K2 such that the solution u(c) of (3.2) satisfies 

for all c E Qad . For c E ~ ~ ( 0 , 1 ) ,  c 2 0, the mapping c + u(c) is twice continuously 
differentiable from ~ ~ ( 0 , l )  to ~ ~ ( 0 , l )  and the first derivative u,(c)(h) in direction h E ~ ~ ( 0 , 1 ) ,  
respectively the second derivative u,,(c)(h,h) in direction (h,h) E L2(0,1) x L2(0,1) are 
characterized by 

(3.21) A ( c h  = - h u(c) and A(c) 6 = - 2 h v  

where q = ~ ( c ;  h) = u,(c)(h) and 6 = &; h) = ucc(c) (h,h) and A(c) : F$ n n2 -+ L2 is given 

by A(c)q = - (a ox), + cq  . 

(i) Next it is shown that Qd is regular. Let 

and let g: L~(I)  -+ ~ ~ ( 1 )  x R be defined by 

Then we find that Qd = ( q  E ~ ~ ( 1 )  : g(q) E - K ) .  

Since by assumption 1 v 1 < y , Lemma 2.10 and Remark 2.11 implies that every element of 
L~ 

Qild is a regular point. 

(iii) To prove the assertion of Theorem 3.3 we employ Theorem 2.5 with f: Q4 + I-$, , 
i = 1 or 2 given by 
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From (3.23) and (3.24) we deduce the existence of a constant k2 > 0 such that 

We turn to the case i = 1. Since c + u(c) is continuous from Q endowed with the ~- l -norm 
to HI,  there exists r4 > 0 and E > 0 such that u(c) 2 k on I:= [max (0. a - E), min (1, P + E)] 
for all c E Qad with I (c - cZd I I I KI(l) 6 rd . For these c and h E ~ ~ ( 1 )  we have by (3.20) 

A short calculation gives 

and therefore 
n 

Next observe that for h E ~ ~ ( 1 )  and c E Q& 

where 11 = q(c; 6. Ln the following estimate the supremum is taken over 0 r v E @ : 
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IA-GI I ( V ~ ) ~ I  
0 

Ht! 
h l  ( / v x q l  + l v q x l )  

I sup I sup & 
IvI 4 IvI # 

with A the Laplacian as defined in the proof of Thwrem 3.2. Next we prove that there exists 
K >  0 such that 

It suffices to show that 

Take any v E @(0,1) and define ; E H: (J) by 

Then a straightforward computation shows 

and hence the assertion follows observing that < ~ , V > ~ Z ( ~ , , )  = < h , ~ > ~ 2 ( ~ )  . 
From (3.27) and (3.28) we obtain for all h E L~(I) and c E Qd 
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Let us assume that 
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Note that there exists r l  E (0,r4) such that (3.30) with c# replaced by c holds for all C E Qad 
with 1  c - c,o 1 H-l(l) 6 r,. From (3.26) and (3.29) we deduce the existence of a constant kI > 0 

such that 

for all c E Qad with I c - CP I  2 rl and all h E ~ ~ ( 1 )  provided that (3.29) holds. 

This is (3.22) for i = 1 and the proof is complete. 

Remark 3.5 
In the proofs of Theorem 3.2 and 3.3 we ignored the possibility that y; could be positive; compare 

(3.12). The effect on the stability of estimating c from data z when y; > O has been considered 

in [CK 1; Theorem 5.31. Of course, yz > 0 is special case and it requires that the norm bound in 
the admissible parameter set is active. 

4. Stability for Regularized Problems 

In this section we consider the problem of estimating the diffusion coefficient a in the Dirichlet 
problem 

(4.1) - div (a grad u) + cu = f on Q 
u = O  on aL2 

from a measurement z by means of a regularized least squares fit-to-data criterion. Here S2 is a 
bounded domain in Rn, n = 2 or 3, with a smooth  boundary an or L2 is a parallelepiped, 
and f and c are fixed elements of L~ with c 2 0 and f + 0. All function spaces are taken over 
the domain R in this section. The set of admissible coefficients is chosen to be 

2 where v E H , min v > O and 1  v I g Z  < y . As a regularization term the square of a wminorm 

on H~ given by 
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is used. For a measurement z E L2 the regularized least squares formulation for estimation of a 
from z is given by 

P 2 (PI, min 1 u(a) - z 1 + PN(a) over a E Qad , 

where p is a small positive parameter. Since Qa is a weakly sequentially compact subset of H~ 
and since both a + lu(a) - z12 and a -+ N(a) are weakly lower semicontinuous from H~ to R 

B it is simple to argue existena of a solution a! of (PI, as well as of a solution a, of the unregularkd 

problem (P), (this is (PI! with P = 0). It will follow from the proof of Theorem 4.2 that for a certain 
range of regularization parameters the norm bound is not required for (P)! to have a solution. The norm 
bound, however, is necessary to guarantee existence of a solution of (P),. Without it the solutions 
of (PIE may diverge as P 4 0'. 

