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1. Introduction
The first objective of this paper is to study the stability of the solutions of the parameter dependent

optirization problem
(P)y min f(x,w) over xe QuucQ

with respect to changes in we W, where W is a metric space. We consider the case where for
w e W, f(,w) is defined on an open subset D of the Banach space Q with D > Quq, and
stability is studied with respect to a (semi-)norm that is possibly different from the original norm on
Q. The necessity of considering two topologies arises because x may represent a parameter in a
partial differential equation and hence it must enjoy sufficient regularity to allow for wellposedness
of the partial differential equation. This determines the original topology on Q. On the other hand,
the nature of the optimization problem might not allow for stability of the solutions x4 of (P)y,
with respect to this norm topology but rather only with respect to a weaker topology.

In section 2 we adapt techniques developed by W. Alt [Al] and H. Maurer [M] to obtain stability
results of the "two topology" optimization problem under a second order sufficient optimality
condition. These results essentially assert that local solutions cannot vanish under perturbation and
that they depend Holder continuously on the perturbation parameter w and secondly, that for every
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global solution of the perturbed problem (P),, there must be a nearby global solution of the
unperturbed problem (P)WO and that these global solutions also depend Holder continuously on the
parameter w.

In the subsequent sections these results are applied to parameter estimation problems associated
with elliptic equations given by

(P)Z minimize 'u(a)—z‘% over ae Q,,

where Y is an appropriately chosen Sobolov space, z€ Y, and u=u(a) is the solution of

—div(agradu)+cu=f on QcR",
(1.1)
u=0 on 98,

with cfe LAQ) anda e Q,q, where

Q,y = {ae HXQ) :alx) 2v(x)>0, lal , <7}, with ve HY(Q).

For dimension n =1, H3(Q) is replaced by H!(0,1). Concerning the stability of the solutions a,
of (P), withrespect to changesin z € Y, itis wellknown that z — 7% in Y does not imply con-
vergence of the solutions a, to ay in H? (resp. in H! if n=1), in general ; see fur example
{Ru]. The question naturally arises whe: z2r it is possible to choose a weaker and problem-
dependent topology, for which z— 2% in Y implies 2, =2, in the weak topology.

In section 3 we take up this problem and suggest a solution for several parameter estimation
problems associated with two point boundary value problems.

While the determination of this weak topology is of interest since it exhibits the inherent stability
properties of an estimation problem associated with a partial differential equation, it might also
indicate that for practical calculations the lack of stability with respect to a sufficiently fine topology
for the parameter convergence cannot be ignored. One common remedy to this difficulty is the
introduction of a regularization term. Thus we would replace (P), by

(P)E minimize | u(a)-z |i +B (él | 2 l iz + id%} | a,(i,(j l i2)
where the regularization parameter B is a small positive number. Observe that only a seminorm as
opposed to the full H2-norm is used for regularization. This reflects our numerical experience with
elliptic equations which shows that much better results are obtained with seminorms than with full
norms. In section 4 we show that the solutions ag of the regularized problems depend Holder
continuously (in H2-respectively L™) on L2-perturbations in the observation z. We explicitly
specify the Holder constant in terms of B, Q.4 and the distance of the unperturbed observation z0
to the attainable set V = {u(a): a € Quy}. Asexpected this constant diverges as gl 0. Explicit
knowledge of the Holder constant allows the study of the convergence of the solutions ag of the
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perturbed, regularized problems to the solutions ago of the unperturbed, unregularized problems.

For our analysis it is not necessary to require that the error free observation z0 is contained in the
attainable set V. We allow the possibility of modeling error, which is reflected in dist(z0,V ) > 0.
However, if dist(z0,V) is too large then the range of admissible regularization parameters for
which the regularized problems are stable, may shrink to zero. - In section 5 we address this
problem and assert that if there is some model SO which has 20 in its attainable set, then "nearby"
models § with modeling error still have good properties in the sense that there always exists a range
of regularization parameter values for which the regularized problems for S are stable and the
solutions aE(S) of the regularized problems with observation error converge to solutions ago(S)

of the observation error free unregularized problems for S . ‘

Stability investigations which are comparable to those of the present paper were given in
[C1,C2,C3, CK1,CK2, EKN,KS,N,Ri] for example. Chavent, [C1-C3] working in an abstract
frame work studies the projection of z onto the attainable set by geometric and Banach space
analysis techniques. The results of Kravaris and Seinfeld [KS] are based on Tikhonov's lemma and
Richter's approach in [Ri] builds upon the observation that when u is replaced by z° equation
(1.1) is a hyperbolic equation for a. In [EKN] and {N] various classical results from the
wellknown theory of Tikhonov regularization for linear inverse problems are generalized to the
nonlinear setting that is required for parameter estimation problems. These results are then applied
to parameter estimation problems associated with two point boundary value problems and under
appropriate assumptions on the a—priori knowledge of the solutions of (P)go rate of convergence
for the solutions of the regularized problems to the solutions of the unregularized problem is
proved.

The present research continues the investigations of {CK1,CK2]. It improves the earlier results by
the fact that we can now work with two topologies, as explained above, and that we calculate
explicitely the Holder constant, whereas in [CK1,CK2] we only asserted the existence of such a
constant. Now we can clarify the relation between the solutions of the regularized perturbed
problems and the unregularized unperturbed problem (cp. Corollary 4.7, below). Moreover in this
paper we consistently use only a seminorm for regularization as opposed to the full norm that was
used in [CK1,CK2].

Notation: By Hi(u) we denote the common Sobolev spaces over Q with valuesin R as
explained, for instance, in [Ad]. The space of essentially bounded functions endowed with the
supremum norm is denoted by L°(€2). To specify the inner product and norm we generally use as

an index the symbol of the Sobolev space, as for instance lq)IHl. However, we write l¢l_
for gl « and with the LAQ) =HYQ) inner product and norm we frequently drop the index.

In section 3 the function spaces are considered over bounded intervals J © R. In this case Hi(J),
12

2
) as a norm. Moreover we put

i
. . . o @
ie N is endowed with '(P'H‘(J) = (}Eﬂ loV] L&)
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H})(J) ={pe H'(): ¢(0)=¢(1)=0} and use oht gy = 19" as a norm for HIO(J).
0

LD
" 2 ol 2y . e
Similarly HO(J).-— HO(J) A~ H(J) is normed with Icplﬂzo(]) =1"; 2.5y

In section 3 - 5 free use of results from the theory of elliptic equations as explained in {G,LU], for
example, is made. Throughout differentiability is understood in the sense of Fréchet-

differentiability.

2. Stability for Perturbed Optimization Problems

In this section stability results for solutions of perturbed optimization problems are proved. The
assumptions will allow applications to parameter estimation problems. We consider the family of
problems

(P)y minimize f(x,w) such that g(x) € -K,
where ' DxW >R and 2:Q— Y, with Q and Y Banach spaces. Further D is an open
subset of Q, (W.d) is a metric space and K is a closed convex cone with vertex at the origin in Y.

Keep wle W fixed. Then w0 is used as the unperturbed reference value of the parameter w.
The index w will be dropped if no ambiguity can occur. We assume that

Qu=1{x€e Q:gkx)e -K]}
is a convex subset of D. A point x%e Q,y is called regular (with respect to the constraints) if
2.1 0 e int{g(x% + g,(x9)Q + X}

We assume throughout that f and g are twice continuously Fréchet differentiable with respect to
x and that f is uniformly continuous with respect to w at w9 i.e. forall € >0 there exists &>
0 suchthatforall xe Quq andall we W

(2.2) d(w,w?) < & implies If(x,w) - f(x,wO)l < €.

We denote by &(8) the corresponding modulus of continuity. Thus for some §,> 0 and all
de 0.5y

(2.3) €(8):=1inf {€>0:(2.2) holds for all x € Q,4}

1s welldefined and positive. Clearly g(8) - 0" for § — 0*. Throughout we put
V(w? = {w: 8(w,w% < §,}.

We recall the following first order necessary optimality condition (see e.g. [MZ; W, Theorem
5.3.2]). The dual cone K* of K isgivenby K= {y*e Y*:<y*y>20 forall ye K}.
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Proposition 2.1 Let x” be a local solution of (P)wo which is a regular point of Q..

Then there exists a Lagrange multiplier y* € Y*, ie., y* satisfies
(2.4) £ 0w +y* g (x0) =0, y*e K*, y* gx% = 0.

In order to prove a stability result for the solutions of (P),, the following second order sufficient
optimality condition will be used. Recall that 2 seminorm M on Q isa mapping M: Q —» R*
with M(Bx) = BM(x) for B e R* and M(x+y) € M(x) + M(y).

(§SC) For a seminorm M on Q- with M(x) € mgx! for some m,
independent of x € Q, there exists y* € Y* satisfying (2.4)
and for some o >0 and r>0

[ (W0 + y¥g, (0)(v-x%,v-x?) > aM(v-x,)?

forall ve Q4 andall x € Q,q with M(x-x%) <.

Lemma 2.2 Condition (SSC) implies
£(x,w%) 2 £(x%,w0) + aM(x-x%2

forall x e Q,q with M(x-x%) <.

Proof: Let x e Q.4 with M(x-x% <r. Then g(x) e -K and hence y*g(x) <0. Thus
£0x,w0) 2 £0,w0) + y*g(x),
and, by the mean value theorem,
f(x,w0 2 f(x% w0 + y*g(x9)
+ {6, w0) + y*g, (xD1(x-x%)
+ i, (w?) + yrg (01 x—xx—x9)
with x:= tx0 + (1-0x, te [0,1]. Now (SSC) is used to obtain
fx,w® 2 £(x0,w0 + [f,, (x,w) + y* g (xO1(x~x%xx%)

£f(x® w0 + aM(x-x9?,

\Y

which is the desired estimate.
Lemma 2.3 Condition (SSC) implies
(2.5) £(x,w) 2 f(x0,w0) + aM(x-x%)2 - e(d(w,w?))

forall x e Qy with M(x-x®) <r andall we V(w9).
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Proof: Let xe Q,q with M(x-x%) <r and let w e V(wP). Recalling (2.3) we have
If(x,w) - f(x,wO) < e(d(w,w0)).

From (SSC) and Lemma 2.2 one obtains
£(x,w®) > £(x0,wY) + aM(x-x%?

and hence

\

f(x,w) = f(x,w0) - f(x,w) - £(x,w")!

i%

£ (x0,w0) + aM(x-x%)Z - g(d(w,w?)).

