DISTRIBUTION OF THE PRODUCT OF A SINGULAR WISHART
MATRIX AND A NORMAL VECTOR

T. BODNAR, S. MAZUR, AND Y. OKHRIN

ABSTRACT. In this paper we derive a very useful formula for the stochastic represen-
tation of the product of a singular Wishart matrix with a normal vector. Using this
result, the expressions of the density function as well as of the characteristic function
are established. Moreover, the derived stochastic representation is used to generate
random samples from the product which leads to a considerable improvement in the
computation efficiency. Finally, we present several important properties of the singu-
lar Wishart distribution, like its characteristic function and distributional properties
of the partitioned singular Wishart matrix.

1. INTRODUCTION

The theory of Wishart distribution contains numerous important and useful results
which are applied in theoretical and applied statistics. The distributional properties of
random matrices which follow a Wishart distribution, an inverse Wishart distribution
and related quantities were established in [14], [11], [15], [8], [2], [6] and others. Massam
and Weselowski [12] discussed in detail the characterization of the Wishart distribution
and extended the results of Geiger and Heckerman [6], [7].

A k-dimensional symmetric positive semi-definite random matrix V = (v;;); j=1,.. % is
Wishart distributed with n degrees of freedom and covariance matrix 3 = (04;);j=1,... &
ie., V.~ Wg(n,X), if the joint density function of its functionally independent elements,
that is, of vech(V) = (v11,...,0n1,V12,. .., Un2, ..., Unn), is given by

n—k—1)/2

|V|( ! etr (—12_1V>

2kn /21 (n /2)|X|"/2 2 ’

which is defined on a cone of positive definite matrices (cf. [1]). The symbol I';,,(+) denotes
the multivariate gamma function expressed as

f(V) =

Tp(n/2) = 7= DAT]T((n - i+ 1)/2).
i=1
Gupta and Nagar [8] discussed the relationship between the Wishart distribution and
the matrix variate normal distribution. They proved that if X ~ Ny ,,(0,X®1I,,) (matrix
variate normal distribution with zero mean matrix and covariance matrix > ® I,, where
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I, denotes the n-dimensional identity matrix), then V.= XX” ~ Wj(n,X) as soon
as n > k (see Theorem 3.2.2 of [8]). Recently, Srivastava [17] extended this result by
deriving the distribution of the quadratic form

(1) A =XXT with X ~ N, (0,2 ®1,), k>n.
This distribution was called the singular Wishart distribution and it is denoted by
A~ Wi(n,X), k> n.

Although the matrix A is singular, its density function was derived in terms of its func-
tionally independent elements, i.e., A;; and As;, where A;; and Ay, are obtained from
the following partitioned matrix:

A11 A12 211 212
(2) {Azl A22] an [221 222}

with dim(A ;) = dim(211) = nxn, k > n. The density function of the singular Wishart
distributed random matrix A is then given by (cf. [17], p. 1550)

n(n—k)/22—kn/2 1
m (n—k—1)/2 _is -1
N EY S e ap | —5ir(X71A) ).

(3)f(A) = f(A11,An) =

Bodnar and Okhrin [2] derived several distributional results for the functions calculated
for the elements of the singular Wishart distributed matrix.

Although the (singular) Wishart distribution has been applied in different fields of
science and many papers were devoted to studying its distributional properties, the
Wishart matrix usually does not appear alone but in a combination with a normally
distributed random vector. For instance, Mathai and Provost [13] discussed in detail the
distribution of quadratic forms in normally distributed random matrices, while Bodnar
and Okhrin [3] derived the distribution of the product of an inverse Wishart random
matrix and a normally distributed random vector. This combination is of great interest
both in statistical theory and in the applications, for example, to portfolio analysis. In
statistical theory the product of an inverse Wishart matrix and a normal vector appears
in the discriminant function (see, e.g., [16]), whereas some types of optimal portfolio
weights are determined by this product in portfolio theory (cf. [3]). Bodnar et al. [4]
considered expressions which depend on Az, where A is a (non-singular) Wishart matrix
and z is a Gaussian vector, which are independently distributed and derived a stochastic
representation as well as the exact density function of LAz for an arbitrary deterministic
matrix L.