We shall study the continuous dependence of global and local solutions of (PIE on the observation z. 
Some additional terminology and notation will be used. Let zO E L2 denote the unpenurbed 
reference observation. The attainable set V is defined by V = (u(a) : a E Qd) and for P > 0 we 
Put 

P @ = {a!o E Qd : a$ is a global solution of (P),o} 

and 
Q0 = {azo e E : azo is a global solution of (PIZ and N(a$ is minimal}. 

Clearly the sea $ are not empty. Convergence popenies for the solutions of (PI$ to those of (P),o 

are summarized fist.  In particular it will be shown that Q0 is not empty. All the proofs of the 
results of this section are given at the end of this section. 

Proposition 4.1 
Bn (i) Let {p,} be an arbitrary sequence in R with pn + O+. Then every sequence {aZo 1 

2 with a$' E Q' has a strong accumulation point in H . Every weak accumulation 

point is a strong accumulation point and it is contained in QO. 
(ii) For every E > 0 there exists P+(E) > 0 such that for every p E (O$+(E)) and every 

P a , ~  E QP there exists a solution a p  of (PIZ in Q0 with 

l a$ - a , ~  l ,r c E . 

(iii) The function p@) = N(a$ - sup { ~ ( a $ )  : a$ E QP), where azo E QO, tends to 0 

monotonically as P tends to 0' and for all j3 > 0 and all a!o E 

Observe that N(aZ,) is independent of the choice of a,, E Q0 SO that p(P) is welldefined on (0,P). 

In the statement of the following results K 2 1 denotes a constant which depends on min V, y, c. 
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f, R, n and the embedding constants of H2 into LOe and H1 into L ~ ,  and this dependence 
could, in principle, be calculated explicitly. 

Theorem 4.2 (i) Let 6 2 l be chosen such that 

- 1 
p (P) < 7 

let r > 0 be arbitrary and define 

dist (zO,v 12+ P = 
K-' - p(p) 

If 0 (= Qk)) I fi then there exists a neighborhood v(zO) = {z : I z - zO ( I 61G)} of zO in L~ 

such that for every p E [o, 61, z E v(zO) and every global solution a! of (PI! there exists 

a!$. QO with 

with a = (K-' - ~ ( 6 ) )  (p - @ and L = 2(K + lzO1) + 1. If z0 E V then Q= r2 K(K-' - p(p))-' 
can be taken arbitrarily small. 

P 0 (ii) Conversely, for every P E [P , 61, every aPo E Q and every z E V(z there exists at 

least one local solution $ of (P!) in V ,  (aP0 , r) = {a: I a-aPo 1 I r) and every such local z 00 

solution in Vm (a$ . d satisfies 

As a corollary to the proof of Theorem 4.2 we obtain: 

Theorem 4.3 In the notation of Theorem 4.2, if Q(r) < D, then there exists for every P E [P , f i ] ,  P .  for every aPo E. Q~ and every z E ~ ( z 4  at least one local solution a! of (P), m 
VH2 (a!o , r) = {a: 1 a - a!, 1 Hi I r} and every such local s~lution in VH2 (a!o, r) satisfies 

dist (zO,v l2 
Corollary 4.4 In the notation of Theorem 4.2, if P := < p , then (P)$ can 

- K-' - p(p) 

only have finitely many solutions a$ for every P E (p . 61. - 

Remark 4 5  A weaker form of Theorem 4.3 was proved in [CK2]. There the full the norm as 
B . .  opposed to the seminorm N was used for regularization, the neighborhoods of azo witlun which 
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Holder continuous dependence is asserted were allowed to depend on the specific global solutions 

a!o and only existence of some Hijlder constant was given, whereas in (4.2) the dependence of 

this constant on parameters of (P$ is clarified. 
Observe that the radius al(r) is determined in Corollary 2.7. If the radius r of the ball on which 
(SSC) holds decreases, so does S1(r). In fact we may assume that 6](.) is monotonically 
increasing, left continuous with 61(r) > 0 for r > 0 and 6](0) = 0. 