The M-local extremal value function W () is defined by
p(w):= inf{f(x,w) : g(x) &-K, M(x-x%) < 1}.

Lemma 2.4 Let x° and r>0 be such that f(x%,w% = p (w0). Then the M-local extremal
value function p(w) is continuous at w? with the same modulus of continuity as f with respect
o w, Le.

(W) - h(wWOt < e(d(w,w) for we V(w0)
with () given by (2.3).
Proof: We first show that for all w e V(w9

w(w) < p(w0) + e(d(w,w) .

By (2.3) we have for all we V(w0)

pw) < fxw0)

IA

£(x0,w0) + If(x,w0) - f(x0,w)!

IN

(w0 + e(d(w,w0)) .

On the other hand one obtains for all x € Qug with M(x-x9) <r andall we V(w9

i

(w9 f(x0,w0) < f(x,w0)

728

fx,w) + V(x,w0) - f(x,w)l

[7aN

fx,w) + e(d({w,wh).
These two estimates imply the claim.

0
Theorem 2.5 Let x0e Quq satisfy (SSC). Suppose that (2.2) holds and that 8y >0 has been
chosen small enough so that &(8g) < et 2/2. Suppose further that for all w with d(w,w9) < g
there is Xy, € Quq With M(xx%) <1 and pi(w) = f(xy,W).
Then M(xw-x0)<r for all w satisfying diw,w%) SSO, ie. xy isalocal minimum of (P), (in

the topology induced by the seminorm M) and
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12
(2.6) M(x,~°) < (%) eld(w,w")2.

Proof: By assumption p(w) = f(xy,w) and from Lemma 2.2 we have (w9 = f(x0,w0).
Lemmas 2.3 and 2.4 imply

O M(x-x92 < If(Xy,w) - £(x0, W) + e(d(w,w®)

IA

Xy W) - Ry + (W) - (WO + (d(w,w0))
2 e(d(w,w?))
2 3(80)

IN

IA

< orl.

Thus M(x,-x% < and also the asserted estimate (2.6) follows.

Remark 2.6 Suppose that f is Lipschitz continuous w.r.t. w at w® uniformly in x e Qupr

so that there exists L >0 such that
QD if(x,w) - f(x,w%l < L d(w,w

forall xe Q.4 and all w in a neighborhood V(w% of wP Thenfor we V(w®) estimate
(2.6) has the form

12
2.6) Mlx ) < (2] awaw9)'?,

since in this case €(8) <L3. - An inspection of the proofs shows that it suffices that (2.7) holds

uniformly w.r.t. only those x € Q,q Wwhich satisfy M(x%x) <1 for (2.6)' to remain valid.
We proceed to discuss stability of globally optimal solutions.

Corollary 2.7 Let the following assumptions be satisfied:
@) Q,q is weakly (sequentially) compact ;
(ii) Q has a compact embedding into a Banach space X with norm Iy ;
(iii) f:DxW — R is jointly continuous with respect to the X-topology
on D and the metric topology on W ;

(iv) There exist >0 and r>0 such that for every global solution x°
of (P)w° there exists y* = y*(x®) e Y* satisfying (2.4) and

[fxx(x,wo) + y*gxx(x,wo)](h,h) >« lhlf(



880 COLONIUS AND KUNISCH

forall he Q andall xe Qq with Ix-x"y<r.

Then there exists 8; >0 such that forall we W with d(w,w®) < 8, and every global solution
. R 0 .
x,, of (P),, there is a global solution x° of (P) o with
1/2

2.8) ixy =0l < (-‘2;) e(d(w, w2,

Proof: First we show that there exists 8; >0 such that forall we W with d(w,w% < 3, and

all global solutions x,, of (P),, there is a global solution x° of (P),0 with [x,~x°1_ <.
W w w w X

Suppose not. Then there exist a sequence w" converging to w® and global solutions x, Of
(P)yn such that
Ixn-xolx 2T
for all global solutions x® of (P),0. By weak compactness of Q,q we may assume that
X, = x* weakly in Q and hence by (i})
Ixa-x¥lx — 0.
But this is impossible since it can be shown that x* is a global solution of (P),0. In fact, by
optimality of x, for (P), , one obtains
f(x,,w" < f(x,w") forall xe Quq
and with (iii)

f(x*,w0 < f(x,w0) forall x e Qyq.

Due to compactness of Q.4 in X and as a consequence of (iii) the modulus of continuiy €(8) of
f wrt w uniformly in x € Q.4 is welldefined for & sufficiently small. Decreasing §; if
necessary, we can assume that £(-) is defined on [0, 81]. The proof can now be completed with
an estimate analogous to that at the beginning of the proof of Theorem 2.5.

Remark 2.8 If there exist L. >0 and 3, >0 such that
If(x,w) - £(x,w%) < L d(w,w%
forall we W with d(w,w% < 52 andall x e Qy with Ix-xoix <r, then (2.8) has the form

2L )‘/2 1
' D = 0
2.8) el < (22) 7 dlwwd)
forall we W with d(w,w®) <8, and 3, e (0,5)).
Remark 2.9 The results and proofs of this section are similar to those in [Al]. The main
difference between our treatment and that in [Al] lies in the fact that Q is endowed with two

different topologies here. The introduction of the second, weaker, topology realizes the fact that in
certain classes of examples stability of the solutions does not hold with respect to the natural norm
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topology on Q so that one is obliged to resort to some kind of weaker notion of stability. - The
results in [Al] also admit perturbations of the admissible parameter set Qs

This section is concluded with a technical lemma in which we give sufficient conditions on a point
x € Qu 10 be regular in the sense of (2.1). It will be used frequently throughout the paper.

Let L < Q be a closed convex cone with vertex at zero and let q* be a nontrivial bounded linear
functional on Q and denote with 7: Q — ker g* the orthogonal projection from Q onto the kernel
of q*. For pe Q, ue R and ye RY define
g2Q-Y=QxRxR
by
809 = (p-x, X2 - Y%, q*(x) - )
andput K=LxR*x{0}cY.

Lemma 2.10 Let [ker g*I* AL # {0} and assume that q*(L) <R*, q*(p) <y and
|7r(p) 124+ p2 | h, l L 72 where h; e (ker q"')‘L N L with g*(h,) = 1. Then the set
Qu=1xe Q:gx)e -K}
is non-empty and every point x of Q.4 is regular ie.,
Oe int{gx)+g'(x)Q+K) forall xe Qa4+

Proof: The existence of h, with the specified properties follows from [ker q"‘]‘L A L=# {0} and
q*(L) cR*. Moreover Q can be expressed as Q = ker g* ® span{hy}. The orthogonal projection
from Q onto [ker q*J* which we denote by T, is given by

T(x) = g*(x)h, for xe Q.
In order to show that Q,, is non-empty, we define

x=p + (u—q*(p)hy,

Observe that

p—% = (q*(p)-phg & L

[x12= |n@) |2+ 2 by |2 <

and q*(x) = it. Thus X & Q,4 Now let x € Q. be chosen arbitrarily. We have to verify that

(2.9) 0e int{(p—x-h+L, |x|2-y? +2(x,h) +R*, q*()) : he Q} c Y.
Put
2 2
5o | PO 2101 gep)
1+2'Y+27' hO , HQ*IHI

where ]lg*]| denotes the normof g* and define B ={(x,7,5) € Y : ||(X,T,8)lly <8}. Without loss
of generality we endow the product space with the supremum norm in this proof. We shall show
that

2.10) B c {(p~x-h;~chg+L, |x|2- 72+2(x,hl+oh0) +R*,0q*(hy)) : h; € kerq*, 6 ¢ R},

from which (2.9) follows. Let (x,1,5) € B be chosen arbitrarily. We put 6 =3 and verify that
there exists (hy,1r*) € ker g* x L x R* such that
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(211 (p—x—hy=shy+ 1, [x12 =¥+ 20,0 450 +1%) = (X1

This will imply the claim. Observe that by the choice of 8 we find that j1— q*(p) + q*(x) +5 2 0.

Hence 1, defined by
1= (1~ g*(p) + q*(X) + hy

isin L. Choosing h; as
h; = n(p-x—x)

we obtain equality in the first coordinate of (2.11). For the second coordinate in (2.11) w. observe

that
[x]2 ¥+ 20ch+ 5ho) - T

[rx 12 +p2 0y 12 = 4 + 20x,7(p-x=K) +5hg) - T
brx 2+ p2n 12 =P+ [nx |2+ |apl2 - 2] ax |2+ 2¢)% ] + I3 IngD -7
12l ho |2 = + [np[2+ 2871+ by 1) + 8.

IA

IN

Hence there exists r* & R* such that equality holds in the second coordinate of (2.11). This ends
the proof. 0

Remark 2.11 The conclusion of Lemma 2.10 remains valid if some of the constraints involved
in defining Q,4 are deleted. If the linear equality constraint is not present, then the assumptions
q*(p) <p and |mpf? + hol? u2 <y are replaced by |p} <.

3. Stability for the Estimation Problem in a Natural Norm

In this section we apply the results of section 2 to parameter estimation problems associated with

elliptic boundary value problems. We consider
3.0 -(au,), + cu =f on (O1)

for f & L? together with appropriate boundary conditions. Unless otherwise specified, all function
spaces ate considered over the interval (0,1) in this section. Let q denote one of the coefficients a
or c in(3.1) (the other one is assumed to be fixed). We assume that q is known outside of an
interval I:=(a,3) < [0,1); if @ =0 or B=1, these points are included in I. Let I° denote
[0,1]\ 1. The parameter estimation problem consists in determining the unknown coefficient q
over [ from an observation z. This observation z corresponds to the solution u(g*) of (3.1)
evaluated at the "true”, but unknown coefficients q*. Due to modelling and observation error, z
may not coincide with u{g*). In this case q is determined as the coefficient which gives the best
fitof u(q) to z. Thus we consider the least squares problem

®), min Ju(Q) - z/|2
Q€ Qg z

where Q= Q,4(D is the set of admissible parameters defined on I, with Q< Q. Q aHilbert
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space, and z is an element of the output space Z, which is also a Hilbert space. The space Q is
chosen such that its elements are sufficiently regular so that, together with lower pointwise bounds
on q guaranteeing ellipticity of the operator Au =- (au,), +cu, solutions u(q) of (3.1) exist in
Z The observation z is called attainable if z is contained in the attainable set V:= {u(q) : q € Q)
We shall not require attainability of z in our analysis.

