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Abstract In the paper we consider two types of utility functions often used in portfo-
lio allocation problems, i.e. the exponential utility and the quadratic utility.We link the
resulting optimal portfolios obtained by maximizing these utility functions to the cor-
responding optimal portfolios based on the minimum value-at-risk (VaR) approach.
This allows us to provide analytic expressions for the risk aversion coefficients as
functions of the VaR level. The results are initially derived under the assumption that
the vector of asset returns is multivariate normally distributed and they are gener-
alized to the class of elliptically contoured distributions thereafter. We find that the
choice of the coefficients of risk aversion depends on the stochastic model used for the
data generating process. Finally, we take the parameter uncertainty into account and
present confidence intervals for the risk aversion coefficients of the considered utility
functions. The theoretical results are validated in an empirical study.
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1 Introduction

The von Neumann–Morgenstern expected utility theory (see, von Neumann and Mor-
genstern (1944)) is often used to find the optimal portfolio weights. These weights
represent the optimal fractions of wealth allocated to individual assets and lead to the
maximum expected utility of future wealth. The future wealth or portfolio return is
random implying that the expected utility depends on the parameters of the distribution
used to model the data generating process of the underlying assets. An issue, which
has to be addressed by the investor, is the choice of the functional form of the utility
function. Typically, the analysis is constrained to the quadratic or exponential utilities
[c.f., Tobin (1958), Bodnar et al. (2015)], which allow for explicit solutions of the port-
folio problem. Other functions, like the power utility, require numerical techniques.
Usually, most of the utility functions depend on an additional parameter referred to
as a risk aversion coefficient. This parameter quantifies the investor’s attitude towards
risk. Its choice is subjective and can be hardly justified by economic reasoning. In this
paper, we argue that the risk aversion coefficient can be linked to the distribution used
as a model for the data generating process and to the level of the value-at-risk (VaR)
in which the investor is interested in or is required to report.

The quadratic utility function is commonly applied in portfolio theory because of
its nice mathematical properties. First, an analytic solution is easy to obtain for the
quadratic utility function. Second, Tobin (1958) showed that the Bernoulli principle
is satisfied for the mean-variance solution only if one of the following two conditions
is valid: the asset returns are normally distributed or the utility function is quadratic.
Moreover, the quadratic utility presents a good approximation of other utility functions
[see, e.g., Kroll et al. (1984), Brandt and Santa-Clara (2006), Levy and Levy (2014),
Markowitz (2014)]. Levy and Markowitz (1979) considered the expected utility func-
tion in terms of the portfolio return and showed that it can be well approximated by
a function of the mean and the variance of the portfolio return. For a portfolio with
the weights w = (w1, . . . , wk)

′ such that w′1 = 1 where 1 denotes the k-dimensional
vector of ones, the quadratic utility is given by

Uquad(Rw) = Rw − γquad

2
R2
w = X′w − γquad

2
(X′w)2, (1)

whereX = (X1, . . . , Xk)
′ is the k-dimensional vector of asset returns and Rw denotes

the return of the portfolio with the weights w. The symbol γquad > 0 stands for the
risk aversion coefficient.

The second utility function considered in the paper is the exponential utility given
by

Uexp(Rw) = 1 − e−γexp Rw , (2)
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where γexp > 0 is the corresponding risk aversion coefficient. If the asset returns are
multivariate normally distributed then themaximization of E(Uexp(Rw)) is equivalent
to the so-called mean-variance utility function expressed as [cf. Ingersoll (1987),
Okhrin and Schmid (2006, 2008)]

μ′w − γmv

2
w′�w −→ max w.r.t. w, subject to w′1 = 1, (3)

where μ = E(X) and � = Var(X). Bodnar et al. (2013) compared the solutions
resulting from maximizing E(Uquad(Rw)), E(Uexp(Rw)), and (3) and found that
although they are mathematically equivalent, their stochastic properties appear to be
different.

Note that the choice of the values for both γquad and γexp in practice is unclear.
There are a few papers dealing with the estimation of the risk aversion coefficient
from market data. For instance, Jackwerth (2000) derives the implied absolute risk
aversion coefficient by estimating the risk-neutral and historical probabilities from
option prices, while estimators relying on the realized volatility were suggested by
Bollerslev et al. (2011). It is important to note, that the corresponding risk aversions
characterize an aggregate and not an individual investor. The usual values of γ ’s
considered in empirical applications lie between 1 and 50 (for the quadratic utility)
and the choice of the risk aversion coefficient is, usually, performed heuristically. In
contrast, our approach is motivated by the financial interpretation of the solutions of
the expected utility maximization problems based on the utilities (1) and (2).