We note the foilowing lemma. 

Lemma 4.6 Suppose that g: [Op) + [O,-) is monotonically increasing and left continuous 
with g(0) = 0 and g(x) > 0 for x > 0. Then there exists a strictly increasing and continuous 
function k: [O,=) + [O,-) with 0 5 k (x) 2 g (x) for all x 2 0 and k (x) > 0 for x > 0. 

Hence there exists a continuous and strictly increasing function 62(.) with the properties that 
62(0) = 0 and 62(~)  E (0, fil(r)l for r > 0. Since Corollary 2.7 and Theorem 4.2 remain valid if 
6](.) is decreased, we may assume that ti1(.) itself is continuous and strictly increasing with 
6](0) = 0. In particular there exists a continuous and strictly increasing function rl(.), the inverse 
of 6,(.) with rl(0) = 0 of with rl(0) = 0. Observe that rl(.) is defined on the range of 

which is of the form [0 ,8  with 8 E (0,-I. In the next corollary it is tacitly assumed that 
6 E (0,8). 

Corollary 4.7 Let 0 < p I 1 be chosen such that K ~ ( P )  < 1, let e.6 be positive constants 
and suppose that z E L~ satisfies I z - z0 I 5 6. Define 

Then for all p E ID- (e.8) + 0 (r1(6)), min {pi(&). P}1 and for all global solutions a! of (PI! 
there exists a solution aZo E QO of (PlZo with 

where K2 is the embedding constant of H~ into Lw. 

Remark 4.8 The range of admissible regularization parameters for the applicability of Corollary 
4.7 is given explicitly by 

1(2L 61e2 + (diir (zO.v )12+ r1(6l2K) 1 (K-' - p(p)) , m h  {pt(d, p}. 

In particular, if z0 E V ,  this interval is nonvoid provided that the measurement error 6 is small 
aompared to the desired accuracy E for the estimated parameter. 
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F igu re  4 .1  ( E  f i x e d )  

Figure 4 . 2  ( 6  f i x e d )  

To demonstrate further Corollary 4.7 we illustrate in Figures 4.1 and 4.2 the range of P values 
for which (4.3) holds in case that zO E V. In Figure 4.1 the admissible J3 values are shown as a 
function of 6 with E > 0 fixed and Figure 4.2 gives the admissible P radius as a function of E 

while 6 > 0 is fixed. 

Remark 4.9 Under the assumption that u(a) = z has a unique solution a result comparable to 
Corollary 4.7 was obtained with a different method in [KS]. 

Proof of Proposition 4.1 Part (i) follows with minor modifications from Lemma 3.3 in 
[CK2]. In [CK2] N was assumed to be radially unbounded. This assumption was only used for 
existence of solutions of the regularized problems. In the present case this follows from 

P" the fact that Qad is norm bounded. Lemma 3.3 in [CK21 asserts that {aZ, 1 has a weak 

accumulation point as n + w , that every weak accumulation point is a (global) solution of (PlZo 

and that lim ~ ( a $  exists with lim ~(a!:) = rnin {N(azJ: zO is a globd solution of (P)$. 
n n 
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Pk Pk Let {azo } be a weakly convergent subsequence of {a$} with limit aO. Then {azo } converges 
0 .  2 P strongly to a m L and. since lim  ad) = N(a$ = ~(a ' ) ,  lim 1 a!$l H1 = 1 aO 1 H~ . k k 

Pk Pk Together with weak convergence of {aZo } this implies strong convergence of {aZ,, 1 to a0 in H2 

and ends the proof of (i). 

TO verify (ii) suppose that for some E > 0 and for every n E N there exists P, E (0,1111) and 
a$ E Q ' ~  such that for all solutions a of (PIzo in Qo 

zo 

By (i) one can choose {aPn} such that this sequence converges strongly to a solution of (P) 
zO zO 

in QO. This is a contradiction to (4.4). 

Finally (iii) follows from 

which holds for all P > 0, a p  E Q~ and ap E Q' . 