Henceforth we concentrate on the stability of the solutions of (P), with respect to perturbations in
the observation z. Itis wellknown that q —u(q) from Q.4 < Q to Z is not continuously
invertible (in a multivalued sense), in general [EKN,Rul. This implies that the solutions q, in

Q.3 = Q of (P), do not depend continuously on z, in general. In [CK1,CK2] we used Tikhonov
regularization to define problems that are "near” to (P), and for which the solutions depend con-
tinuously on the observation z. Here we show that the problems (P), themselves exhibit some
weaker form of continuous dependence of the solutions q, of (P), on the observations z in Z.
This will be accomplished by endowing Q also with a coarser topology. Clearly, it is desirable for

the gap between these two topologies to be small.

We denote by z°e Z the unperturbed reference observation and suppose that

Qc X, X aBanach space with norm Hx .

Open neighborhoods of points x in a Banach space are denoted by V(x).

Definition 3.1 The parameter g in (P)Zo is called output least squares stable (OLS-stable) with
respect to {Q ad(I), X, Z) at the local solution q,0 of (P)o if there exist neighborhoods vz in Z
and V(qzo) in X and a constant k >0 such that forall z @ V(z®) there exists a local solution

q, of (F‘)Z in V(qzo) and for every such local solution q, of (P)z in V(qzo) we have

d 12 .

lqz-qz()lx < klz-2 v4

We point out that — while we do not insist on uniqueness of the solutions of (P)Zo — the following
local uniqueness property holds: If 9,0 is a local solution of (P)Zo such that QLS-stability holds
at q g, then q , islocally (w.rt. the X-topology) unique.

FA

(i) Estimation of the coefficient a
We consider the estimation of the coefficient a in

f in Q1)
0

3.2) - (auy), + cu
u(@ = u)

where fe L2, f#0, and ce L2, c20 are fixed.
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Let ve HY0,1), 2 e H'O,1) andlet I= (0,B) < [0,1] be as described above.Here v will be
used to give a lower bound on the set of admissible parameters and  plays the role of an a—priori
guess for the true parameter. We consider only coefficients a which satisfy a=Vv on I°. Further
it is assumed that

B
minv>0 on (0,1), a=v on € and Jv dx<m, where m=] adx
a o

Two choices of admissible parameter sets will be considered:

Q2 =@ = {acH I):azvon L la=al 1S alo) = v(o), a(B)=v()}
and

Ql, =Ql @ = fac Qy: Iadx m}.
If a=0 or =1 the corresponding boundary condition in Q is omitted. Throughout it is
assumed that

lv-alpp<-

Unless otherwise specified the elements a of Q;d , 'j=1,2 are identified with their extensions to
functions in H'(0,1) obtained by a(x):= v(x), xe IC

Due to the pomthse Jower bound on the coefficient by the positive function v there exists unique
solution u(a) € Hy N 12 of (3.2) forevery ae Qjq, i=1 or 2. Onccan show that Qly isa
closed and convex subset of H!(D) and hence it is weakly sequentially compact in HI(1). This
implies that the problems

®),0 min | u(a) - 2°| W over Qi

have a solution in % The norm bound is essential for this argument. The remaining constraints
that are involved in defining Qad are required to guarantee OLS-—stability of a local solution a0
of the unperturbed problem (P)zo and will be considered together with one of the following

assumptions:

HD There exist constants k, and k, such that 0<k, < ux(azo) <k,
on [a,p) and 0< (ky— kl)2 ([S—oz)2 < k%.

(H2) There exist constants k, and k, such that ux(azo) >k >0

) 2 2
on [a.Bl, ‘uxx(az°)|L2(a,B)<k2 and 2(B-0) kj < ki .

The problem (P) o over Q;d will be considered together with (Hi). Thus for the estimation
of a in (3.2) from data 20 we fix the parameter a on I as well as its mean on [0,1].

For (H1) to hold, ux(azo) should be large and flat over {a.Bl.
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Theorem 3.2 Assume that a g is a local solution of (P) o, and that e Hé AHZ,
z

Then the following assertions hold.

@ If (H1) is satisfied and if | zg -u fag) | s sufficiendy small, then the coefficient
z oo

. . 1 2 1
a in (P)zo is OLS-stable w.r.t. (Q,; (I, L°(D, Hy) at ag-

(i) If (H2) is satisfied and |z’ —u(a o | » is sufficiently small, then the coefficient
z

a in (P) o is OLS-stable wort. (QF, (0, H'(), H) at ap.

The proof of this and the following theorems is given at the end of this section.

We could not obtain an analogous result for L2 as an output topology; (technically, this appears to
be due to the fact that the H! norm of the product of two functions cannot be bounded by the
product of the corresponding H™! norms).

While the Hg observation space might be of analytical value only, the Hé observation criterion
proved to be numerically effective when (P), was solved with an augmented Lagrangian method,

even when only pointwise data were used and a discrete approximation to the least squares term

2
| U~z ILZ was used [IK]. In the proof of Theorem 3.2, the condition on the distance of u(a,)

to 2° is given explicitly in terms of k;,k,,f and Q;d (see (3.11), (3.17)).

(ii) Estimation of the coefficient ¢
We consider the estimation of the coefficient ¢ in (3.2) where ae HI, a>0 is fixed. Let I be

defined as above and let v be a fixed element of L2 satisfying v=0 a.e. and Ivi <.

50
Define the set of admissible parameters by
= 2.
Q4= {ceL"M:c2vonl ICILZ(I) <v}

Unless otherwise specified the elements ¢ of Q,4 are identified with their extensions to functions
in L% (0,1) obtained by
c(x):=v(x), xel°.
The problems
i . 0
(P)ZO min  |u(c) -2 |Hi over Q4
0

for i=1 or 2, 2%e H', have a solution coe Q..
0 20 Qg

The following assumption will be used:

{(H3) There exists a constant k >0 such that u(c o) >k on la,pl
z

Theorem 3.3 Assume that ¢  is alocal solution of (P)izo for i=1 or 2 for which (H3) holds
z
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and that |u(c o zo!Hi is sufficiently small. Then the coefficient ¢ in (P)'; is OLS-stable w.r.t.
z 0 z

Qy m, (1), Hio) for i=1 respectively 2.

Proof of Theorem 3.2 The proof is given in several steps.
(i) Let us first summarize some facts that will be used in the sequel. There exist constants K, ,
K, and K, such thatfor fe L? the following inequalities hold

1
(3.3) k—l- lfle < ‘u(a)]Hg < K, !fle,
1
(3.4) o ileﬂl < lu(a)}Hé <K, ]f|H_1
and
X
(3.5) {u(a)lwl)m < K3 XESFO;?” !(J)f(s)dsl

forall ae Q' ,i=1 or 2. Toverify (3.5) observe that by the mean value theorem for every
Y

ae Q; 4 there exists & € {0,1] such that u (§) =0. Hence we obtain

u = 1 (cu—f)ds
a

X

and therefore by (3.4)

S —,

in

1 i ]
L fd
S? 1 qu(x)! min v(x) (CLZ o2 xeSl[IOP?H | £ d

xe {0,

1 X
—_—— K el il 42 fd l].
min v(x) [ 1 cL2 ! xes‘il(gll ’ (I) *

A

X
Since ifi__, £ su | {fs)ds|, we easily obtain (3.5) from this estimate.
H xel0,1] O

For ae H!(0,1), a>0, the mapping a = u(a) is twice continuously (Fréchet-) differentiable
from H'(0,1) to H2(0,1) and the first derivative u, (a)(h) in direction he H!(0,1), resp. the
second derivative u,,(a)(h,h) in direction (h,h) & H! (0,1) x H! (0,1) are characterized by

(3.6) A@N = (hu@), and A@E = 2(hn,),

where =0 b) = u(a(hh), &=E&G@ b =u_(@(hh) and A@:HyNH? — L is given by
A@e = - (@), +co.

(ii) We show that the shifted set of admissible parameters

Q;d ={a~3:ae Q;d}, i=1 or 2,
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is non—empty and that every point in Q;d is regular. Let us first consider the case i=1 and

O<o<B<1. Then Q;dc:Q is given by

p
Qaldz{ae H@:a2v-3, !aIH‘(I)SY' L adx:O,a(a):a([S)=0}.

We apply Lemma 2.10 with

Q=HyD with (|’ +lal?

in B
LM L (I)) asnorm, L={ae Q:a20}, q*(a) =J‘ a(s)ds,
o

p=v-2e Q and u=0.

. .. 2
The mapping g: Q » QxR xR isgivenby g(a) =(p -a, 'alﬂl(l) -9 q*(a))
B
Observe that q*(L) cRY, q*(p)<m —j 2dx=0=y and
o

fnlelm= ’n(v-i)iH,ms ]v—ﬁlH1<y. To apply Lemma 2.10 we need to argue

that (ker g*)1 ~ L # (0}. Let y be the unique solution of
~ VY +¥=1 on (oB)

yo)=y(B)=0

By the maximum principle ¥ € L. A short calculation shows that W € (ker q*) and hence
ho'= q*(y) ly satisfies hye (ker ¢*)* N L and q*(hy) = 1. Thus Lemma 2.10 implies the
assertionincase 0<a<P<1 and i=1.

We now discuss the necessary changes when 0 =a <f <1, and i=1. Thecase O<a<fB=1
is treated analogously and O =a<B =1 cannot occur with (H1) holding. Thus 1=[0,8) and

B
%:{ae H'D:azv-3 1afH‘(DSy, Ladx:(), a(ﬁ)zo}.

We proceed as inthe case O<a<f <1 only with Q chosenas Q={ae HY(I): a(B) =0}
and hy=q*(y)y, where v is the unique solution of

~Y, tw=1on (0Op)

¥, (0 =y()=0

In fact w(t) =1 - (P + e By l(et + & and y e L N (ker q*)L N Q. The assertion again follows
from Lemma 2.10.

Next consider the set de ={a-a:ae Qﬁd }. Ttis given by
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~Q§4={ae H(D:a2v-3 la‘Hl(I)Sy, a(a) = a(B) = 0}.

If oo=0 or B=1 the corresponding boundary condition in Qid is omitted. Since by

assumption lv-a | Ho <Y, it follows from Remark 2.11 that Qid is non—empty and

that each of its elements is a regular point.