The VaR-based regulation of the financial sector makes the VaR one of the cen-
tral risk measures not only for funds but also for other investors [see, e.g., Bonaccolto
et al. (2017)]. As a result theminimum-VaR portfolio of Alexander andBaptista (2002,
2004) became an appealing alternative to the classical mean-variance portfolio selec-
tion strategies. This is additionally supported by the good out-of-sample performance
of these portfolios as documented by Alexander et al. (2009) and Durand et al. (2011).
The authors show that using VaR as an additional constraint within a mean-variance
portfolio strategy clearly reduce the impact of estimation risk in the parameters of
asset returns. Furthermore, the resulting portfolios are more efficient compared to the
portfolios without this constraint.

The idea of linking the risk aversion coefficient to the VaR level is not new and
was recently popularized in Das et al. (2010) and Alexander and Baptista (2011).
Generally it appears that the attitude towards risk can be easier specified by using the
confidence level of VaR than by fixing abstract risk aversion coefficients. Das et al.
(2010) impose a VaR constraint on the portfolio return and determine the implied risk
aversion coefficient which leads to the targeted VaR of the portfolio. Alexander and
Baptista (2011) derived an explicit expression for the implied risk aversion coefficient
as a function of the VaR confidence level. This framework allows to incorporate the
mental accounts and objectives of investors. Note that in both papers the authors
assume Gaussian asset returns and the quadratic utility function.

In this paper, we extend the above mentioned paper by considering two different
utility functions and elliptically distributed asset returns. More precisely we link the
optimal portfolio obtained from a particular utility function to the minimum VaR
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optimal portfolio. The latter portfolio is determined by the significance level α, which
can be fixed relying on the regulatory recommendations. This allows us to derive
analytic expressions for γquad(.) and γexp(.) as functions of the VaR level. Thus, we
quantify the investor’s attitude towards risk for different utilities and under different
andmore realistic distributional assumptions. The results of the empirical study justify
the values of the risk aversion coefficients which are usually used in practice.

The rest of the paper is organized as follows. In Sect. 2, we present the main results
of the paper. Here, the analytical expressions for γquad and γexp are presented under
the assumption that the asset returns are multivariate normally distributed. In Sect. 3,
these findings are extended to non-normal distributions. The influence of the parameter
uncertainty is analyzed in Sect. 4, while the results of the empirical study are shown
in Sect. 5. Concluding remarks are presented in Sect. 6. The “Appendix” contains the
proofs of theoretical results.

2 Risk aversion for Gaussian returns

The results of this section are derived assuming that the asset returns are multivariate
normally distributed, i.e. X ∼ Nk(μ,�), whereas the findings under a more general
class of distributions are presented in the next section.

We consider two investors who aim to maximize the expected quadratic utility
function given by

E(Uquad(Rw)) → max w.r.t. w, subject to w′1 = 1 (4)

and the expected exponential utility function expressed as

E(Uexp(Rw)) → max w.r.t. w, subject to w′1 = 1, (5)

respectively.
Merton (1969) proved that if the asset returns are multivariate normally distributed

then the maximization of the expected exponential utility function is equivalent to the
maximization of the mean-variance utility (3). The solution of (3) coincides with the
Markowitz efficient frontier which is a parabola in the mean-variance space (Merton
1972) uniquely determined by the three parameters [cf. Bodnar and Schmid (2008b,
2009)), Font (2016)]

RGMV = 1′�−1μ

1′�−11
, VGMV = 1

1′�−11
, and

s = μ′Rμ with R = �−1 − �−111′�−1

1′�−11
. (6)

The quantities RGMV and VGMV are the expected return and the variance of the global
minimum variance (GMV) portfolio [cf., Bodnar et al. (2017)] that determine the
location of the parabola’s vertex in the mean-variance space, while s is the slope
parameter of the parabola.
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The maximization of the exponential utility function, i.e. (5), leads to the optimal
portfolio with the weights

wEU = �−11
1′�−11

+ γ −1
expRμ. (7)

Similarly, the solution of (4) is given by

wQU = A−11
1′A−11

+ γ −1
quadRAμ, (8)

whereA = E(XX′) andRA = A−1− A−111′A−1

1′A−11 . Bodnar et al. (2012) derived another
expression for the weights of the optimal portfolio in the sense of maximizing the
expected quadratic utility function expressed as

wQU = �−11
1′�−11

+ γ̃ −1
quadRμ, (9)

with [see, Bodnar et al. (2012, Theorem 1)]

γ̃quad = 1 + s

γ −1
quad − 1 − RGMV

(10)

In the next step we use another way of constructing an optimal portfolio on the effi-
cient frontier which characterizes the investor’s attitude towards risk in a more natural
way. A suitable candidate is the minimum VaR portfolio suggested by Alexander and
Baptista (2002, 2004). The VaR at the confidence level α ∈ (0.5, 1) (VaRα) is defined
as a portfolio loss satisfying

P{X′w < −VaRα} = 1 − α.