Proof of Theorem 4.2 The first pan of this theorem will be verified by demonstrating the 
applicability of Corollary 2.7 in conjunction with Remark 2.8. To establish the connection with 
Corollary 2.7 let D = ( a  E H2 : a > min v) ,  let w = L~ and define P: D x w -+ R by 

The X-topology of Qad c D is defined by the Lm-topology and Q = H2 . Since Qad is a 
weakly sequentially compact subset of H2 and since H~ embeds continuously into Lm, (i) and 
(ii) of Corollary 2.7 are satisfied and (iii) can be verified by a short calculation. It remains to 
establish assumption (iv) of Corollary 2.7 and the continuity assumption of f specified in Remark 
2.8. Some technical preliminxies are summarized first. 

For a E Qad let A(a) denote the realization in L~ of the differential operator in (4.1); i.e. 
2 dom A(a) = H n H A  and A(a)cp = - div (a grad cp) + ccp . Observe that u(a) = ~ - ' ( a ) f  gives the 

2 1 solution of (4.1), that A(a) is selfadjoint and that A(a) is a homeomorphism from H n Ho onto 
L2 for every a E Qad . There exists K1 > 0 depending on min V, y, c and !2 such that 

for every g E L2 and a E Qad . From (4.5) we deduce the inequalities 
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for every g E L* and a E Qad . Indeed, using (4.5) we have 

( ~ - ' ( a )  g.v) / ~ - ' ( a )  g 1 = sup = sup (g, ~ - ' ( a )  v) 
"+VEL' IvIL2 n i i c  L: I v I L2 

The second inequality in (4.6) is proved analogously. Moreover K, can also be chosen 
sufficiently large so that 

2 holds for all g E L2 . From (4.7) we obtain / A-I g I 5 K1 I g / K2 for all g E L and hence 

with (4.6) we find 

Since n = 2 or 3 there exist constants K2 and K3 such that 

for all h E H ~ .  We recall that 1 h I _ is used for / h I Lm . 

To verify the Lipschitz continuity of f specified in Remark 2.8, let a E Qad and 
z E ~(zO.1) = { Z E  L2: l z 0 - ~ 1 5 1 ) .  Wefind 

l@(a,z0) - @(a,z)l = I lu(a) - zl + lu(a) - zOl I I lu(a) - zl - lu(a) - zO1 I 

(4.11) 5 (2 lu(a) - zOl + I z - z0 I ) I z - zO1 

5 [2  (K, Ifl + lzO1) + 11 I z - zO1 , 
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and thus fi is Lipschitz continuous with respect to z uniformly in a (and independently of P) and 
the Lipschitz constant can be chosen as L = 2(K + lzO1) + 1, where K has the properties specified 
before Theorem 4.2. 

Turning to assumption (iv) of Corollary 2.7 let us first observe that by Lemma 2.10 and Remark 
B 2.1 1 every element of Q is regular. Therefore there exists for every a p  E Q' a Lagrange multiplier 

2 h* = (1; , h;) E H x R satisfying (2.4). In pmicular $ 2 0 . Here we suppressed the depen- 
B 8 . .  dence of h* on the specific solution ap . The Lagrange functional associated with (P),o a gwen by 

2 2 where g: H i H x 8 is defined by g(a) = (v - a, I a 1 $ - $1. 
The second derivative of F w.r.t. a is given by 

where 
q(a;h) = ~ - l ( a )  V(hV u(a)), 

(c.f. [CK2, (4.12), (4.13) and Example 5.21). It will be convenient to drop the dependence 
b2 @n a in the notation of q(a;h). Using the facts that h; > 0, that - ab 2 - a2 - - for any 4 

a and b in R and the selfadjoinmess of A(a) we find 

Henceforth K 1 1 is used as a generic constant depending only on K1 , K 2 ,  K3 , n and f. By 
(4.3, (4.7), (4.9) and (4.10) we obtain 

and thus by (4.12) 

where h E H2 has been decomposed as h = hl + h2 with 
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For every h E H~ we find by (4.5) 

(V(hVu(a)), v) (hVu(a), Vv) 
= SUP 6 Kl 

V H H 1 Ma) v 1 . O+VL H nH; 1 v 1 ~2 

and hence 

From [IK2] we recall that 

for any h 2 e  ( q ~  H2 : h p d x = ~ ) .  