(iii) We show that under the assumptions of Theorem 3.2(i) there exist constants k >0 and r>0
such that

3.7) In@m12, + <u@ -2, & h)>,1 2 kb
. n (a; Hé ula) -z, &(a; >H(1)_ 2y

p
forall ae Q1 with la—aol = ‘a—-ao( <randall he H ={he Q:] hdx=0,.
ad z z o

L2

0 0
Here h e H! is obtained as the extension of h 10 [0,1] by putting h=0 on I©

The two terras on the left hand side of (3.7) are estimated separately. We shall use the fact that

the Laplacian A is an isometric isomorphism from Hé ontoitsdual H! andthat P =DA™' D

can be extended to a bounded linear operator on L2. Here D stands for differentiation. Moreover
1

P is an orthogonal projection with (I- P ) ¢ the constant function with value 6[ ¢ ds in L?,

see ¢.g. {IK].

If {a;} isan arbitrary sequence in Q;d converging strongly in L? to anelement a* e Q;d,

then {a } converges weakly in H! t0a*, since Q;d is bounded in H'. Consequently u(a )
converges weakly in H2 and hence strongly in C! to u(a*). By (HI) one can therefore choose
r, such that Ia—azolem <1 and ae Q,  imply that 0<k, Su, (@ <k, on L

By (3.4) and (3.6) we find for a e Q;d with fa- az°lL2(I) <ryand he H

@Ry = 1A7@ Gu @yl 2 ' |(h u, (), |1
S R T (L B -l 8
= ;' la (hux(a))xl},é =K' P hu,(a),2
and therefore
1
(33) KInwhlh > bl - (ho@ae?
= |hu @2 —(?hu(a)dx)z
L 1 I '

To estimate the last term we put
Q" = (xe (@p) :h(x)20} and
Then we obtain

{x € (a,B) : h(x) < 0).

1}

A

B
fhuf@dx = [ hu@dx + | hula)dx <k, ] hdx+k, | hdx
a Q* Q o Q
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B B
= kI hde (o) hdxo= (kyky) [ hax < Ggkp) f [nfax.
Q Q «
This estimate is used in (3.8)
0
Ky In@nlh 2 i hllag ~G10? ] 2y 6-0

and thus we find that

(3.9) @l 2 K208 -0k -1 |2,
0

2
£ r andall he H.

forall ae Q,y with 'a—azOILZ(I) <

We turn to the second term on the left hand side of (3.7).
For ae Q;d and he H we obtain by (3.3) - (3.6)

| <u(a) - 2%, &(a; ng& | = 2]<(A @) Aua) - 2%, 100, (a; ﬁ)>|

< 21 (A7) Alu@ - 2| _ 18] In @ )

X
(3.10) sk s | [180@-2@ sl bl i@l oy 65

xe (0,
0 0 o
£ 4KK; 1ux(a)—7,lw lh| [hu )l

4K KK; If] lu@ -2 ihliz(n

Let us assume that

K52 12 = (k;—ky)? (B-0)?]
4K KK, |f]

(3.11) (ux(azo)—zg|w <

Since a —yu,(a) from Q;d , endowed with the L2—topology to L™ is continuous, there exists
re (0, 1)) such that (3.11) with ao replaced by a holds uniformly forall ae Qu with

la- azo| <r. From (3.9) and (3.10) we deduce the existence of a constant k > 0 such that

0 0
. 2 _ 0 . > 2
ln(a,h)lHé + <u@-2", @ h)> | 2 k|h‘L20)

forall ae Q;d with |azo— al <r andall he H, provided that (3.11) holds.

L

(iv) We verify Theorem 3.2(i). It can be seen that (2.2) is satisfied. Let E: QL — QL

be given by E(@) =a+a. Clearly E is a homomorphism when QJ; and Q) are endowed
with the H!-topology. The problem

P), minlu(a)-z!ilé over Q;d
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is equivalent to
®), min |u (B (i))—zlf{é over Q:d

in the sense that 2, is a local solution of (P), if and only if E(a,) is a local solution of ®),.
(Both, in (P), and (P), itis understood that a resp. E(a) areextended to (0,1) by setting the
coefficient equal to v there). Let d, = a,0—2 with a, as in the statement of Theorem 3.2(3).
We show that for f: QLy — H! given by

£@) = |u(E@)~ zolf{é
condition (SSC) is satisfied so that Theorem 2.5 is applicable. This will imply Theorem 3.2 (i).
By (ii) and Proposition 2.1 there exists a Lagrange multiplier y* = (yr, y;,y;) e QxRxR
satisfying (2.4). Hence it suffices to argue uniform positivity of the second Fréchet derivative of

f +y* g. Observe that for every ae Q;d and he Q

*

HOxR = Y2 |n|

(3.12) <y*, gaa(a) (h,h)> ) 20,

2
Ha
since y;ZO. Forall ae Q;d and he Q we find
_ 00 _ 00
£, @ (hh) = 2 | (EE; h,h)l:é + 2<u(e) - 2, §ER >y -
From (3.7) we conclude that
k2
(3.13) £ @ ) 2 3 [0l
~ =1 . - _lz_z
forall ae Qad with |Ea—azo‘Lzm = la az°1L2(I) <randall he H.
Therefore we obtain
. - k 2 - = . - -
£ @hh) +y g @O0 2 5 |hl?5y forall he # and de QL with la-agl 2 <1

and Theorem 2.5 implies Theorem 3.2().

(v) We now prove part (ii). First we ascertain the existence of constants k>0 and r>0 such
that

2

(3.14) ‘ﬂ (a; }(;)|2 + <u(a) - 2% &(a; l(')l)> >k ]?)l
. s Hg s . Hg = HI(I) B

forall ae Q% with (a-—azolHl(I) <r andall he Q
By (H2) one can choose r{ >0 such that la—azo]Hl s, and ae di imply that
ufa) 2 k; on I and iuxx(a)‘Lzm < k.

Using (3.3) and (3.6) we obtain for a e Q% with la—a,ly <1 and he Q
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02 - 0 2 ﬁ 2
InGa; h)|H§ = A @ ux(a))fog 2 K12 l@ ux(a))leZ(D

2 2 1 2 2
(3.15) = K;° |n i@ +hyuy@ 50 2 K {(5 (hyu ™ = [hu, )dx

v

~2.2 2
K, "k 2 -2, 12 2 -2(“1 2) 2
= = {Ihxl e - Ki- Il o di2g 2 K25 -B-a) Inel 2

We turn to the second term on the left hand side of (3.14). For a e de and he Q we obtain
by (3.3) and (3.6)

A

0 _ 0 0

| <u(a) - 2°, E(a; h)>H§ | < 2]u(a)—z°ng A\ thn, (s h))"l—lg
o 0 0

2K1|u(a)—ZOlH§ (‘hﬂxx(a;h)iL2+ ihxﬂlez)
0

< 2K,lu(a)—z°lH§ (g In |

A

0
a4 Il 1)

A

4K1|u(a)—zong ,lh‘,le(I) IT\‘Hg)

< 4K% lu(a)-—zolﬂz [h,| | (h u @)y |

L4 LAw

2 .0 2
< 8K7 ula) -~z ng Ih"ILz(I) lu(a)'Hg
and hence
0 2
(3.16) |<u(a)—zo,§(a; h)>Hg' < SK%lu(a)—zong [£] lh"iLz(x)'

Let us assume that
2 2)
K; (31 - B-a) k5
8K If

3.17) lu(azo)—z°lH: <

Since a —uf(a) from Qid endowed with the Hl—-topology to H is continuous (observe that
. 2
U, = -al- (cu~-f-a,u,)), thereexists re (o,rl] such that (3.17) holds uniformly for all ae Qj

withla—a ! £ r. From (3.15) and (3.16) we deduce that there exists a constant k; >0 such
that

2

(3.18) l'r\(a'g)l2 + <u(a)-2° &(a'g)> >k, ||
: " Tul > S22k iyl

forall ae Q7 with !a-aZOILzm <71 andall he Q, provided that (3.17) holds. With (H2)
holding, the mean value theorem implies that =0 and B=1 cannot occur simultaneously.

2
Hence l h, (

2
2 h f . .18).
L@ kzl IHI(I) or some k,>0 andall he Q and (3.14) follows from (3.18)

The assertion of Theorem 3.2(ii) now follows with the same arguments as in (iv). This ends the
proof.
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~ B.
Remark 3.4 In the definition of di we chose m =] od dx. This choice which was made for
B.
convenience, effects only step (ii) of the proof. If m # | o @ dx and the additional assumption

2
H'®

<

is made, then again Lemma 2.10 is applicable in step (ii) of the proof and Theorem 3.2 remains
valid.

Y B. 2
|1t(v—a)‘H,([)+(m—faadx) lh0|

Proof of Theorem 3.3
(i) First some facts are summarized which will be used further below.
There exist constants K,,K, such that the solution u(c) of (3.2) satisfies

(3.19) K, el < Teol g < Ky el 5,
and
(3.20) UKy Iy s Iu(c)IH& < Ky ltl .

forall ce Q,q. For ce L2(0,1), ¢ 20, the mapping ¢ — u(c) is twice continuously
differentiable from L2(0,1) to HX(0,1) and the first derivative u (c)(h) in direction h e L(0,1),
respectively the second derivative u  (c}(h,h) in direction (h,h) € L2(0,1) x L2(0,1) are
characterized by

(3.21) Alc)n = —hulc) and A(c)E = -2hM

where 1 =n(c; h) =u(c)(h) and & =E(c; h) = uc(c) (h,h) and Alc): H(}n H? L2 is given
by AlC)p = —(@Q,), +¢co.

(i) Nextitis shown that Q,q is regular. Let
K= (pe LXI): 920 ae] xR*

and let g: L%(I) — L%I) xR be defined by

2
glo) = (vli-¢, {C‘LZ(I)_YZ)'

Then we find that Qq = (9 e L2 : g(p) e —KJ.
Since by assumption (vl 12 < v, Lemma 2.10 and Remark 2.11 implies that every element of

Q,q is a regular point.