If X is multivariate normally distributed then VaRα is calculated implicitly and it is
given by

VaRα = −w′μ − z1−α

√
w′�w,

where zβ = �−1(β) is the β-quantile of the standard normal distribution. In practice,
the values of α are usually taken from the interval [0.95, 1). The VaR is a standard
method of riskmonitoring suggested by theBasel Committee onBanking Supervision.
Alexander and Baptista (2002) went beyond taking of VaR for monitoring purposes,
but use the VaR as a risk proxy in portfolio management. The optimization problem
is given by

VaRα = −w′μ − z1−α

√
w′�w → min w.r.t. w, subject to 1′w = 1. (11)
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Alexander and Baptista (2002) proved that the solution of (11) lies on the efficient
frontier and presented the expression for the weights of this portfolio. Additionally to
a very concise and intuitive mathematical formulation of the problem, the minimum-
VaR portfolios show a good out-of-sample performance as noted by Alexander et al.
(2009) and Durand et al. (2011). The portfolios diminish the damaging impact of
estimation risk and appear to be more efficient than the classical benchmarks.

Bodnar et al. (2012) restated the formula for the weights of the minimum VaR
portfolio using the structure of (7):

wVaR;α = wGMV +
√
VGMV√

z21−α − s
Rμ. (12)

The last expression implies that the VaR confidence level should be sufficiently high
to guarantee that z21−α > s as was also originally identified in Alexander and Baptista
(2002).

The above results can be summarized as follows:

• It is important to note that all three solutions of the maximization problems in (4),
(5) and (11) [cf. Bodnar et al. (2012)] lie on the Markowitz efficient frontier.

• Equations (7), (9) and (12) show that all optimal portfolios have the same structure.
Moreover, from (10) we conclude that the maximization of the expected quadratic
utility function with the risk aversion coefficient γquad leads to the same portfolio
as the maximization of the expected exponential utility function with the risk
aversion coefficient γexp = γ̃quad where the latter is given in (10).

The risk aversion coefficients γquad , γexp and the α value of VaR are related as
obviously follows from (7), (9) and (12). Previously this idea was already exploited
in Alexander and Baptista (2011) and Das et al. (2010) for Gaussian returns and
quadratic utility function. From financial perspective the linkage is reasonable too,
since investors can assess their attitude to risk using the confidence level of VaR in
a more precise way, than by relying on an abstract risk aversion coefficient. This is
additionally justified by the popularity of the VaR as a risk measure in the current
regulatory laws.

The explicit relation depends on the parameters of the efficient frontier, RGMV, s
and VGMV only. Using (12) we are able to specify the closed-form expressions for risk
aversion coefficients γquad and γexp used in (1) and (2), respectively, such that the
corresponding portfolios coincide with the minimum VaR portfolio. Our results are
summarized in the following theorem.

Theorem 1 Let X ∼ Nk(μ,�) and z21−α > s. Then the implied risk aversion coeffi-
cients for the exponential and quadratic utility functions can be given in terms of the
characteristics of the mean-variance efficient frontier and the confidence level of the
VaR as follows:

γexp =
√
z21−α − s
√
VGMV

, (13)
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γquad =
(
1 + RGMV + 1 + s

γexp

)−1

=
⎛
⎝1 + RGMV + (1 + s)

√
VGMV√

z21−α − s

⎞
⎠

−1

. (14)

The proof of Theorem 1 follows directly from the expressions for the weights given
in (7), (9), and (12). Note that the expression in (14) coincides with equation (34) of
Alexander and Baptista (2011), if the boundary for the portfolio return is appropriately
selected. A semi-analytic expression for the implied risk aversion can also be found
in Das et al. (2010) within a slightly different setup. For a given level of α the investor
attempts to minimize the most negative α1̇00% of losses. Thus, α reflects the risk
attitude of the investor. If α is large, then (s)he minimizes the extreme losses and,
hence, the investor is very risk averse. If α is small, then the investor cares about losses
in general without paying particular attention to large losses. This implies that his risk
aversion is moderate. In general it holds that both risk aversions are monotonously
increasing in α.

At first sight, the dependence of the risk aversion on the characteristics of the
efficient frontier appears to be surprising. However, this evidence is natural since the
investor is averse to a particular amount of loss or of risk, implying non-constant γ ’s.
For a very risky portfolio the investor is more risk averse, than for a portfolio with a
moderate risk. Moreover, the maximization of the expected quadratic utility function
as well as of the expected exponential utility function leads to the portfolios which lie
on the efficient frontier. As a result, the investor’s attitude towards risk depends on the
position of the efficient frontier in the mean-variance space, which is fully determined
by three parameters: RGMV, VGMV, and s.