In this paper we extend the results of Bodnar et al. [4] by investigating the distri-
butional properties of the product of a singular Wishart matrix and a normal vector.
The singularity of the Wishart distribution leads to substantial technical complications,
which have to be solved. Particularly, this refers to a special type of partitioning which
leads to singular matrix variate normal distributions. Furthermore, the singular Wishart
distribution becomes more relevant nowadays, when the covariance matrix has to be es-
timated for high-dimensional data using a few observations. For example, this problem
arises in portfolio theory, when we consider many assets and historical returns over a few
past periods. The results established in this paper can tackle such problems contrary to
the results provided by Bodnar et al.).

The rest of the paper is structured as follows. In Section 2 we consider several distri-
butional properties of the singular Wishart random matrix. In particular, we derive its
characteristic function in Theorem 1 and prove that the singular Wishart distribution is
closed with respect to linear symmetric transformations given by LAL” in Theorem 2.



In Theorem 3 the distribution of the quadratic form based on the singular Wishart dis-
tribution is presented. In Section 3 main results are given. In Theorem 4 we obtain a
very useful stochastic representation for the product LAz, where L is a p x k matrix of
constants and z is a k-dimensional normal vector which is independent of A. Its density
function is derived in Corollary 1. Important special cases are considered in Corollaries 2
and 3. The characteristic function for the product Az is given in Theorem 5. The results
of numerical studies are discussed in Section 4. Section 5 summarizes the paper.

2. PRELIMINARY RESULTS

In this section we present several distributional properties of the elements of the singu-
lar Wishart random matrix which are used in the proofs of our main results of Section 3.
We start with presenting Lemma 1 which extends the results of Srivastava ([17], Corol-
lary 3.4) and Bodnar and Okhrin ([2], Lemma 1) to an arbitrary partitioning in (2).

Lemma 1. Let A ~ Wi(n,X), k > n, where A and X are partitioned as follows:

%11 %12
A21 A22

Z:311 ’2:312

4 A= and X =
@ [ ] o1 Yo

with dim(A 1) = dim(21,) = p x p. Then, it holds that
Ag|Ay ~ Nk—p,p(i21§]1_11;&117 Ta21 ® 1&11)7
where 222.1 = 222 — igliﬁlilg.

Proof. The statement of the lemma was proved for p = n by Srivastava ([17], Corol-
lary 3.4) and for p < n by Bodnar and Okhrin ([2], Lemma 1). Thus, we deal with the
case p > n only.

Because Aqy = A21A1_11A12, we get

A A [ Ay A Ao
A= ;&11 7;2 = | A2 A21;1Af11A12;1 A21;1Af11A12;2 ,
A (Aot A2i2A7'Ava1 AsiAT Ao

o A21;1- . . _ 221;1

where Ay and Ay = are given in (2). Moreover, let ¥o; = . We are
As o] o152

interested in the conditional distribution of
(5) [A21;2 A21;2A1_11A12;1} = Ao [I A1_11A12;1}

given A;; and Ajs.;. Using (5) we first derive the distribution of Agy.2|A11, Aja,1. The
application of Corollary 3.4 by Srivastava [17] leads to

A, _
As = [AZ;] | Ay~ N (B01 277 A1, Do @ Aqy).

Let

Bll B12

B=32n1= {le B22

} and Bay.; = Bas — B2 By Bia.

Using Theorem 2.21 by Gupta et al. [9] for the case of matrix variate normal distribution
we get

Az [ Ay, Aoy
~ Ni_pn (221;221_11A11 + B2 By (Aoiy — 2321;121_111411) Bog1 ®Aqq).
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Now, the application of Theorem 2.2 in [9] in the same case of matrix variate normal
distribution leads to

Ay | A, = Ao [I A1_11A12;1] | A, A

~ Nk—p,p<(221;221_11A11 + B2 B} (A1 — 221;121_11A11)) [I A1_11A12;1] ;

|
Bos. ® L ALT A AL :
22-1 <|:A21;]_A.111:| 11 |: 11 12,1}))

Let
Q=3 = (8; 8;2) with Qo2 = Zoo.
Then
2 Y1 Yo
6 i1 = ’
(6) H <221;1 Q11>
and
(7) Bij = Qij — 221;1'21_11212;3' f()I' i,j = 1,2.
Moreover, we get
I _ Ay Ao X
8 AL [T A AL, = - = A,
(8) [Azl;lAnl] 1 [ 1 12’1] [A21;1 A21;1A111A12;1] 1
and