(iii)  To prove the assertion of Theorem 3.3 we employ Theorem 2.5 with f: Q4 — H(‘) s
i=1 or 2 given by
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' 2
fle) = |u(c)-2°| is
and verify (SSC) with M(x) = [x ,Hi‘z " By Proposition 2.1 and (i) there exists

2
y*= (yr,y;) € LR satisfying (2.4). Since 8 (©)(h,h) = (0, [n] L2) and since y; 20, it suffices

to show the existence of k;>0 and ;>0 such that

2
(322) ec@bh) 2 i lnl iy

forall ce Q,q Wwith ,C_Cz°lHi-2(1) <71 andall he L20) for (SSC) to hold.
Observe that
0,2 0
fo.©Xhh) = 2|nc; b Wt 2 <ulc) - 2, E(c; h)>H;

for i=1, or 2, Let us first consider the case i=2. Since ¢ — u(c) is continuous from Qa4
endowed with the L2-norm to H? (H3) implies the existence of r3>0 such that u(c)=>k on
[ee,B] forall ce Q,q with lc—czo'L2 S T3 Forthese ¢ and he L(1) we find by (3.19)

and (3.21)
(3.23) In@®] , = 1A @ hue)] . > k! [h )]

' el g @ > K el
> K hu@] 5 > kK In|
=™ Ll = % L2

Next observe that for h e LAI) and ce Qg

[<u(e) - 20, E(c; f,’)> ng < 2|u) - zolﬂg lA'l(c)l(:n(c; ﬁ) ng

< 2Ky lu@ -2 , [hneh]
S e IRO T2 g Thnle b 50

IA

2K Ju@-2°] - Ine; )] ,|n]
1 H2 g Hg L%(1)

2K] lu(c)—z°|H2 ,A_l(c)gu(c)'
0

ZKf lu(c)—zO|H2 [hu)] 2
0

H02 I 'LZ(I)

IN

L2 I |L2(I)

and therefore
2

(3.24) |<w© -2 4 b | < 2x2k, el T =201 [ni 2y,

Let us assu.ne that
k2

(3.25) [u(c 0-20 < —=_ ,
2 ; 2KiK, lfl

and observe that there exists 1) € (0, ;] such that (3.25) with C,o replaced by c holds uniformly

forall ce Qad with lc—czole(D £1p.
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From (3.23) and (3.24) we deduce the existence of a constant k, >0 such that

e, 2 <o) -2 B>, 2k, Inl
n{c H(2)+ ulc) - 2%, Elc; >H%_ s o

forall ce Q,q with le- CZDILZ(I) < T andall he L2(I), provided that (3.25) holds.
This is (3.22) for i= 2.

We turn to the case i = 1. Since ¢ —» u(c) is continuous from Q4 endowed with the H!-norm
to H!, there exists r4 >0 and €>0 suchthat u(c)2k on I=[max (0, @ ~¢), min (1, B +g)

forall ce Qy with [(c 'Cz")mH—l(I) <1, . Forthese ¢ and he L%(1) we have by (3.20)

In(c;g)‘ L= IA‘I(c)gu(c)l 12 Khllgu(c)’ -1
Hy Hy H

0 0
1 <h ulc),v> 1 <h ulc),v>
= K, sup o] z K, sup o]
ve Hy(0,1),v=0 Vy L2 ve Hy(3),v=0 Vx L2(J)
h
i Wz 2
= su
weB(C?,w#O ‘( w ) { )
ule) /x LD

where Blc)={wulc):we Hg,(])}. Since Blc) = H(l)(J) we find

0
0 _ <h,v>; 2
IT\(C; h)lHl > Kzl 5113)) . _‘__V.__I:I_(D._ .
vE LY — 2
Ky (u(c))x L20)

A short calculation gives

(), ey
—_— C e
(u(C) )x <O K2 Yxl g

and therefore

g
K2 <DY> ) K* 0|

0
(3.26) Inte; )| | > = thl .
! 2K§lf|H_1 ')

Hy

— sup
2K31el _; veHlOlvso bv, | 0

Next observe that for he L2(I) and ce Qud

0 0 0
(3.27) <ule) - 2° Elc; h)>Hé < lu(c)—zolHé !A—I(c)(hn)‘% < K2|u(c)—z°}H(1) lhan_l,

0
where 1 =7(c; h). In the following estimate the supremum is taken over 0#ve Hé :
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0
]g | <g,vn> <A™V h),, (V>
n 1 = sup ————— = sup ——————————
H vl , lleg
0 0
(A ta] |l | a7l dvnl+lvaD
H(} x Hé X X
< sup | | < sup l I
v v
H; Hy
0 ., .0
<200l Iané =2lnl A 1(c)hu|H(1)
0 0 0,2 0,2
< 2Klnl L Thel o< el luly < ax3lel o Il

with A the Laplacian as defined in the proof of Theorem 3.2. Next we prove that there exists
x>0 such that

(3.28) bl L <x| Bl forall he LAD.
H™ H O

It suffices to show that

4 0
< h,v> < h,v>

2 2
sup L=(0,1) L=(J)

<K sup
ve}{é,v;eo ‘Vxl

ve HJ(),vz0 | A\ l

L2(o,n LD

Take any ve Hé((),l) and define ve Hé(J) by

0 on I

v on 1

V(x) = 7 v(%w%(s—a)) on (a-¢, al

v (%B i+ B (B—l+e)) on I8, Bte).

4

Then a straightforward computation shows

[ s mox (2112 ) [ P

and hence the assertion follows observing that <h,v> = <h,v>L2

L¥o.n
From (3.27) and (3.28) we obtain forall he L2(I) and c Quq

(O

2
(3.29) <u(e) - 2°, &(c; h)>H3 < 4% (f(H_l x Iu(c)—zo|H(1) 'h‘u“m‘
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Let us assume that
4

2
(3.30) |u(czo)-—z°| 1 < —E—?— .
Ho SKK%)fl}rl

Note that there exists 1y € (0,r,) such that (3.30) with c,o replaced by c holds forall c € Qy

with |c - czol wig ST From (3.26) and (3.29) we deduce the existence of a constant k; >0

such that
2n@ I, + 2<u© -2 8 By 2 kg 2 kIl
ey R ;2 S N - ¢ I RS - g€
. 2 .
forall c e Qyq with le~col, ;<1 andall he LX) provided that (3.29) holds.

This is (3.22) for i =1 and the proof is complete.

Remark 3.5
In the proofs of Theorem 3.2 and 3.3 we ignored the possibility that y; could be positive; compare

(3.12). The effect on the stability of estimating ¢ from data z when y; >0 has been considered

in [CK 1; Theorem 5.3]. Of course, y; > 0 is special case and it requires that the norm bound in

the admissible parameter set is active.

4. Stability for Regularized Problems

In this section we consider the problem of estimating the diffusion coefficient a in the Dirichlet
problem

“4.1) —~div(agradu)+cu = f on Q
u=0 on 0Q

from a measurement z by means of a regularized least squares fit-to-data criterion. Here 2 isa
bounded domain in R, n=2 or 3, with a smooth (C2-)boundary 9Q or Q is a parallelepiped,
and f and ¢ are fixed elements of L2 with ¢ 20 and f=0. All function spaces are taken over
the domain £ in this section. The set of admissible coefficients is chosen to be

Qu=1{ae H2:a2v, lﬁa|H2 < v},

where ve HZ, minv>0 and |v |H2 <7¥. As aregularization term the square of a seminorm

on H? given by

n

N@) = 2 |ax, X |2 + i laxA ‘2
1 !

iy dp=1 ! ip=1
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is used. For a measurement z € L? the regularized least squares formulation for estimation of a
from z is given by

B

Py, min|u(a)—z|2+BN(a) over ae Qy,

where B is a small positive parameter. Since Q,q is a weakly sequentially compact subset of H?
and since both a — Ju(a) — z|2 and a — N(a) are weakly lower semicontinuous from H2 to R

it is simple to argue existence of a solution aE of (P)E as well as of a solution a, of the unregularized
problem (P), (this is (P)E with B =0). It will follow from the proof of Theorem 4.2 that for a certain
range of regularization parameters the norm bound is not required for (P)E to have a solution. The norm
bound, however, is necessary to guarantee existence of a solution of (P),. Without it the solutions
of (P)E may diverge as B — 0.

We shall study the continuous dependence of global and local solutions of (P)lz3 on the observation z.
Some additional terminology and notation will be used. Let z°e L2 denote the unperturbed
reference observation. The attainable set V is defined by V = {u(a):a e Q,4} andfor $>0 we
put

Qf = {ago €Qy: an is a global solution of (P)Eo}

and
Q° = {azo € Qad: a0 is a global solution of (P)Zo and N(azo) is minimal },

Clearly the sets QB are not empty. Convergence properties for the solutions of (P)Eo to those of (P)Zo

are summarized first. In particular it will be shown that Q? is not empty. All the proofs of the
results of this section are given at the end of this section.

Proposition 4.1
p
() Let {B} bean arbitrary sequence in R with B, — 0". Then every sequence {azé‘ }
Bn

with ag € Qﬁn has a strong accumulation point in H2. Every weak accumulation

point is a strong accumulation point and it is contained in QP.
(i) Forevery €>0 thereexists B*(€) >0 such that for every B e (0,8*(e)) and every
an € QB there exists a solution ao of (P)zo in Q¥ with
lag —azolﬂz <e.
(i) The function p(B):N(azo) ~ sup {N(an) : agoe QIA }, where ap€ Q°, tends to 0

monotonically as B tends to 0" and forall §>0 and all an e QIi

el 2017 < B p(®) + dist O ).

Observe that N(azo) is independent of the choice of age QP so that p(B) is welldefined on (0,B).

In the statement of the following results K 2 1 denotes a constant which depends on min v, ¥, c,
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f, Q, n and the embedding constants of H? into L= and H! into L4, and this dependence
could, in principle, be calculated explicitly.

Theorem 4.2 (i) Let B <1 be chosen such that
®) < =
PP < g
let r >0 be arbitrary and define

_ dist (%Y Y+ K

8 -
K1-p(®

If =30 < {3 then there exists a neighborhood V(z°%) = {z: fz-2°] < 8,0} of 2% in L2

such that for every Be [§, [_3], ze V(z% and every global solution ag of (P)E there exists
agoe QB with
2L\ 12
B-abl < () =215

(01

with o= (K ~p(B) B-0) and L=2(K + 12 +1. If "¢ V then B=r> KK ' - p()™"
can be taken arbitrarily small.

(ii) Conversely, forevery Be (3, f_S], every ane QB and every z € V(z%) there exists at
least one local solution aE of (PE) in V, (an,r) = {a: Ia-a[:oler} and every such local

solutionin V__ (ago,r) satisfies

12
8-l < (B) =217

As a corollary to the proof of Theorem 4.2 we obtain:

Theorem 4.3 In the notation of Theorem 4.2, if B(r) < B, then there exists forevery e (3, B],

for every ane Q{3 andevery ze V(2% at least one local solution ag of (P)E in

Vip (ago ,0={a: la- ago { 2 S 1} and every such local solution in VH2 (an ,T) satisfies

2L\
(42 P -dblp < () a2l

dist 2 V): - B
Corollary 4.4 In the notation of Theorem 4.2, if f:= ————— < [, then (P)p can
T K- p®)

only have finitely many solutions an forevery fe (B, B].