3 Determination of the risk aversion coefficients for elliptically
contoured distributed asset returns

We now extend the results of Sect. 2 to elliptically contoured (EC) distributions. This
is a large class of multivariate distributions which includes the multivariate normal,
Laplace and t distributions as special cases. This class has been already widely dis-
cussed in financial literature. For instance, Owen and Rabinovitch (1983) extended
Tobin’s separation theorem, Bawa’s rules of ordering certain prospects to EC dis-
tributions. While Chamberlain (1983) showed that elliptical distributions imply the
mean-variance utility functions, Berk (1997) argued that one of the necessary con-
ditions for the validity of the capital asset pricing model (CAPM) is an elliptical
distribution for the asset returns. Furthermore, Zhou (1993) extended findings of Gib-
bons et al. (1989) by applying their test to EC distributed returns. A further test for
the CAPM under elliptical assumptions was proposed by Hodgson et al. (2002). The
application of matrix variate elliptically contoured distributions in portfolio theory
was initiated by Bodnar and Schmid (2008a) and Bodnar and Gupta (2009).

In this section, we restrict the discussion to the class of EC distributions for which
the density function exists. The vector of asset returns X is said to be elliptically
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contoured distributed if its density function is given by

fX(x) = ckg((x − μ)′D−1(x − μ)), (15)

where ck > 0 is a constant which depends on the specific type of elliptically contoured
distribution, i.e. on the function g(.) and the dimension of the vectorX only. Hereafter
we use the shorthand notation X ∼ Ek(μ,D, g). The symbol μ is the location vector,
while D denotes the dispersion matrix. If the second moment of X exists then

μ = E(X) and � = Cov(X) = ωD,

i.e.μ is themean vector and the covariancematrix is proportional toDwithω = E(r2)
(see 16). The stochastic representation of the random vector X is a convenient tool
for simulation purposes. If the density function exists for all k ≥ 1 then the stochastic
representation of X is given by [cf. Fang and Zhang (1990)]

X d= μ + rD1/2Z, (16)

where Z ∼ Nk(0k, Ik) is independent of the scalar nonnegative random variable r .
The symbol 0k denotes the k-dimensional zero vector, while Ik stands for the identity
matrix of order k. Moreover, from (16) it holds that r fully determines the type of
elliptical contoured distribution.

Using (16) we can calculate the expected quadratic utility and the expected expo-
nential utility under the assumption that the asset returns follow an EC distribution.
For the quadratic utility function it holds that

E(Uquad(Rw)) = E(X)′w − γquad

2
E

(
(X′w)2

)

= μ′w − γquad

2
w′Aw. (17)

Consequently, the optimization problem based on (17) subject to 1′w = 1 is the same
as the one in the case of the multivariate normally distributed asset returns. As a result,
its solution is given by (9).

Similarly, using that Rw|r ∼ N (μ′w, r2w′Dw) for the exponential utility function
we get

E(Uexp(Rw)) = 1 − E
(
e−γexp Rw

)

= 1 − E
(
E

(
e−γexp Rw |r

))

= 1 − E

(
e−γexpμ

′w+ γ 2expw
′Dw

2 r2
)

,

where the last identity is obtained observing that the conditional expectation is the
moment generating function of the univariate normal distribution at point −γexp.
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Hence,

E(Uexp(Rw)) = 1 − e−γexpμ
′wE

(
e

γ 2expw
′Dw

2 r2
)

= 1 − e−γexpμ
′wmr2

(
γ 2
expw

′Dw
2

)

= 1 − e−γexpμ
′wmr2

(
γ 2
expw

′�w

2E(r2)

)
, (18)

where mr2(t) = E
(
etr

2
)
is the moment generating function of r2. As a result, the

maximization of the expected exponential utility function is equivalent to

μ′w − 1

γexp
log

(
mr2

(
γ 2
expw

′�w

2E(r2)

))
→ max w.r.t. w, subject to 1′w = 1.

(19)

Lemma 1 Let X ∼ Ek(μ,D, g) with the moment generating function of r2 given by
mr2(.). Then the solution of the optimization problem (19) is given by

wEU = �−11
1′�−11

+ γ̃ −1
expRμ, (20)

where γ̃exp is the solution with respect to κ of

κψ ′
(

γ 2
exp(VGMV + κ2s)

2E(r2)

)
= E(r2)

γexp
(21)

with ψ(x) = log
(
mr2(x)

)
.

The results of Lemma 1 are appealing from a practical perspective. Although the
maximization of the expected exponential utility function results in a challenging
non-linear multivariate optimization problem, it can be simplified to an univariate
one, for which the solution is determined by solving (21) with respect to κ . This
result continues to be true independently how large is the dimension of the constructed
portfolio. Finally, we note that if the asset returns are multivariate normally distributed
then r = 1 and, consequently, E(r2) = 1, mr2(x) = ex , and ψ ′(x) = 1. It follows
from (21) that κ = γ −1

exp.
Next, we compare the solution of the maximization problems (4) and (5) under the

assumption of elliptically distributed asset returnswith the one obtained byminimizing
the VaR at the confidence level α. In the case of elliptically contoured distribution, the
VaR of the portfolio with weights w is given by