Using (4.14) with h = h 2 ,  (4.15) and (4.16) in (4.13) we find for every K > 1 
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P P ~ K  K I  For P E (O,11 choose K = l + w . It follows that - 1 = - 2 - 2 - and K '  K=K+P K+1 2 

Thus we fmd 

for some generic constant K 2 1 uniformly in p E (o,l] and a E Qad . 

Using the mean value theorem one can show that q 4 u(q) is globally Lipschitz conrinuous fmm 
Qad endowed with the L')-topology to L~ (compare the estimate before (4.14)), so that K can 
be chosen such that 

for dl a and i in Q d .  As in the statement of the theorem let r > 0 and rccail hat  Q and fi are 
chosen such that 

where aZo E QO and 

where we put q = BI - p(p). 
From Proposition 4.1 it is known that 

With (4.17) - (4.19) we obtain for ail a E B = {a : 1 a - aPo / 5 r, QP, p , jl) Z 00 

andall h~ LOO 



COLONIUS AND KUNISCH 

This is (iv) of Corollary 2.7 with a = (K-' - p(fi)) (P - &) uniformly for all a$ E Q' and 

p E [Q , 61. Reconsidering the proof of Corollary (2.7) one observes that v(zO) can be chosen 

independently of P E [Q , p] and the first part of Theorem 4.2 is proved. Theorem 4.2 (ii) follows 

from Theorem 2.5, Remark 2.6 and (4.20). 

Proof of Theorem 4.3 From (4.17) - (4.19) it follows with a caIculation analogous to (4.20) 
that 

1 2 
Fa (a)(h,h) 2 (R - p(b)  (P - P) I h 1 , 

2 for all h e H and all a E {a : I a - a$( 6 r, a$ E QP, P E @ , PI]. An application of 

Theorem 2.5 together with Remark 2.6 gives the desired result 

Proof of Corollary 4.4 Assume that the dardinality of QP is infinite for some P E (P , f i ~ .  Then r - 
can be chosen such that p E [ ~ ( r ) , b ]  SO t1 ~t Theorem 4.2 (ii) is applicable. Let {ap*) be a nontrivial 

z0 

sequence in Q ~ .  Since { I ap'" I ,} is bounded there exists a subsequence of {aPsn) converging 
z0 H- LO 

strongly in Lm. This contradicts Theorem 4.2 (ii) from which it follows that the global solutions 

aEo are unique in the balls . r). 

Proof of Lemma 4.6 It suffices to prove the assertion for g mapping [0,1] into [O,g(l)]. 

Since g is monotone, lun g(x) exists. If this limit is greater than zero, the assertion follows 
x-0 

If Lim g(x) = 0,  define 
x 4 0  

xn:= sup(x : g(x) I l /n) for n = No, No + 1, ... 

where No is determined by g(1) > A . Due to left continuity and monotonicity, the supremum 
No 

is actually attained. Furthermore 0 < g(x,) I l/n and (x,) is decreasing by definition. There is 

1 1 a strictly decreasing subsequence {x,  ) with - < g(xn ) 5 - . Then x -+ 0, since 
k "k+l k "k "k 

1 otherwise x tends monotonically to some a >  0 and 0 .: g(a) 5 g(x, ) 5 - with nk + - .  "k k nk 

Now define a step function h(.) by 

h(x) = g(x, ) on (xnk, xnk-,I . k 
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By construction lim h(x) = 0 and 0 < h(x) b g(x) for all x > 0. Finally the desired function k(x) 
x-0 

is obtained by linear interpolation of (x, , g(x, )) and (x, . g(x, )) on (xnk, x ,k-, I. 
k kt1 k-1' k 

Proof of Corollary 4.7 We shall apply Proposition 4.1 and Theorem 4.2 (i). 
For p in the interval of admissible regularization parameters, one has P 2 8 (I-,@)). Hence, 
applying Theorem 4.2W with r = rl(6), we obtain that for every global solution a! of (PI! with 
I z - zo 1 S 6 = 61(r(6)) there exists a global solution aEo E QP such that 

P Moreover, Proposition 4.1 implies that for every a z  E Q~ there exists a solution azo of (P)zo 

in QO with 

Taken together, we find for every global solution a! of (PI! a solution aza of (P),o with 

- a o  b & + K 2 e .  

This ends the proof of Corollary 4.7. 