Remark 4.5 A weaker form of Theorem 4.3 was proved in [CK2]. There the full HZ norm as

opposed to the seminorm N was used for regularization, the neighborhoods of an within which



OPTIMIZATION PROBLEMS AND PARAMETER ESTIMATION 899

Hélder continuous dependence is asserted were allowed to depend on the specific global solutions

ago and only existence of some Holder constant was given, whereas in (4.2) the dependence of

this constant on parameters of (P)Eo is clarified.

Observe that the radius 8,(r) is determined in Corollary 2.7. If the radius r of the ball on which
(SSC) holds decreases, so does &(r). In fact we may assume that 8,(-) is monotonically
increasing, left continuous with 8,(r) >0 for r>0 and §,(0) =0.

We note the following lemma.

Lemma 4.6 Suppose that g: [0,.0) = [0,%) is monotonically increasing and left continuous
with g(0) =0 and g(x) >0 for x> 0. Then there exists a strictly increasing and continuous
function k: [0,00) — [0,00) with 0 < k(x) € g(x) forall x20 and k (x)>0 for x >0.

Hence there exists a continuous and strictly increasing function 8,(-) with the properties that
8,(0)=0 and 8,(r) € (0, 5;(r)} for r> 0. Since Corollary 2.7 and Theorem 4.2 remain valid if
81(-) is decreased, we may assume that 8,() itself is continuous and strictly increasing with
8,(0) = 0. In particular there exists a continuous and strictly increasing function ry(), the inverse

of 51(-) with 1,(0) =0 of 8;(:) with r;(0) =0. Observe that r;{:) is defined on the range of
&, which is of the form [0,8) with § e (0,<]. In the next corollary it is tacitly assumed that

5e (0,9).

Corollary 4.7 Let 0< [_3 <1 be chosen such that Kp(fi) <1, let &8 be positive constants
and suppose that z € L2 satisfies | z—2z°1 < §. Define

2L d

B8 = — =
Kl-p(p) €

Thenforall Be [ () +J (rl(S)), min {B*(e), [_3}] and for all global solutions aE of (P)‘Z3

there exists a solution a o € Q® of (P),o with
B_
(4.3) lf-a,l < (1+K)e,

where K, is the embedding constant of H2 into L*.

Remark 4.8 The range of admissible regularization parameters for the applicability of Corollary
4.7 is given explicitly by

[(2L &/e? + (dist OV D>+ 1,0 / (K™~ p(B)), min {B*(e), B

In particular, if 2% € V, this interval is nonvoid provided that the measurement error & is small
compared to the desired accuracy € for the estimated parameter.
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AP

min(8,8% (e v4

jik

B (e, ") +Blry ()

Figure 4.1 (e fixed)

A

BT (e, ) +B(x 8 87(®)

I

rl(G)ZK

K 0@

Figure 4.2 (6 fixed)

To demonstrate further Corollary 4.7 we illustrate in Figures 4.1 and 4.2 the range of B values
for which (4.3) holds in case that z%e V. In Figure 4.1 the admissible § values are shown as a
function of 8 with £ >0 fixed and Figure 4.2 gives the admissible B radius as a function of €
while 8 >0 is fixed.

Remark 4.9 Under the assumption that u(a) = z has a unique solution a result comparable to
Corollary 4.7 was obtained with a different method in [KS].

Proof of Proposition 4.1  Part (i) follows with minor modifications from Lemma 3.3 in
[CK2]. In [CK2] N was assumed to be radially unbounded. This assumption was only used for
existence of solutions of the regularized problems. In the present case this follows from

the fact that Qgq is norm bounded. Lemma 3.3 in {CK2] asserts that {aEO"} has a weak

accumulation point as n —» e, that every weak accumulation point is a (global) solution of (P) o

and that lim N(afg‘) exists with lim N(aE{,‘) = min {N(azo): z° is a global solution of (P) 0}
n n
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Let {af(l,‘} be a weakly convergent subsequence of {aE(l,‘} with limit a’. Then {af(l,‘ } converges
0. .2 . . Biy _ NGOy 1 By _].0
strongly to a~ in L and, since hin N(azo)—N(azo)—N(a ), lllr(n |azo |H2— |a |H2-

Together with weak convergence of {afé( } this implies strong convergence of {afé( } to a%in H?

and ends the proof of (i).

To verify (ii) suppose that for some € >0 and for every ne N there exists By e ©,1/n) and

az(;‘ e QB" such that for all solutions a, of (P)zo in Q°

4.4) lab-a,l , 2 e

L H?
By (i) one can choose { a[:(’)‘} such that this sequence converges strongly to a solution of (P)Zo

in Q°. This is a contradiction to (4.4).

Finally (iii) follows from
lu@)-2" + pNGY) < lu@@y-201°+pN
u@g) -2l + BN@y) < lulay-2"1 +BN(@y),
which holds for all >0, ao€ QB and a0€ QO.

Proof of Theorem 4.2  The first part of this theorem will be verified by demonstrating the
applicability of Corollary 2.7 in conjunction with Remark 2.8. To establish the connection with
Corollary 2.7 let D={ae H2: a>minv}, léet W=L2 and define B:DxW-R by

Ba,z) = lu(a) -z %+ PN()

The X-topology of Q,q <D is defined by the Lm—topology and Q= H2 . Since Q,q isa
weakly sequentially compact subset of H? and since H2 embeds continuously into L™, (i) and
(ii) of Corollary 2.7 are satisfied and (iii) can be verified by a short calculation. It remains to
establish assumption (iv) of Corollary 2.7 and the continuity assumption of f specified in Remark
2.8. Some technical preliminaries are summarized first.

For ae Qad let A(a) denote the realjzation in L2 of the differential operator in (4.1);. ie.
dom A)=H% H(I) and A(a) =—div (a grad @) + c¢ . Observe that u(a) = ANt gives the

solution of (4.1), that A(a) is selfadjoint and that A(a) is a homeomorphism from H2 A Hé onto

L2 for every a€ Q,y. There exists K; >0 dependingon minv,y,c and Q such that

1 -
(4.5) e lel 5 < la l(a)ngz <k lel

forevery ge L? and a e Q,q - From (4.5) we deduce the inequalities
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1

-1
(4.6) -IC }g|H_2 < |A (a)g|L2 < K1|ng‘2’

forevery ge L? and ae Q,q - Indeed, using (4.5) we have

M@l = wp AWV A )
ozve L2 |V|L2 0eve L2 lV|L2
(g.v) . (g.v) Lol
= S —_——— D — S = g 2.
O;tveSIL-ligﬂHé |A(a)v]L2 K Oveve}u{gmHé IVIHZ T

The second inequality in {4.6) is proved analogously. Moreover K, can also be chosen

sufficiently large so that
1
{4.7) X ‘g‘Lz < |A“1g\H2£Kl\g}L2

holds for all ge L2. From (4.7) we obtain Ialgl < K, lg‘H—z forall ge L? and hence
with (4.6) we find

& 1t < Ll s Kilaul,o,

and therefore

(4.8) L l£] 5 < |Au@!| _, forevery ae Q.
GO H

Since n=2 or 3 there existconstants K, and K5 such that

(4.9) Inl_ < 1<2|h|H2
and
(4.10) Il o s Kslnl,

forall he H2. We recall that |h|°° is used for Ihle.

To verify the Lipschitz continuity of f specified in Remark 2.8, let ae Q.4 and
ze V1) = {zeL2: 120~2z1<1). Wefind

[ lu@) -zl +lu(@) = 2% | | lu(@) -zl — lu(a) = 2% |

1fP(a,z0) - fB(a,z)l

IA

4.11) Q@ -20+1z-201) 1z=20

IA

RE, I+ +1] tz-2%,
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and thus fP is Lipschitz continuous with respect to z uniformly in a (and independently of ) and
the Lipschitz constant can be chosen as L =2(K +1z%) + 1, where K has the properties specified
before Theorem 4.2.

Turning to assumption (iv) of Corollary 2.7 let us first observe that by Lemma 2.10 and Remark

2.11 every element of is regular. Therefore there exists for every aB € QB a Lagrange multiplier
2

A* = ().}' , 7»*2() c H*xR satisfying (2.4). In particular 7\; 20 . Here we suppressed the depen—

dence of A* on the specific solution ago . The Lagrange functional associated with (P)Eo is given by
F(a) =l u(a) - 2812 + A* g(a) + B N(a),

where g: B 5> H xR is defined by gla) =(v - a, (aliz—“{z).

The éecond derivative of F w.r.t. a is given by
Fa@(hh) 2 2[nG@h) |2 +4 () - 2% A™N@) V (0 V) + 2% 1h) 52+ 2 B Nw),

where
N@h) = A=) V(Y u(a)),

(cf. [CK2, (4.12), (4.13) and Example 5.2]). It will be convenient to drop the dependence

b
on a inthe notation of n(a;h). Using the facts that x; >0, that —ab 2 —a’— = forany

2 and b in R and the selfadjointness of A(a) we find

Faa@(,) 2 2 [ | + 4 (VYA @)u(@) = 290, 1(h)) + 2BN(h)
@.12)

> Inm1% -4 | VOV @) - 29 | > 2BN).

Henceforth K21 is used as a generic constant depending only on K;,K,,K;, n and f. By
4.5), 4.7), (4.9) and (4.10) we obtain

VYA @)@ -29) | € Tha@l@)uE) -2 |+ | VhVAal@) ) - 20) |
< K lhlmlA-l(a)(u(a)—zo)le + i=§1 }hxi,L4 I(A*l(a)(u(a)—zo))Xi|L4

< Kszlthzlu(a)—z‘)l +nK K2 [hl , Ju@~2°] < Kin| , lut@-2°]

| "

and thus by (4.12)
@13 Ey@hh 2 2lnb)+n el - axlnl®; luw- 12+ 28N ),

where h e H? has been decomposed as h =hy +h; with
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hy = Jghtdx and hye (9 e H: Jg o(x)dx = 0).
For every h e H? we find by (4.5)

(V(hVu(a), A~ @)v)

Inw| = A Xa) (Vh Vu@)| = sup
orve L2 lvl
(V(hVu(@)), v) (hVu(a), Vv)
= su —= < K| L e—
ozve H nHé [A(a)v‘ oxve H nH(l, |V|H2
2 172 2.2
(zlhuxl<a)lL2) <Elvxile>
< Kl sup l |
O#ve H°nH, v Hz
< & Inl_luwl,z < XK, Inlp, el
and hence
(4.14) Inw|* < Klnl%; forevery heH.