VaRα = −w′μ − d1−α

√
w′Dw = −w′μ − d1−α√

E(r2)

√
w′�w,
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where d1−α depends on k and g(.) only and it is independent of w. Minimizing VaRα

with respect to w leads to the following expression for the weights

wVaR;α = wGMV +
√
VGMV√

d21−α/E(r2) − s
Rμ. (22)

Using (22) we are able to specify the closed-form expressions for the risk aversion
coefficients γquad and γexp. It holds that

Theorem 2 Let X ∼ Ek(μ,D, g) with the moment generating function of r2 given
by mr2(.) and let d21−α/E(r2) > s. Then

γquad =
⎛
⎝1 + RGMV + (1 + s)

√
VGMV√

d21−α/E(r2) − s

⎞
⎠

−1

.

Additionally, γexp is the solution of

γexpψ
′
(

γ 2
exp(VGMV + κ2s)

2E(r2)

)
= E(r2)

κ
,

with κ =
√
VGMV√

d21−α/E(r2)−s
.

The expression for the quadratic utility resembles the result under the Gaussian
assumption, but for the exponential case the results appear to be more involved.

4 Estimation and inference procedure

In this section we deal with the problem of parameter uncertainty which has become
a popular topic in finance recently [see, e.g., Kawas and Thiele (2017)]. The param-
eters of asset returns, i.e. μ and �, are unknown and have to be estimated from a
sample. Replacing the population parameters with their sample counterparts in the
above equations for the risk aversion coefficients we obtain their sample counterparts.
In order to access the statistical properties of estimators we derive their stochastic
representations.

Let X1, . . . ,Xn be a sample of asset returns used to estimate the parameters μ and
� by

μ̂ = 1

n

n∑
j=1

X j and �̂ = 1

n − 1

n∑
j=1

(X j − μ̂)(X j − μ̂)′. (23)
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Substituting μ̂ and �̂ from (23) in (6), the estimators for the three parameters of
the efficient frontier RGMV, VGMV, and s are obtained, namely,

R̂GMV= 1′�̂−1μ̂

1′�̂−11
, V̂GMV= 1

1′�̂−11
, ŝ = μ̂′R̂μ̂ with R̂ = �̂−1− �̂−111′�̂−1

1′�̂−11
.

(24)
Because μ̂ and �̂ are random quantities, the estimated characteristics in (24) are
random too. Assuming that the asset returns are iid and normal, Bodnar and Schmid
(2008b, 2009) derived the exact distributions of R̂GMV, V̂GMV, and ŝ. Let φ(·) be the
density function of the standard normal distribution. By fχ2

n
(·) we denote the density

of the χ2-distribution with n degrees of freedom, while fFn1,n2,λ (·) stands for the
density of the non-central F-distribution with n1 and n2 degrees of freedom and the
non-centrality parameter λ. The symbol fN (μ,σ 2)(.) is used for the density function of
the normal distribution with mean μ and variance σ 2.

In the following lemma we summarize some results of Bodnar and Schmid (2008b,
2009). Particularly, we provide the exact joint and marginal distributions of R̂GMV,
V̂GMV, and ŝ.

Lemma 2 Let X1, . . . ,Xn be a random sample of independent vectors such that
Xi ∼ Nk(μ,�) for i = 1, . . . , n and n > k. Let � be positive definite. Then it
holds that

(a) V̂GMV is independent of (R̂GMV, ŝ).
(b) (n − 1)V̂GMV/VGMV ∼ χ2

n−k .

(c) n(n−k+1)
(n−1)(k−1) ŝ ∼ Fk−1,n−k+1,n s .

(d) R̂GMV|ŝ = y ∼ N
(
RGMV,

1+ n
n−1 y
n VGMV

)
.

(e) The joint density function of R̂GMV, V̂GMV, and ŝ is given by

f R̂GMV,V̂GMV,ŝ(x, y, z) = n(n − k + 1)

(k − 1)VGMV
fχ2

n−k

(
n − 1

VGMV
z

)

× f
N (RGMV,

1+ n
n−1 y

n VGMV)
(x)

fFk−1,n−k+1,n s

(
n(n − k + 1)

(n − 1)(k − 1)
y

)
.

The application of the closed-form expressions for the risk aversion coefficients
derived in Theorem 1 leads to the following estimators of these quantities given by

γ̂exp =
√
z21−α − ŝ
√
V̂GMV

, (25)

γ̂quad =
⎛
⎝1 + R̂GMV + (1 + ŝ)

√
V̂GMV√

z21−α − ŝ

⎞
⎠

−1

. (26)
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The formulas (25) and (26) show that the risk aversion coefficients can be estimated
only if ŝ < z21−α .Moreover, the corresponding population quantities can be interpreted
if s < z21−α only. These two observations show that we are not able to derive the
unconditional distributions of γ̂exp and γ̂exp but only the corresponding conditional
distributions provided that ŝ < z21−α . Following the approach of Bodnar et al. (2012)
we first establish the conditional distributions of γ̂quad and γ̂exp given ŝ = s∗ and
generalize the results thereafter.