5. Stability for Regularized Problems with Small Modelling Errors. 

In Theorem 4.2, stability of the solutions a$ of the regularized problem (P)$ with respect to 

perturbations of z was shown under the a-priori assumption that 8 c: p. In this section we first 

prove a stability property, where "modelling errors" in the system equation are taken into 

consideration: if these modelling errors are sufficiently small and if the observation is attainable by 

the model-emor free system, then there always exists an interval of regularization parameters for 

which the regularized problems are stable with respect to perturbations in the observation. 

Furthermore we analyse the relationship between the perturbed regularized and the unperturbed 

unregularized problems. 

Consider the family of parameter estimation problems 
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where u(a; c,f) is a solution of (4.1) and (c,f) are taken from a weakly sequentially compact 

subset M of ((c,f) E L2 x L~ : c(x) 2 0, a.e.). Recall that this is equivalent to the assumption 

that M is weakly closed and bounded. It can be checked that the constant K of section 4 can be 

chosen uniformly w.r.t. (c,f) E M  . 

The results of this section depend upon the following attainability assumption, i.e. for the 

unperturbed observation zO there exist model parameters (a0, cO, P) E Qd x M such that 

u(aO; cO,P) = zO. 

The parameter a0 is to be estimated, while an estimate (c,f) for (cO,@) is assumed to be 

available and fixed. Replacing (cO,P) by (c,f) takes into account the modelling error. We study P 0 its influence on the estimation of a0 from (P),;,,J. For (c,f) E M we call (P)Z~;c the 

unperturbed, unregularized and (P)!., the perturbed regularized problem. . , 
Henceforth all neighborhoods of (cO,P) will be understood to be a subset of M and K will be 

uniform w.r.t. (c,f) E M . The solutions of (P)!;,~ a~ denoted by a! (cf) .  

As in (4.1 1) one can show that z + lu(a; c,f) - z l2 + PN(a) is globally Lipschitz continuous at z0 
in the neighborhood v(zO,l) c L2 of the unperturbed observation zO, uniformly with respect 

to (a; c,f) E Qad x M . This Lipschitz constant is denoted by L. 

Theorem 5.1 Let zO E L2 and suppose that there are model parameters (a0; cO,l?) E Qad x M 

with 

(5.1) u(aO; cO,P) = zO. 

Let fi satisfy K-' > p(fi) and choose P* E (0,p). Then there are a weak L2 x L2-neighborhood 

v(cO,P) c M , a strong L~-neighborhood v(zO) and a neighborhood V@*) of (cO,P), zO and 
p* respectively such that for every global solution a! (c.f) of (P)!;,~ with 

(r;  c,t, p) E v(zO) x v(cO,f") x v(p*), there exists a global solution a!,, ( c f l  of (P);O;,,~ wkh 

Conversely, there exists r > 0 such that for every global solution a$J (c,f) of with 
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(c,f$) E v(cO,P) x V@*) and every z a v(zO) there exists a local solution a! (c,f) of 

(P)!;,, in c.f),r) = {a E Qd : I a - a$ c , f )  1, i r l  and every such local solution 

in vW(a$ (c,f),r) satisfies (5.2). 

Lemma 5.2 Suppose that the model parameter (aO,cO,@) satisfying (5.1) is unique and 

choose P+(E) according to Proposition 4.l(ii). Then for every P* E (0, P+(&)) there exist a 
neighborhood v ( ~ * )  of P* and a weak L2 x L2 neighborhood ?(cO,P) of (cO,P) such that 

all global solutions afdc,f) of (P)$ . ,~~  and a:o(c.f) of (P)$;,,~ with @,c,f) . o@*) x +(co,P) 

satisfy 
laEo (c,f) - a:o k , f )  1 -  2 E K ~ .  

where K2 is an embedding constant of H2 into L" 

To describe an approximation property of (PI!., to (P):O;,~ we combine Theorem 5.1 and . . 
Lemma 5.2. Choose S1 > 0 such that v(zO; ti1) = {z E L~ : I z - zO 1 5 $1 c v(z% with 

2L v(zO) as in Theorem 5.1. Recall the notation P-(E,~) = - 6 
K-' - p(fi) E2 

Theorem 5.3 Suppose that the model parameter (aO,cO,@) a Qad x M satisfying (5.1) is 

unique and choose & > 0, 0 < 6 < ti1 . Then for every P* with 8 P-(&,6) < P* < min(j,~+(&)) there 

a weak L~ x L~-neighborhood ?(cO,P) of (cO,P) and a strong ~~-ne i~hborhood  ?@*) of 

p*, such that for aU global solutions a! (c,f) of (P)!,~ with (P,c,f) E $43') x 3(c0,P) and 

I z- 8 I S 6 there exists a global solution eo(c,f) of (P):o;~ with 

where K2 is the embedding constant of H2 into L". 