For a constant function with value h; one obtains with (4.6) and (4.8)

} b, | Iyl
Intpl = 1A @b, @] 2 T || 2 < €l
and hence
2 . 1

4.15) Inepl® 2 2 Ingl o
From [IK2] we recall that

2
4.16) N(hy = Kyl

forany hye (pe H2:[pdx=0).
Using (4.14) with h=hy, (4.15) and (4.16) in (4.13) we find for every k> 1
x-1 2 2 2 2 012
F@hb) 2 — Intpl + (-9 Inthy) |~ 4K CIny | 2+ Ikl 2 lua) - 2] + 28N

2 [ f-a =21, + 28+ (120K — 4K [u@ — 21 gl .
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B B 1 K _ X _1
For B e (0,11 choose K—1+K.Itfollowsthat K—I—K, K—_KTEZKHZZ and

2 2 2 2
Fua(@(hh) 2 [-2—1[3(—2—4K[u(a)—z°| ] (hlle + [B-4K [u(@ - 20| ] Ihle2

-0 2 2
> ﬁLTl(z—“K |u(a)'3 20 J(|h112+|h.2|}12)
2
2 1 [u(a) - 2| 2
> 8K B[(us)z— 5 Ithz.
Thus we find
(4.17) F,()hh) 2 5[%— ]u(a)sz | Jmin(,hl;z,’hli)

for some generic constant K> 1 uniformly in Be (0,1] and a e Qud-

Using the mean value theorem one can show that q - u(q) is globally Lipschitz continuous from
Qa4 endowed with the L*-topology to L2 (compare the estimate before (4.14)), so that K can
be chosen such that

(4.18) lu<a>—u<zolL2 < VK min(la-al 5, [a-a[ )

forall a and a in Qa4 As in the statement of the theorem let r>0 andrecall that § and [—3 are
chosen such that

p(B) = N(azo) — sup {N(ago):afoe QB} < 1

<
where aoe Q0 and
8 = nldist (°V )2+ 2 K),

where we put =K1 - p(ﬁ).
From Proposition 4.1 it is known that

(4.19) ) 221" < B @)+ aise 0 ).

With (4.17) - (4.19) we obtainforall ae B={a: la—afol <, agoe QP Be B, B}
andall he L™

VAN R MR ARG
Fp(@)(hh) zﬁ[%— |uta ;(al")' - uazoﬁ 2
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_ . 0y/1\2
_fgl(__p(ﬁ)_dlst(E,V) J Ihli

=

(4.20) > B[
= p[n-B il = n-p L

This is (iv) of Corollary 2.7 with o= (K™ ~ p(ﬁ)) (B~ uniformly for all aE" € QB and

Be (8, ﬁ]. Reconsidering the proof of Corollary (2.7) one observes that V(2% can be chosen
independently of B e (3, B] and the first part of Theorem 4.2 is proved. Theorem 4.2 (ii) follows
from Theorem 2.5, Remark 2.6 and (4.20).

Proof of Theorem 4.3 From (4.17) - (4.19) it follows with a calculation analogous to (4.20)
that

- 2
Foa @B 2 (7= p(®) B-B [b] o,

forall he H? andall ae {a: ‘a—agolﬂz <, ane QB, Be [ﬁ,[—i]}. An application of

Theorem 2.5 together with Remark 2.6 gives the desired result.

Proof of Corollary 4.4 Assume that the cardinality of QP is infinite for some B e (B ,[—5]. Then 1
can be chosen such that B e [ﬁ(r),ﬁ] so P it Theorern 4.2 (i) is applicable. Let {aB(;“} be a nontrivial
2

sequence in QB. Since { laﬁéntﬂq} is bounded there exists a subsequence of {aﬁdn} converging
z = 2

strongly in L*°. This contradicts Theorem 4.2 (i) from which it follows that the global solutions

aEO are unique in the balls Voo(aEO , 1)

Proof of Lemma 4.6 It suffices to prove the assertion for g mapping [0,1] into [0,g(1)].
Since g is monotone, limO g(x) exists. If this limit is greater than zero, the assertion follows.
X

If lim g(x)=0, define

x—0

xp= supf{x :g(x) € 1/n} for n=Ng Ng+1,.

. . 1 - -
where N, is determined by g(1) > N Due to left continuity and monotonicity, the supremum
0

is actually attained. Furthermore 0 < g(x,) £ I/n and {x,} is decreasing by definition. There is
. . . 1 1 .
a strictly decreasing subsequence {xnk} with ;; < g(xnk) < ;}: Then Xp, = 0, since

1
otherwise Xn, tends monotonically to some 0.>0 and 0 < g(o) < g(xnk) $ — with n — e,
.

Now define a step function h(-) by

hix) = g(xnk) on (xnk, xnk_l].
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By construction 1im0 h(x)=0 and 0 <h(x) < g(x) forall x >0. Finally the desired function k(x)
X—

is obtained by linear interpolation of (xnk, g(xnk+1)) and (xnk._l, g(xnk)) on (xnk, xnk_l].

Proof of Corollary 4.7 We shall apply Proposition 4.1 and Theorem 4.2 (i).

For B in the interval of admissible regularization parameters, one has B 2§ (r;(5)). Hence,
applying Theorem 4.2(1) with r=r,(8), we obtain that for every global solution ag of (I-’)‘Z3 with
lz-2°] <8 = 3,(x(8)) there exists a global solution an e QP such that

1”2
(4.21) | -aP| < 2L l2-22" <e.
(K™ - p(BIB-B(, (3]

Moreover, Proposition 4.1 implies that for every ago € QKS there exists a solution a0 of (P)Zo
in Q° with

B _ B -
(4.22) lafo—asol,, < K lab-apl» < Ke.

Taken together, we find for every global solution aE of (P)i3 a solution ao of (P)Zo with

IaE—aZolgo < e+K,e.

This ends the proof of Corollary 4.7.

S. Stability for Regularized Problems with Small Modelling Errors.

In Theorem 4.2, stability of the solutions aEO of the regularized problem (P)Eo with respect to
perturbations of z was shown under the a—priori assumption that § < B In this section we first
prove a stability property, where "modelling errors" in the system equation are taken into
consideration: if these modelling errors are sufficiently small and if the observation is attainable by
the model-error free system, then there always exists an interval of regularization parameters for
which the regularized problems are stable with respect to perturbations in the observation.
Furthermore we analyse the relationship between the perturbed regularized and the unperturbed

unregularized problems.

Consider the family of parameter estimation problems

(P)E;c,f minimize |u(a; ¢.f) - z| 2y PN(a) over a€ Quq,
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where u(a; c,f) is a solution of (4.1) and (c,f) are taken from a weakly sequentially compact
subset M of {(c,fHe L2xL2:¢(x) 20, ae.]. Recall that this is equivalent to the assumption
that M is weakly closed and bounded. It can be checked that the constant K of section 4 can be

chosen uniformly w.r.t. {c.f) eM .

The results of this section depend upon the following attainability assumption, i.e. for the
unperturbed observation z° there exist model parameters (a0, ¢ %) € QxM  such that

u(a® 0% = 20
The parameter a® is to be estimated, while an estimate (c,f) for (c%f%) is assumed to be

available and fixed. Replacing (c%f%) by (c,f) takes into account the modelling error. We study
i

its influence on the estimation of a’ from (P)y.cs. For(c,fle M we call (P)go.c ¢ the

unperturbed, unregularized and (P)S, o the perturbed regularized problem.

Henceforth all neighborhoods of (c%,£% will be understood to be a subset of M and K ‘will be
uniform w.r.t. {c,f) € M. The solutions of (P)E, of are denoted by aE (c.0).

Asin (4.11) one can show that z — lu(a; ¢,f) - z 2+ BN(a) is globally Lipschitz continuous at 20
in the neighborhood V1) < L2 of the unperturbed observation 2°, uniformly with respect
to (a; c,f) € Quq x M. This Lipschitz constant is denoted by L.

Theorem 5.1 Let z0 € 1.2 and suppose that there are model parameters (a% c%f%) € Q4 xM
with
(5.1) u(@? %% = 20

Let [—3 satisfy K™!> p(ﬁ) and choose B* e (0,[;). Then there are a weak L2 x L%~neighborhood
V(%) c M, astrong L2-neighborhood V(z% and a neighborhood V(B*) of (c%f%), z° and
B* respectively such that for every global solution aE (c,f) of (P)E;c ¢ with

(z; 0,5 B) e V(&® x V(c0,f%) x V(B*), there exists a global solution an cf) of (P)Eo;c,f with

12
(5.2) ]ag (c,f)—ago(c,f)l°° < 4( L ~ ] IZ_20|1/2_
B*K™! - p(B)

Conversely, there exists 1> 0 such that for every global solution an (c,)) of (P)Eo.c £ With
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(cfp) e V(%% x V(B*) and every ze V(% there exists a local solution ag (c.f) of
(P)Q,Cf in Vw(ago (cf)r) = {ae Quy: la-—ago (D] < 1} and every such local solution

in V(P (e satisfies (5.2).

Next we analyse the relationship between (P)E'o;C ¢ and (P)So;c.f.

Lemma 5.2 Suppose that the model parameter (a®,c%(%) satisfying (5.1) is unique and

choose B*(e) according to Proposition 4.1(ii). Then for every B* e (0, B*(g)) there exist a
neighborhood V(B*) of P* and a weak L2 x L? neighborhood V(c®f°) of (c%f%) such that
all global solutions an(c,f) of (P)Eo‘cf and ago(c,f) of (P)(Z)o,cf with (B,c.f) € V(B*) x V(0,19
satisfy
laf e -a% e <ek
ZQ 1 ZO ) o = D

where K, isan embedding constant of H? into L™

To describe an approximation property of (P)E_ of © (P)go_ cf We combine Theorem 5.1 and

Lemma 5.2. Choose 61 >0 suchthat V(% 81) ={ze L?:|z-7°| SSI} c V2%, with
2L 6

_ 2
K1-pp) €
Theorem 5.3  Suppose that the model parameter (a%¢c%f% e QuqxM satisfying (5.1) is

V(2% asin Theorem 5.1. Recall the notation Bed =

unique and choose €>0, 0<8<38; . Then forevery B* with 8 $7(¢,8) < B* < min(B,B*(e)) there

are a weak szLz—neighborhood V%9 of %% anda strong L2—neighborhood V(B*) of
B*, such that for all global solutions ag c,p) of (P)g;c 5 with (B,c.f) € VE*) x V) and

lz-2°] <8 thereexists a global solution ago(c,f) of (P)go;cj with
lden-adenl_ < 4Kye,

where K, is the embedding constant of H2? into L™

Remark 5.4 For 8 sufficiently small one can always guarantee that

8 = —8L2 in (. @)

2K - p(B))
Remark 5.5 Consider the one-dimensional boundary value problem

= (auy, = f,
u(@) =u(l) =0,
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for ae Qq={ae R:ae [1,2)). For fe L20,1), put V(D) = {u(@):a € Qyq). Wegivean
example such that

2Le V(Y
(53) e v, £, in C0O1)
. . 0 _
nh_{)nm dist (z°,V (fn))Lz =0.