(221;221_11A11 + ]321]31_11 (A21;1 — 221;121—11A11)) [I A1_11A12;1}

_ _ _ _ A
= [Z212%) —~B2iBy Z01a % BBy [ Azﬂ [ A} A
—:{11
[221 22+ 2 S0, 11311 Yoy, 1211 ) — Q211311 RPN ] AL
—3o1, 2211 DIPY 1B11 + Q21B1_1
S 2S00 B B0 B S 20 ©
=[S0 Qo (11 1 11 2112401 | §
[ 1:1 1] _211 S 10.B7] ol 11

= il21531_11;&11 )
where in the third equality we use (8) and the fact that o = [X211 Q1. The last

equality follows from the formula for the inverse of the partitioned matrix 3, as in (6)
(see, e.g., [10], Corollary 8.5.12).
Finally, let

=yl {211 :12} =11 =2
= = = = =
- — 221 S22

l
[

Then Bgo.y = D5, = §2—21_ On the other hand, we get

B = oy — 221211 Yo =00,

and, hence, Boy.1 = i)gg.l which completes the proof of the lemma. O
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Because A11 is singular, we obtain from Lemma 1 that the conditional distribution
of Aoy given A belongs to the family of singular matrix variate normal distributions.
This is the only difference to the case of p < n where the non-singular matrix variate
normal distribution appears.

Next, we derive the characteristic function of A.

Theorem 1. Let A be k-dimensional singular Wishart distributed, i.e., A ~ Wy(n,X),
k > mn. Then the characteristic function of A is given by

. _ —n/2
(9) U(T) = |I, + 4T 128221 T21 211 — 2i(T11 211 + T12Z01 + 21" Z12To1 11) | / ;

where T = (tij>i,j:1,...,k with tz’j = %(1 + 5ij)7—ij, Tij = Tji’ fOT‘ i,j = 1, . ,k’ and Tij =0
fori,j=n+1,... k. The symbol 6;; denotes the Kronecker delta given by

1, ifi=j,
dij = e
0, ifi#7.
Proof. Let A and X be partitioned as in (2) with dim(A1;) =n X n and let

Ty Tio
10 T =
(10) |:T21 Tz‘z]

with dim(T11) =n X n and Toy = 0.
Then the characteristic function of A is given by

U(T) =E [etr (TTA)] = E [etr ({T], A1 + 2iT5, Asy )]
= E [E (etr (zT (AL +2iTE 1Asr) ‘ Al
=E [etr (’LTHAH) E (etr (2@T21A21) ‘ An)] )
Using Lemma 1 and Theorem 2.3.2 of [8] we get
U(T) = E [etr (iT], A1) etr (205, 201 2" Aqy — 215,359 To1Avy) ]
= E[etr (i (T], + 2T, 21 27') Aqy) etr (=217, 2001 To1 A1) ]
1
N 1201|227 4 4T 12300, Toy |/2

where A ~ W, (n, (21_11 +4T12222.1T21)_1) and we use that T, = Ty and T%, = Ty.
Because

E [etr (z (T11 + 2T 1252, 27}) 2&11)] :

fr [(T11 +2T 1,55 57)) AH] — tr [A{l (Tu + 2T1222121‘11)T]
— tr [(T11 + 2578, Ty) j&ll]
we get
tr [(Tu +2T1535: 27} Au] = %tr [(T11 4 2T 12201 27} ] AL
+ %tr [(Tn + 221_11212T21) ;&11}
=tr [(Tn +T0REnE + 37812 Ta) ;‘:11] ;
where T11 + T1222121_11 + 21_11212T21 is a symmetric matrix. Hence,

1
G p— _
(11) |2101 /2|2 + 4T 122901 To |/

. — _ T ~
x E [etr [7, (Tll + T122212111 + 21112121‘21) A11i|:| y
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where the expectation in (11) is the characteristic function of the n-dimensional Wishart
distribution with n degrees of freedom and covariance matrix (21_11 + 4T 1523991 Toy) 1
at (T11 + 2T 12322, 37"). The application of Theorem 3.3.7 by Gupta and Nagar in [§]
leads to

U(T) = [S1| 2|80 + 4T 125051 To |~

x L, = 2i(T11 + T1eZ1 B + 37 12T (B + 4'1‘12222-1'1121)_1|_n/2
—n/2

n/2

=L, +4T 128001 T2 211 — 2i(T11 201 4+ T1230 + 2812 T 211 )| 0

If £ < n, then A has a Wishart distribution and, consequently, the characteristic
function of A is given by

(12) U(T) = |I;, — 20TX| /2.