Remark 5.4 For 6 sufficiently small one can always guarantee that 

8 P-(E,~)  = l6 ti < min (P . P*(E)). 
E~(K- '  - ~ ( 6 ) )  

Remark 5.5 Consider the one-dimensional boundary value problem 
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for a E Qad = (a  E R : a E [1,2]). For f E L2(0,1), put V (f) = (u(a) : a E Qad). We give an 
example such that 

Thus for the model-error free system attainability holds, but arbitrarily close there are systems (i.e. 
- (au,), = fn ) for which z0 P V (f,). Properties (5.3) hold for the choice 

,o = *-2 . n 
sm xx , 9 = sin xx , and fn = - n+ 1 sin xx , n = 1,2 ,... 

In this case V (f,) = . Clearly z0 E V (P), fn -+ in C and 

n l .  
z0 E V (fn) for n = I,?,. .. hold. Since z,, + z0 in L2(0,1), for z, = ;;;i- 7 sln ~ Z X  E V (fn), x 
it follows that lim dist (zO,v (fn)lL2 = 0 n -t- 

Remark 5.6 In this section stability w.r.t. perturbation of the error free observation z0 was 
guaranteed provided that the model error (represented by the distance from (c,f) to (cO,P)) is 
sufficiently small. An attainability assumption for the observation - and model-error free system 
was made throughout. 
The techniques of the paper can also be applied to the related problem of stability of the solutions of 
(P)$,,~ with respect to perturbations of the observation-model coefficient vector w = (z;c,f). 
Let us consider the attainable case in which for the observation-error free z0 there exist a model- 
error free coefficient (cO,P) and a0 E Qad such that u(ao, cO,P) = zO. Define a memc space 
W = L~ x W1 , where W1 is a weakly compact subset of L~ x L2 containing (cO,P). In 
particular, W, is rnemzable. Using the notation of Theorem 4.2, if, for r > 0, 

?K 8 = 2 fi , then there exists a > 0 and a neighborhood 9 c W of (zO,cO,P) in 
K-' - p(k) 

the L2 x Gd x L ~ ~ - q m l o g y ,  such that for every global solution a!(c,f) of "th 
p E [Q . 61 and w = (z,c,f) E 9,  there exists a global solution a;~;~a,p of (P)$;,o,~ with 

2 
Here E(.) is the modulus of continuity of the mapping (z,c,f) -+ I u(c,f) - z I from 

2 2 2 L x Lwd x Lweh to R. 

Proof of Theorem 5.1 We apply Corollary 2.7 together with Remark 2.8. Assumptions (i) - 
(iii) of Corollary 2.7 are shown in the same manner as in the first part of the proof of Theorem 4.2. 
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P We turn to (iv) of Corollary 2.7. The Lagrange functional of (P),o;,,~ is given by 

where (c,f) E M , 6 2 0, a E Qad and g is defined as in the proof of Theorem 4.2. Observe that 
for any solution ae(c.f) the associated Lagrange parameter I *  = (I;.I;) satisfies A; 2 0. Let 

P* E (o,P(~)).  We shall show that there exist r > 0, a weak L~ x ~ ~ - n e i ~ h b o r h o o d  v(c0,9) 
of (cO,P) and a neighborhood V@*) of P* such that 

As in the proof of Theorem 4.2, see (4.17), one can show that 

for d l  h E H', a E Qad and (c,f) E M . Let afo (c.f) be a solution of (P)$;,~. We find 

2 2 Since a -+ u(a;c,f) from Qad c H to L is Lipschia continuous, uniformly with respect to 

(c,f) E M we have 
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for all a E B. By Proposition 4.1 and due to the attainability assumption we find for every solution 

where q = K-I - p(i). There exists a closed neighborhood v(cO,f? c M of (cO,P) in the weak 
L2 x L2 (metriable) topology on M such that for all solutions a$ (c,f) of (P)$;,,~ with 