From Lemma 2 we obtain the following stochastic representations of R̂GMV and
V̂GMV given ŝ = s∗, denoted by R̂∗

GMV and V̂ ∗
GMV. They are expressed as

R̂∗
GMV

d= RGMV +
√
1

n
+ s∗

n − 1

√
VGMVξ1, V̂ ∗

GMV
d= VGMV

n − 1
ξ2, (27)

where ξ1 ∼ N (0, 1) and ξ2 ∼ χ2
n−k are independently distributed. In Theorem 3 we

establish the stochastic representations of γ̂exp and γ̂quad conditional on s∗ = ŝ. These
quantities are denoted by γ̂ ∗

exp and γ̂ ∗
quad .

Theorem 3 Let X1, . . . ,Xn be a random sample of independent vectors such that
Xi ∼ Nk(μ,�) for i = 1, . . . , n and n > k. Let � be positive definite. Then it holds
that

γ̂ ∗
exp

d=
√
z21−α − s∗√n − 1

√
VGMV

√
ξ2

, (28)

γ̂ ∗
quad

d=
⎛
⎝1 + RGMV +

√
1

n
+ s∗

n − 1

√
VGMVξ1 + (1 + s∗)

√
VGMV

√
ξ2√

n − 1
√
z21−α − s∗

⎞
⎠

−1

.(29)

The results of Theorem 3 possess several interesting applications. First, for simu-
lating γ̂ ∗

exp and γ̂ ∗
quad it is not necessary to generate n independent k-variate normally

distributed random vectors. It is sufficient to simulate two independent random vari-
ables ξ1 and ξ2 from the well-known univariate distributions and then to apply the
expressions of Theorem 3. Second, Theorem 3 is useful if one wants to derive the the
densities of γ̂ ∗

exp and γ̂ ∗
quad .

5 Extension to robust portfolio selection

Our results can be extended to the case where the investor solves

max E(u(X′w)) w.r.t. w, subject to w′1 = 1, (30)

where u(.) is a utility function. If the distribution of asset returns is partially known
then the portfolio selection problem (30) can be reformulated with robust optimization
technique as follows [cf. Fabozzi et al. (2010)]
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max
w

min
X∼(μ,�)

E(u(X′w)) subject to w′1 = 1, (31)

where the notationX ∼ (μ,�) indicates that the distribution ofX belongs to the class
of k-dimensional distributions with the mean vector μ and the covariance matrix �.

Let
V (w) = min

X∼(μ,�)
E(u(X′w)) (32)

denote the value of the inner minimization problem for given weights w. Popescu
(2007) proved that (32) is equivalent to an optimization problem with univariate dis-
tributions with a given mean and variance, i.e.

V (w) = min
Rw∼(μw,σ 2

w)
E(u(Rw)). (33)

Moreover, if V (w) is continuous, non-decreasing in μw, non-increasing in σ 2
w, and

quasi-concave, then (31) is equivalent to the following quadratic optimization problem
[cf. Popescu (2007)]

max
w

γμ′w − (1 − γ )w′�w subject to w′1 = 1, (34)

where γ ∈ [0, 1].Moreover, ifw(γ ) is the solution of (34) then V (w(γ )) is continuous
and unimodal in γ .

Next we fix a portfoliow and a confidence level α ∈ (1/2, 1]. Fabozzi et al. (2010)
argue that a robust version of VaR, denoted by RVaR, is given by

RVaRα = max
Rw∼(μw,σ 2

w)
VaRα. (35)

The application of Chebyshev’s inequality leads to [see Alexander and Baptista (2002,
Section 3.2)]

RVaRα = −w′μ + d1−α(w)
√
w′�w, (36)

where d1−α = d1−α(w) = 1/
√
1 − α. The solutions of the optimization problem (34)

and
RVaRα → min w.r.t. w, subject to w′1 = 1

provide us the probabilistic interpretation of γ . Following the proof of Theorem 1 we
obtain

γ =
⎛
⎝1 +

√
d21−α − s

2
√
VGMV

⎞
⎠

−1

. (37)