Next, using the results of Theorem 1 we prove that (12) is also the expression of the
characteristic function for the singular Wishart distribution.

The application of the partitioned matrices from (2) and (10), the fact that Toy = 0
and Theorem 13.3.8 of [10] lead to

Ty — 20T ~/2 = |1, — 20(T1 S11 + T12%01)| />

X Ik—n — 2iT21212 + 4T21211(In - 2i(T11211 + TlQEQl))_l
—n/2
X (T11312 + T12392)
= I, — 2i(T11 211 + T12801)[~"/?
X In — 2i21_11212T21211 + 4(In — Z’i(THEll + T12221))_1
—n/2

X (T11312 + T12X22) T2 3

)

where the last identity is obtained by using Sylvester’s determinant theorem (see, e.g.,

Harville [10], p. 416). Hence,
I, — 2 TX| /2
= ‘(In —2i(T11%11 + T12301)) (I, — 217 212T21211)

—n/2
+4(T11 32 + T12222)T21211‘
=L, — 20 (T11 211 + T1eZo + 21 T12Tou B11) — 4T 11 2T 3y
—n/2
AT o B BT B 4T 25T B +4T 1580 To T
—n/2

= |In —2i (T2 + T122a1 + 21_11212T21211) + 4T12222‘1T21211‘ ,

which coincides with the expression for the characteristic function of the singular Wishart
distribution as presented in Theorem 1. We summarize the above results in the following
corollary.

Corollary 1. Under the conditions of Theorem 1, the characteristic function of the
singular Wishart distribution is given by

(13) U(T) = |I;, — 20TS| /2.
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The application of the characteristic function (13) allows us to prove that the class of
singular Wishart distributions is closed with respect to linear symmetric transformations
given by LALT. This is done in Theorem 2.

Theorem 2. Let A ~ Wi(n,X), k > n, and L be a p x k arbitrary deterministic matriz
with rank(L) = p. Then LAL" ~ W,(n,LEL") if p < n and LAL" ~ W,(n, LEXL"),
p > n, otherwise.

Proof. The characteristic function of LALT is given by
W(T) = E [etr (iT"LAL") | = E [etr (IL"T"LA)]

(14) = | — 27T LY

= |1, — 2TTLELT| "7,
where the second line follows from Corollary 1 and the third one is obtained by applying
Sylvester’s determinant theorem (see, e.g., [10], p. 416). Now the result of Theorem 2
follows from the observation that the last line in (14) is the characteristic function of

Wp(n,LELT) if p <n and of Wp(n,LELT), p > n, otherwise. O
A very important result is obtained in the special case when p = 1.

Theorem 3. Let A ~ Wi(n,X), k > n, and 'y be any k x 1 random vector which is
independent of A. Then yT Ay /yTSy ~ x2 and is independent of y.

Proof. Because A and y are independent, the conditional distribution of y7 Ay /y? Xy
given y = y* coincides with the distribution of yI Ay, /y!Sy.,. From Theorem 2 we get
that

yIAy. ~ Wi (n.y! Sy.),
which leads to

yLAy. 2
(15) TSy, X

y* y*
Because the conditional distribution of yI Ay, /y!' Xy, is independent of y., we get
that (15) also determines the unconditional distribution of y” Ay /yT Xy. O

3. MAIN RESULTS

In this section the main findings are presented. Particularly, we derive the stochastic
representation, the density and the characteristic function of a weighted product of a
singular Wishart matrix and a normal random vector. Thus we extend the results of
Bodnar and Okhrin [3] and Bodnar et al. [4] who considered a non-singular Wishart
matrix only.

Let A be k-dimensional singular Wishart distributed with n degrees of freedom and
covariance matrix 3, i.e., A ~ Wi(n,X), k > n. Let z ~ Ni(p,\X) (k-dimensional
multivariate normal distribution with mean vector g and covariance matrix ) with
A > 0. Let L be a p x k matrix of constants with rank(L) = p. We are interested in the
distribution of LAz when A and z are independent.