(c,f) E v(cO,P) 

holds. If this were not the case, then there would exist a sequence ((c,,fn)) in M and solutions 
{a!: (cn,fn)} of (P)!:;,~,~ with c, + co and f, + P weakly in L ~ ,  and 

Since {a$ (c,,f,)) is a bounded sequence in H', it contains a weakly convergent subsequence 

with limit ^a E H ~ .  We shall drop the subsequential index. It is simple to show that 

and taking the limit in (5.9) this implies 

(5.10) P*n P*K-' - 1 u(i,cO,P) - ro I 5 

It has also simple to show that i is a solution of (PI$; ,op and hence by (5.7) 

holds. This contradicts (5.10) and hence (5.8) holds. Moreover there exists a neighborhood 
V(P*) of B* such that 

for all p E V@*) and (c,f) E v(cO,fl. If this were wrong, there would exist a nontrivial 
Pn sequence IDn} converging to P* and solutions azo(c,,fn) with (cn,fn) E v(~O,ZO) such that 
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Without loss of generality it can be assumed that 

2 a c, + c ,  fn + in weakly L ; and a 0 (cn,fn) + i weakly in H', 

for some elements 6,fl E v(cO,P) and a E Qad. Then 

a u(aZo (cn,fn), cn,fn) + u(i,;,T) in L~ 
and by (5.12) 

P' But i is a solution of (P)Zo.S and thus (5.13) contradicts (5.8). Hence (5.11) holds. 
9 .  

P*r\ Combining (5.6) and (5.1 1) we have for r = - 
16K2 

for all (c,f,P) E v(cO,?) x V(P*), a E B and h E H2. 

The second part of Theorem 5.1 follows from Theorem 2.5, Remark 2.6 and (5.14). This ends the 
proof. 

Proof of Lemma 5.2 Choose P* E (O,P&)) and suppose, contrary to the assertion, that 
there exist sequences (P,) in R and ((cn,fn)) in M with 

Pn + P*, (cn,fn) + (cO,f") weakly in L ~ X L ~ ,  

a Pn O such that and solutions azo k,,fn) of (P)zo;kfn and a:o (cnf) of (P)zo;kf 

Since {a!$ (cn,fn)} and (a!) (cn,fn)} are bounded sequences in H2, there are subsequences 

(we drop the subsequential index) converging weakly in H' and strongly in L" to a$ and a0 
respectively. From (5.15) it follows that 

(5.16) la$-aol 2 E K >  
m 

Pn The optimality property of aZo (cn,fn) implies 
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I% for d l  a E Qae Since weak convergence of (azo (cn,fn), cn,fn) in H ~ X L ~ X L ~  to 68, cO.P) 

Pn implies convergence of u(aZo (cn,fn), cn.fn) to u(i$ , c0.P), and due to weak lower semi- 

continuity of N from H~ to R we find from (5.17) 
2 D* 2 -P* 1 . cO.P) - zO I + P*N(izo) i 1 u(a.co.P) - zo 1 + P*N(a) for all a s Qad . Hence azo 

is a solution of (P)!;;,op. Similarly one can show that i0 is a solution of (P);O;,O,~ . By the 

uniqueness assumption i0 = a0 and Proposition 4.1 implies thst 

This contradicts (5.16) and ends the proof. 

Proof of Theorem 5.3 Let E > 0 and choose P* < min (~+k) , f i ) .  By Theorem 5.1 and 

Lemma 5.2 there exist a neighborhood V(P*) of P* and a weak ~ ~ x L ~ - n e i ~ h b o r h o o d  \j(cO,P) 

of (2 ,P)  such that for all global solutions a! (c,f) of (P)!;~,~ with 

( ~ ; ~ , f p )  E V ( Z ~ ; ~ , )  x ?(cO,P) x Q(p*) there exists a global solution a$ (c,f) of (P)!o;,,~ with 

and for all global solutions a!o (c,f) of (P)!O;,~ and a$ (c,f) of (P):O,~ 

P Thus for all global solutions a, (c,f) of ( P ) $ ~  with (z;c,f;P) E V(Z';S~) x ?(c0.?) x 9 ( ~ * )  

there exists a global solution 40 k,f)  of (P):o;,,~ such that 

If in addition to the above restrictions on (z;c,f,P), we have I z-z0 I 5 6 and P E (8P-(&,6), 
min (B , PC(&j)), then 

This ends the proof. 
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