6 Empirical illustration

For illustration purposes we use monthly data for the MSCI Developed Markets
Indexes (Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,
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Table 1 Characteristics of the mean-variance frontier for the first k developed markets (left) and emerging
markets (right) for the period from June 2004 to March 2014

k Developed markets Emerging markets

VGMV RGMV s VGMV RGMV s

2 0.0049632 0.0088234 0.0225480 0.0044765 0.0072103 0.0019479

5 0.0026577 0.0136901 0.0597653 0.0036172 0.0071194 0.0292601

10 0.0021298 0.0090921 0.1335025 0.0030592 0.0103470 0.0956051

15 0.0010852 0.0029841 0.2105829 0.0014732 0.0099718 0.1044366

Full 0.0006360 0.0054814 0.2927886 0.0012206 0.0075236 0.1441346

The subsets of countries are taken in alphabetic order

Hongkong, Ireland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, Portugal,
Singapore, Spain, Sweden, Switzerland, the UK, the US) and for the MSCI Emerg-
ingMarkets Indexes (Brazil, Chile, China, Colombia, Czech Republic, Egypt, Greece,
Hungary, India, Indonesia, South Korea, Malaysia, Mexico, Peru, Philippines, Poland,
Russia, South Africa, Taiwan, Thailand, Turkey). The markets cover 23 and 21 coun-
tries respectively and the time span from June 2004 till March 2014, resulting in 117
observations. To assess the impact of the dimension we consider portfolios consisting
of k = 2, 5, 10, 15, 21 (or 23) assets. For simplicity we select the assets for the first
part of the study in alphabetic order, e.g., when k = 2, the countries are Australia
and Austria for developed markets and Brazil and Chile for emerging. The charac-
teristics of the frontier are summarized in Table 1. As expected the variance of the
GMV portfolio VGMV decreases with increasing k, but the return RGMV and the slope
s increase. Furthermore, the return and variance of the global minimum variance port-
folio are lower for the developed markets, compared to the emerging markets, which
is consistent with our expectations.

6.1 Gaussian returns

The risk aversion coefficients γquad and γexp for Gaussian returns as functions of α

are shown in Fig. 1. In accordance with Theorem 1, note that these coefficients are
monotonously increasing in α. Additionally, the coefficients are also increasing in k
(the number of assets). Hence, if the size of the portfolio increases, then the minimum-
VaR portfolio corresponds to a higher risk aversion coefficient. The same is observed
by comparing the results for developed and emerging markets, where for the latter the
implied risk aversion is lower despite of higher volatility. In general, for α > 0.95 the
risk aversion is high and the portfolio is close to the GMV portfolio. Even for small
values of α the risk aversion is much higher than the frequently used values from 1
to 10 for γexp. This implies that if the investors are interested in the commonly used
VaR at the 99% confidence level, then they are much more risk averse than typically
assumed in empirical work.

In order to make the study robust to the choice of the indices we fix α at 99% and
sample 200 portfolios of different sizes from both pools of indexes. For each portfolio
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Fig. 1 The risk aversion coefficients γquad (top) and γexp (bottom) as functions of α for portfolios
consisting of the first k developed markets (left) and emerging markets (right)

we compute the corresponding risk aversion coefficients and plot their histograms in
Fig. 2. The result that the risk aversion coefficients increase in the number of assets still
holds. Hence, this result is robust to using different sets of assets. Furthermore, small
portfolios lead to systematically lower risk aversions compared to larger portfolios.

6.2 Elliptical returns

To illustrate the theoretical results for elliptical distributions we concentrate on the
multivariate Laplace distribution. This distribution is obtained assuming that r2

follows exponential distribution with intensity equal to 1. In a univariate frame-
work the resulting distribution of Xi is the Laplace distribution with the density
1
2

√
2
λ
exp

{
−

√
2
λ
|xi − μi |

}
. The 1−α quantile of this distribution is used as the d1−α-

quantile in Theorem 2. Technical details on the multivariate Laplace distribution can
be found in Eltoft et al. (2006), whereas Kotz et al. (2001) discuss the application of the
multivariate Laplace distribution in portfolio theory. Alternatively, one may consider
the multivariate t-distribution, which is very frequently applied in portfolio selection.

The Laplace distribution has heavier tails compared to the normal and thus is a
reasonable alternative in financial applications. An explicit application of this distri-
bution is technically demanding due to complex expressions for the density (see Eltoft
et al. 2006). In our case, however, the stochastic representation allows us to work with
r only. The corresponding risk aversion coefficients γquad and γexp as functions of
α are shown in Fig. 3. Similarly to the normal distribution, the risk aversion attains
very high values even for modest levels of α. However, it is important to note that the
values of the coefficients are lower than for the normal distribution. This implies that
if we switch from the normal to a more heavy-tailed distribution the uncertainty about
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Fig. 3 The risk aversion coefficients γquad (top) and γexp (bottom) as functions of α for portfolios
consisting of the first k developedmarkets (left) and emergingmarkets (right) assumingmultivariate Laplace
distribution for the returns

the future portfolio returns is partly captured by the new distribution. Particularly this
is crucial for the minimum VaR portfolio, where we attempt to reduce the chances
of large losses. Since the losses are partly taken into account by the new model, the
investor becomes less risk averse within the new framework.