Let f;z = (L7, z)" and define W, = iZAEZ. Because A and z are independent, we
get that the distribution of W, given z = z* is the same as the distribution of W «.
Moreover, the application of Theorem 2 leads to

W ~ Wiy (n iz*zizﬁ) .



If p+1 <n we get that W, follows a Wishart distribution (c¢f. Lemma 1). Hence,
from Theorem 1 of [4] and the following stochastic representation of LAz we obtain

LAz L ¢ (LELT)UQ V1

1/2 Vylyi+n—a
+\/5(L2LT) [\/yf.w gL, — YL \/_ylle 20,

yiy1

(16)

where & ~ x2, zg ~ N,(0,1,), and

— (1 8,32y S1¥°S]  S§,3%S7 : R
y = <y2) Nk: ((8221/2#’ 7)\ 82228’{‘ 82228’%’ Wlth’]]—y2 y2;
&, zg are independent of y.

If p4+1 > n, then W, has a singular Wishart distribution. However, also in this case
the stochastic representation (16) remains valid as it is proven in Theorem 4.

Theorem 4. Let A ~ Wi(n,X), k> n, and let z ~ Ni(pu, \X) with A > 0. We assume
that X s positive definite and that A and z are independent. Let L be a p X k matriz of
constants with rank(L) = p < k, and let S; = (LXLT)~1/2LxY2 S, = (I, — STS,)1/2
with So: (k — p) x k. Then the stochastic representation of LAz is given by

LAz L ¢ (LeLT) P

1/2 VyvLly 4+ —
+VE (L3 [\/y?yﬁnlp— e ﬁylyf] 70,

(17)

yiyi

where & ~ X2, zg ~ N,(0,1,), and

(v S | (SIST S EST\Y L
_<.V2) Nk(<8221/2u As, 3287 g, m2g7 ) ) W= Y2ye;
&, zo are independent of y.

Proof. The proof for p+1 < n is given above. Thus, we deal only with the case p+1 > n
here. _ B _
Let L, ALL and L,-XLZL be partitioned as

LAL” LAz*

- - - - T *
L ALy = [Z*TALT z*TAz*] and Ly 3L, = [ SR s }

z*TSLT  z22T%z*

Using Lemma 1 the conditional distribution of LAz is given by

*TA * LY % *TELT
LAz|2"Az,z=12"~ N, <L2z*z 2T A <L2LT— = >>

z*T¥z"’ z*T¥z*

Let £ = z*T Az* /z*T¥z*. Then € and z are independent and & ~ x2 (see Theorem 3).
As a result, we get

1/2
LAz < ¢L¥z 4+ /¢ (szszLT _ LEzzTELT) 20,

where & ~ X2, zg ~ N,(0,1,) and z ~ Ni(u, \X); &, 7o, z are independent.
The application of the equality

(F - bb") . (T, — P 1/2bbT A Y2,



with ¢ = LV PPAT o S TS, LSLT, and b = L3, leads to

LAz < L3z 4+ /€ (LELT> v

TSz — T(Y - »n1/2 »1/2
X (vZTEZIp — V2! ¥z z7\”/§Z]1/(2Q El/QZQl )28121/2ZZT21/28?> Zo,
1

where Q; = S{Sl.

Using the facts that Q; is a projection matrix with rank(Q;) = p and S; is a p X k
matrix with rank(S;) = p we get that rank(I,— Q) = k—p (see [10], Theorem 12.3.4). As
a result there exists the (k —p) x k matrix Sy = (I, — Q;)*/? such that SIS, = (I, — Q1)
with rank(Ss) = k£ — p. Making the transformation

y1 = 8121/2Z € ]Rp, yo = 8221/2Z € Rk_p

_ (1) N S, =12y \ S, 3287 8,287
Y= \y2 A8,z 2 )\ Sox?sT s,:%8T ) )
Since tTt = t7Qt +t7ST Syt for all t € R”, the stochastic representation of LAz is
expressed as

1/2 1/2 VyTyr +n—
LAzéi(LzLT) yi+vE (LELT) [\/ley1+nIp— LeR ‘/ﬁylyf] 20,

y1TY1

we get

where n = ylys,. O
Next, we derive the density function of LAz. Because ys|y1 ~ Ni—,(v, AQ2) with
v =832+ (8,3°87) (5,2%8T) ' (y1 - 8,2/2)

and

Q= 8,%°87 — 8,3°87 (8, %°87) ' 8, %87,
the application of Theorem 4.2c.1 by Mathai and Provost in [13] leads to the density
function of n expressed as

e ' %—1 k;p—l) y
f L — i ¢ (i) /—y/ZﬁLi( 3 (_) 7 y > 07
nly: (%) ;}C 28T (% H.) 23 ‘ 23 !