Thus for the model-error free system attainability holds, but arbitrarily close there are systems (i.e.
- (au,), =f,) for which eV (f,). Properties (5.3) hold for the choice

2 = n'2sinnx, {0 = sin 7x , and fnz—n——sinnx, n=12,...
n+1
1 .
In this case V() =) —— — sinmx:ae (1,21, Clearly e V%, f, > in C and
n+l an?

0 _ . 0 12 _n_ 1 .
z' & V() for n=1.2,... hold. Since z; >z in L 0,1), for z, = —~7 ;—2- sinax e V(f),

it follows that lim dist(z%V (fn))Lz = 0.

n —oo

Remark 5.6 In this section stability w.r.t. perturbation of the error free observation 20

guaranteed provided that the model error (represented by the distance from (c,f) to (9,69 is
sufficiently small. An atrainability assumption for the observation - and model-error free system

was

was made throughout.

The techniques of the paper can also be applied to the related problem of stability of the solutions of
(P)E:C’f with respect to perturbations of the observation—mode! coefficient vector w = (z;¢,f).

Let us consider the attainable case in which for the observation-error free z° there exist a model-
error free coefficient (%) and a%e Q.4 such that u(a®, %% = z0. Define a metric space

W =L2xW,, where W, is a weakly compact subset of L?x L? containing (c®{%). In
particular, W, is metrizable. Using the notation of Theorem 4.2, if, for r>0,

K

B = ————— < B, then there exists @>0 and a neighborhood V< W of (2%c") in
K1 -p@®
the L2 x vaveak x L&eak—topology, such that for every global solution ag(c,f) of (P)E;C £ with

BelB, B] and w=(z,c,f) € V, there exists a global solution an;co,fo of (P)EO;COJO with
2 \1/2
lag;c,[—— ago;co’fou < (—6) e(8(w, w2

2
Here €() is the modulus of continuity of the mapping (z,¢.f) — lu(e.f) - 2|~ from

L2 L XLl 0 R.

Proof of Theorem 5.1 We apply Corollary 2.7 together with Remark 2.8. Assumptions (i) -
(iii) of Corollary 2.7 are shown in the same manner as in the first part of the proof of Theorem 4.2.
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We turn to (iv) of Corollary 2.7. The Lagrange functional of (P)Eo;c’f is given by
F(ac,£,8) = tuae,f) — 2912 + A*g(a) + BN(a),

where (c,fle M, 20, ae Q,q and g is defined as in the proof of Theorem 4.2. Observe that
for any solution aE(c,f) the associated Lagrange parameter A* = (?Li*,l;) satisfies )\2*20. Let

B* e (O,p([—i)). We shall show that there exist r> 0, a weak L2 x L2~neighborhood V(c?,{%)
of (c%f%) and a neighborhood V($*) of B* such that

(5.4) FalactBnh) > ——=— [n|?
8(K™! - p(B)

forall he H? andall ae B = {ae Qad: 'a—an(c,f) |H2 <r, an(c,f) a solution of (P)EO;CJ‘
with Be V(B*), (¢,0) € V(c%,%)}. This will imply the claim.

As in the proof of Theorem 4.2, see (4.17), one can show that

2
. 50
(5.5) F_,(aic,f,8) (h,h) 2 B[K‘l —ﬂf%-—z—}— Inl”

forall he Hz, ae Q, and chHeM. Let an (c.f) be a solution of (P)Eo;c,f' We find

Fa(e ) (1) = [u @B ehen -2°1" - lutach) - 201 a1
+ [-I%-- |u(ago(c,f),c,f)—z°12 lh}i

> -2k (lu (an B0 -2 - [u@cH-2]) lhli

+ [~ lutabs 000 -217] Il

2
> ~2K|u (an .h),e.0) - u@cH| |nl -

2 2
+ I:—I%-— lu(a&o(c,f),c,f)—lol } ‘hlm ‘

Since a - u(ac,f) from Q4 H to L% s Lipschitz continuous, uniformly with respect to
(c,f)e M wehave

2
(5.6) FalaicfB) 2 ~ 2% r[n|? + {%— hu o (c.).0,6) - 2°] J }hli
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forall ae B. By Proposition 4.1 and due to the attainability assumption we find for every solution
PO of @5

o (e 20:c0 (0

61 [ K- @ @O0 -2 = pract-pEe) 2 pon,

where =K1~ p(B). There exists a closed neighborhood V(c°f) cM of (c°£%) in the weak
L% x L2 (metrizable) topology on M such that for all solutions aEg (c,f) of (P)E;, of With
(0 e V(O

(5.8) [B* K-l (aE; CRINR I 20'2] > ﬁ’;ﬂ

holds. If this were not the case, then there would exist a sequence {(cn,fn)] in M and solutions
{agg (cn,fn)} of (P)E;;cmfn with cn—)co and f, — {* weakly in L2, and

g*n .

* 2
(5.9) p*K - |u (ago Cnfaentn) —2°1 < 3

. * 53 . . .
Since {an (cpf)} is a bounded sequence in HZ, it contains a weakly convergent subsequence

with limit 3 & H2. We shall drop the subsequential index. It is simple to show that
B 5.0 in 1.2
u(aj (cp.f), cpfy) — ulac’,f) in L%,

and taking the limit in (5.9) this implies

B*n
5 -

R 2
(5.10) B! - [t -2 <
It has also simple to show that a is a solution of (P)Eg.' 00 and hence by (5.7)

B - [uG,c%) - 2| 2y p*n,

holds. This contradicts (5.10) and hence (5.8) holds. Moreover there exists a neighborhood
V(B*) of B* suchthat

p*n
4

(5.11) 131(_1 - Iu(an (c,).c.f) - RIEEN

forall Be V(B*) and (c,f) € V(c®f9). If this were wrong, there would exist a nontrivial

sequence {Bn} converging to B* and solutions af(?(cn,fn) with {c,f) € V(@%z% such that

(5.12) B K- Iu(af{)‘ (cn,fn>,cn,fn>—z012 < B:” .
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Without loss of generality it can be assumed that
PRI 2, Bn « 2
¢, —¢, fy =1 inweakly L and ag (cpfy) — a weaklyin H?,

for some elements ©,) e V(c’f®) and 3 e Q.- Then
u(aB"(c f),¢.f)—u@Eeh in L2
20 Y ntnr “artn "
and by (5.12)

o o2 B
(5.13) PR - luGe -2 < ?T“ .

*

- . B
But a is a solution of (P)z"-éf and thus (5.13) contradicts (5.8). Hence (5.11) holds.

%*.
Combining (5.6) and (5.11) we have for r = ta
16K?
* 2 *
(5.14) Fﬂ(a;c,f,B)(h,h)z{—2K2r+ %Tl] Il = Eg’l |h|i,

forall (c,f,B) e V(c° ) x V(B*), ae B and he H2

The second part of Theorem 5.1 follows from Theorem 2.5, Remark 2.6 and (5.14). This ends the
proof.

Proof of Lemma 5.2 Choose B* ¢ (0,B4(€)) and suppose, contrary to the assertion, that
there exist sequences {B;} in R and {(c,f;)} in M with

By = B, (cpfy) — (4% weaklyin L2xL2,

and solutions asé‘ (cpfy) of (P)SB’; of, 2nd ago (cp.fy) of (P)2°;cn £ such that

(5.15) ’afé‘ (cpfy) - a% Cpfd | 2 €Ky,

Since {afé‘ (cf)} and {ago (c,,f)} are bounded sequences in H2, there are subsequences

(we drop the subsequential index) converging weakly in H? and strongly in L™ to igg and 2’

respectively. From (5.15) it follows that
(5.16) 3% -2l 2 ex,.

The optimality property of afé‘ (cpof,) implies

2
(5.17) (u(af{)‘ (Cpf)s Cpof) = 2%+ ﬁnN(af,;‘ () < lutacyf) -2°1" + B N@
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forall ae Q,4. Since weak convergence of (aEé’ (cnfn), cpofy) in H2xL2XL? 1o (égg , 2,19

B

implies convergence of u(afé‘ (Cpfy) Cpfy) 1O u(ézg , %9, and due to weak lower semi-
continuity of N from H2 to R we find from (5.17)

{u(‘égg ,c%f%) - 2| 2 + B*N(EE;) < fu(a, %% - 2° 12 + B*N(a) forall ae Qaq. Hence 555
is a solution of (P)Eg;co - Similarly one can show that 2% is a solution of (P)go;covfo . By the

=0

uniqueness assumption a~ = 2’ and Proposition 4.1 implies that

]'zigg—aoiw < eK,.
This contradicts (5.16) and ends the proof.

Proof of Theorem 5.3 Let £>0 and choose B* <min ([3+(£),[§). By Theorem 5.1 and
Lemma 5.2 there exist a neighborhood V(B*) of B* and a weak L2xL?-neighborhood V(c%,f%)
of (c%f% such that for all global solutions aE (c,f) of (P)E;c,f with

(ze,6B) e V(EZ%8,) x V(%% x V(B*) there exists a global solution ago B of (P)Eo, o With

L 12 12
lBcp-abcn] <4 (E*_TT) |20
and for all global solutions alo (c,) of (P)Po. ¢ and al (c.£) of (Po, ¢

labs (c.f) - 2o (.0 , L SeKy.

Thus for all global solutions aE {c.f) of (P)E;C £ with (zefif) e V(zo;ﬁl) x V(%)) x V(B*)
there exists a global solution a(z)o (c,f) of (P)go;c‘f such that

1/2 12
laE (c.f) - ak (c,f)lw < 4(-‘3—1;?]—) =] + eK,.

If in addition to the above restrictions on (z;c,f,8), we have 1z-z01 £ 8 and B e (887(e,9),
min (8, B*(€))), then

L \#
) 577 4 K, < e(Kytl).

!aE (c,f) - ago (c,f)lcm < 4 (B*_TT

This ends the proof.
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