6.3 Estimation risk

With the next example we illustrate the simulated density functions of the sample risk
aversions γ̂ ∗

quad and γ̂ ∗
exp by relying on Theorem 3. We use the same data as in the

above examples and condition on s∗ = ŝ, where ŝ is obtained individually for each
portfolio. We observe that the precision of the estimators is relatively high. Note that
the number of assets has an opposite impact on the precision for the two risk aversions.
While for the exponential utility the densities are narrower for small portfolios, they
become wider for the quadratic utility (Fig. 4).

7 Summary

In the paper we consider the exponential and quadratic utility functions which are
frequently applied in portfolio management. Since the VaR plays a key role in mon-
itoring risk, many investors follow the minimum VaR portfolio strategies. We link
both approaches to obtain a functional relationships between the risk aversions and
the level of VaR. The results are obtained assuming that the vector of asset returns is
multivariate normally distributed and they are generalized to the class of elliptically
contoured distributions. The latter is particularly important due to well known heavy-

123



314 T. Bodnar et al.

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

020406080100120

γ q
ua

d

f(γquad)
k=

2
k=

5
k=

10
k=

20
k=

23

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

020406080100120

γ q
ua

d

f(γquad)

k=
2

k=
5

k=
10

k=
20

k=
21

10
20

30
40

50

0.000.100.200.30

γ e
xp

f(γexp)

k=
2

k=
5

k=
10

k=
20

k=
23

10
20

30
40

50
60

0.000.100.200.30

γ e
xp

f(γexp)

k=
2

k=
5

k=
10

k=
20

k=
21

F
ig
.4

T
he

co
nd

iti
on

al
de
ns
iti
es

of
γ

∗ q
ua

d
(t
op

)
an
d

γ
∗ ex
p
(b
ot
to
m
)
gi
ve
n
s∗

fo
r
po

rt
fo
lio

s
co
ns
is
tin

g
of

th
e
fir
st
k
de
ve
lo
pe
d
m
ar
ke
ts
(l
ef
t)
an
d
em

er
gi
ng

m
ar
ke
ts
(r
ig
ht
)

as
su
m
in
g
m
ul
tiv

ar
ia
te
no
rm

al
di
st
ri
bu
tio

n
fo
r
th
e
re
tu
rn
s

123



Determination and estimation of risk aversion coefficients 315

taildness of asset returns. Finally, we take the parameter uncertainty into account and
give conditional stochastic representation of the empirical risk aversion coefficients.
The theoretical results are validated in an empirical study.
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8 Appendix

Proof of Lemma 1 First, we note that log(mr2(.)) is an increasing function since log(.)
and mr2(.) are both increasing. Using this result we show that the solution of (19) lies
on the efficient frontier in the mean-variance space [cf., Alexander and Baptista (2004,
Definition 6)].

We prove the last statement by contradiction. Let w̃ be the solution of (19), but the
portfolio with the weights w̃ does not lie on the efficient frontier. Then there exists a
portfolio w̃0 on the efficient frontier such that E(Rw̃0) ≥ E(Rw̃) and Var(Rw̃0) ≤
Var(Rw̃) with at least one inequality being strict. Then

μ′w̃ − 1

γexp
log

(
mr2

(
γ 2
expw̃

′�w̃

2E(r2)

))

= E(Rw̃) − 1

γexp
log

(
mr2

(
γ 2
expV ar(Rw̃)

2E(r2)

))

< E(Rw̃0) − 1

γexp
log

(
mr2

(
γ 2
expV ar(Rw̃0)

2E(r2)

))

which implies that

E(Uexp(Rw̃)) < E(Uexp(Rw̃0)).

The last equality contradicts the assumption that the portfolio with the weights w̃
maximizes the expected exponential utility function.

Hence, the weights of the optimal portfolio in the sense of maximizing the expected
exponential utility are given by

wEU = �−11
1′�−11

+ κRμ.
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Substituting the last equality in (19) leads to

RGMV + κs − 1

γexp
log

(
mr2

(
γ 2
exp(VGMV + κ2s)

2E(r2)

))
(38)

which has to be maximized with respect to κ . Let ψ(x) = log
(
mr2(x)

)
. Setting the

derivative of (38) equal to zero leads to

s − γexpκs

E(r2)
ψ ′

(
γ 2
exp(VGMV + κ2s)

2E(r2)

)
= 0.

Hence, κ is the solution of

κψ ′
(

γ 2
exp(VGMV + κ2s)

2E(r2)

)
= E(r2)

γexp
.

This completes the proof. 
�
Proof of Theorem 2 The equality for γquad follows from Theorem 1 and the fact that
the expression for the weights of the minimum VaR portfolio in case of elliptically
contoured distributions can be obtained from the expression for the case of normally
distributed asset returns by replacing z21−α with d21−α/E(r2). This follows from the
fact that the weights of the portfolio maximizing the expected quadratic utility do not
depend on the type of the underlying elliptically contoured distribution. The second
result follows from (22) and Lemma 1. 
�
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