B > 0 1is an arbitrary constant,

(20 () _ (=35) oy .20
L; <ﬁ) —TzFo <_Za_ﬁ_za_?)7

1 .
co=1, == diycn, dj=Y (1-jb)(a;), =1

r=0 Ji=1

The matrix V is a (k — p) x (k — p) orthogonal matrix which diagonalizes AQ2. That is,
AVIQV = diag(ay,. .., ax ), vl =1, ,,

where «q,...,ap_, are eigenvalues of A2 and b = AT Q—1/2y,
Let fy2 denote the density function of the x?-distribution with n degrees of freedom
and let fx (pu,=) be the density of the multivariate normal distribution with mean vec-

tor p and covariance matrix 3. Then the density of LAz is expressed as in Corollary 2.
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Corollary 2. Let A ~ Wi(n,X), k > n, z ~ Ng(u,A\X) with A > 0 and X positive
definite. Assume that A and z are independent. Let L be a p X k matriz of constants
with rank(L) = p < k, and let S; = (LELT)"Y2LX"2, 8, = (I, — STS,)'/2. Then the
density function of LAz is given by

fraz(x / / / fN (ug)(x|§—U7Y1—Z1 U—Zz)fN uz)(zl)
X fxn( )fnlyl(zz | y1 = z1)dz; dz dv,

where i = v(LXL)/%2, and
~ 1/2 1/2
$=v(L2LT) " [(s2 + ) T, - ma] ] (LBLT)

=822 and 3 = A8, 2287

Proof. Using the stochastic representation of LAz (see Theorem 4), the conditional den-
sity function of LAz is given by

LAz | £7y177] ~ Np(ﬁ’ai)

Because the densities of £, y; and n are known and the random variables are inde-
pendently distributed, we obtain the unconditional density function of LAz by, first,
constructing the joint density of LAz, &, y1 and 7, and, then, by integrating out two
random variables n and ¢ as well as the random vector y;. U

In Corollary 3, we consider the special case of Corollary 2 when 3 = Ij. In particular,
the density function of LAz is simplified significantly because the quadratic form 7
times A~! has a non-central chi-squared distribution, namely A~1n ~ Xi_ 52 with

6?2 = A_lungngu

where S, = (I, — STS)"/2 with S, = (LL”)~'/2L.

In order to prove this statement we, first, point out that the matrix ST82 is an
1dempotent matrix, since S2 SQS2 SQ = 82 82 where we use that Q is idempotent and
82 Sg = I, — Q. Furthermore, it holds that

(1) tr[()\_llk_p)()\sgsg)] = tr(Sgsg) = tr(STS,) = tr(I, — Q1) = k — t1(Q,) =
k—1tr(S1ST) =k — tr (LL")PLL"(LL") /%) = k — p;

:Ip

(i)

=SI's,
= (AS2ST) (AL ,) (AS.SY);
(iii)
(W7S1) 07 Tasy) OS:8E) () (Sat) = 07'n” SIS:S1Ss
=S7'S,
= (17S3) (A 'Lisy) (Sem);
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~ ~ ~ 2 i~ o~~~
WTST] [V Tey) (A88T) | = AT 878,88, 87
—————
478,
= (17ST) (A7'L_,) (AS.SD).

Now, the application of Theorem 5.1.3 by Mathai and Provost in [13] shows that A1y
is Xi_p;(;z-distributed with 62 = A_lﬂTSgszu.

Corollary 3. Let A ~ Wi(n,Ix), k > n and z ~ Ng(p, \Iy) with A > 0. Assume that
A and z are independent. Let L be a p X k matriz of constants, with rank(L) = p < k,

and let Sy = (LLT)~1/2L, Sy = (I, — STS,)'/2. Then the density of LAz is given by
1 o0 oo

fraz(x) = < /Rp /o /o I, a0 (X T E=0v,y1 =211 = 2)fy (5 pasTs,)(21)

X fxfl (U)fx27

where fi; = v(LLT)/ %z,

;52 ()‘71»32 ‘ yi = Z1) dz, dz, dv,
- N2 . s
21 :U<LL ) [(Zl Z]_—I—’r]) Ip—zlzl} (LL) ,

and 6% = A\ uTSTS,pu.

Proof. From Theorem 4 the stochastic representation of LAz is expressed as

1/2 1/2 Vyiyi+n-—
LAz < ¢ (LLT) yi+ V¢ (LLT> [W yiy1 +nL, — L \/ﬁylle Zo;

yiyi
2
where zg ~ N,(0,1,), £ ~ x;,,

S S:sT o _
yZ@DNNk((S;Z)’A(lol szsg’» with 1) = y; y2:

zo, &, and y are independently distributed. Using a fact that the covariance matrix of y
is block diagonal it holds that y; and ys are independently distributed. Moreover, 7 is
a function of y, only and, hence, y; and n are independent as well. Finally, using

>\_177 ~ Xi—p;52
and the stochastic representation (17) we get the statement of Corollary 2. U
In the next corollary, we consider a special case of Theorem 4 and Corollary 2 with
p=1and L =17, As a result we obtain that the density function of 17 Az is given

by three integrals only as well as known univariate density functions. This stochastic
representation simplifies it significantly.

Corollary 4. Let A ~ Wi(n,X), k > n, and z ~ Ng(pu,\X) with A > 0. Let 3 be
positive definite. Assume that A and z are independent and p+1 > n. Let 1 be a k-
dimensional vector of constants and let S; = (17X1)~1/21"8Y/2 S, = (I — 8TS;)!/2.
Then

(a) The stochastic representation of 17 Az is given by

s £ (720" e~ v/agea].
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where & ~ X2, 29 ~ N(0,1),

(v S, 32 S, 3287 8§, 3287 o
y = <y2> ~ N ((S221/2u 7/\ 82228’{ 8222Sg Wthﬁ—Yz Y2,
and &, zo are independent of y.
(b) The density of 17 Az is given by

frraz() = / / / Fn s 2o, (a1 sny02) (1§ = 0,51 = 21,1 = 22)
—o0 J0 0
X sz pas, s2st)(21) fy2 (V) fr(22 | 1 = 21) dz1 d2zz do.

There are several important applications of the results presented in Corollary 4. One
of them is the derivation of the characteristic function of Az whose analytical expression
is provided in Theorem 5. Another application is discussed in Section 4.

Theorem 5. Let A ~ Wi(n,X), k > n, and z ~ Ni(p,A\X) with X > 0 and ¥ is
positive definite. Assume that A and z are independent. Let S| = (LELT)_l/ZLEl/Q,
S, = (I, — STS1)'/2. Then the characteristic function of Az is given by

daz(t) = /OO /Ooo (1 + (t7'3t) 2o — 2i (tht)l/z Zl)—k/z
X [ns s pas, sesty(21) fy(22 [ y1 = 21) Az dze.
Proof. The characteristic function of Az for t € R¥ is given by
Pas(t) = E [exp (it" Az)].
Let ¢ = tT Az. Then applying Corollary 4 and integrating out v and & we get
$az(t) = E [exp (it" Az)]| = Elexp(i()]

oo [ @] o o0
= / /O /O / eXP(iw)fN((tht)l/%zl,(tT}:t)vzz)(w | §=v,y1 = z1,m = 22)

X fnesisiepas,sest)(21) frz (0) (22 | y1 = 21) dz1 dze du dw

= /oo /OO/OO exp {z (tTEt)1/2 vz — % (t"=t) vzg} frz (V)
—o00 JO 0

X fnsisizpas, sesty(21) fr(22 | y1 = 21) dz1 dze do

_ 1 B e k/2—1 LT 1/2 v T
= FETT) /—00/0 /0 v exp {z (t"3t) oz 5 (1+ 20t Et)}

X fN(8121/2u,Aslz:281T)(Zl)fn(zz | y1 = 21)dz1dzz dv

‘ —k/2
[ —k/2 C(tTZt) /22
= 1 tI'>t 1 -2t
/—oo /—oo ( * ( ) 22) < Z(thlt)zfQ +1

X fN(5121/2u,,\Slz:2slT)(Zl)fn(22 | Y1 = 2’1) dz; dzy,

where the last integral is obtained from the expression of the characteristic function
for the gamma distribution with shape k/2 and scale (1 + (t73t)z,)/2 at (t73t)1/22;.
Finally, simplifying the expression under the integral we get the expression provided in
the statement of Theorem 5. U

It is remarkable to note that the characteristic function for Az is given as a two-
dimensional integral only with the known univariate density functions.
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4. NUMERICAL ILLUSTRATION

In this section we present the results of a simulation study. The aim is to compare
the kernel density estimators with each other calculated for two data sets where the first
one is obtained by generating singular Wishart matrices and normal vectors, whereas
the elements from the second data are obtained by using the stochastic representation
of Corollary 4. We put p = 1, 17 = (1/n,0,...,0), p¥ = (1,...,k), E =T, A = 1/n
and compare the result for several values of £ € {50,100} and n € {1,20,40}. Each of
the simulated data consists of N = 10* independent realizations which are used to fit
the corresponding kernel density estimators with the Gaussian kernel. The bandwidth
parameters are determined via cross-validation for every sample.

k=50,n=1 k=100,n=1
=3 — data 1 — data 1
S --- data 2 --- data 2
g 58
£ 8 £ <]
= o 7
n 173
wo w
2 o 2 <
2 o] E g 4
k5 [
S 3z o
25T 2 g
g o ¢ 3
o
=
o (=3
= < 4
o o
T T T T T T T T T T
-100 =50 0 50 100 -100 =50 0 50 100
k=50,n=20 k=100,n=20
&
5 T — data1
© --- data 2
— w0
S o S -4
T N g °
£° £
@ k71
w o w .
2 5 z =2
g © g s
) a
T o7 °©
S § 9
gy ¥ 31
=
o o
= < . .
o o

k=100,n=40
e}
& &
o o
58 S o
T S T |
£ g £ °
= =
o) 5 o)
w g w o
2« 2 5
g o g °
[ j)
a = SI=)
-3 = =4
Q [
cC o go
3 = N
¥ o g
5 51
o
o o
2. - <
°© T T T T T T ° T T T
-4 -2 0 2 4 6 -5 0 5

FIGURE 1. Kernel density estimators for the two considered simulation procedures
with k£ € {50,100} and n € {1,20,40}.

The first data set is generated directly from the product 17 Az. It corresponds to the
abbreviation ‘data 1’ in the notation of Figure 1 and it is obtained in the following way:
a) generate independently A ~ Wy (n,I), k > n and z ~ Ni(p, A\Ig);
b) compute 17 Az;
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c) repeat a)-b) N times.
The second data set is simulated using the results of Corollary 4 and it is denoted by
‘data 2’ in this section. The corresponding algorithm is given next:

a) generate independently 2o ~ N(0,1), & ~ x2, y1 ~ N(17p/VITL\), and

0~ A2
with 62 = A7! (T — (17 )2 /171);
b) compute

(18) 1" Az = VITL (g5 — v/1€2 )

c) repeat a)-b) N times.

It is noted that the second algorithm is more computationally efficient than the first
one since only four random variables instead of k + k(k +1)/2 are generated within each
repetition. Moreover, the number of the simulated random variables is independent of
k and, hence, even in large dimensions, for example in the case of kK = 100, only four
random variables have to be simulated. Finally, since no matrix appears in (18), the
expression for 17 Az can be easily vectorized which provides an additional increase in the
efficiency of the second procedure with respect to the first one.

In Figure 1, we present the kernel density estimators computed from both data sets
for several values of k and n. It is noted that the obtained density functions almost
coincide for all considered values of £ and n. Some minor differences are present only
around the picks of the densities. Furthermore, we observe that all density functions are
slightly skewed to the right.

5. SUMMARY

Wishart and normal distributions are the most frequently applied families of proba-
bility distributions in both statistics and probability theory with a number of important
applications in finance, economics, biology, etc. Although many results have already
been established for each of these distributions separately as well as for quadratic forms
involving these distributional classes, other types of combinations are not deeply studied
in the literature. This topic is even less analyzed when the singular Wishart distribution
in the combination with the normal distribution is the goal of investigation.

In this paper, we derive several distributional properties of the product of a singular
Wishart matrix with a normal vector. A very useful stochastic representation of the
product is established which is then used in the derivation of the density function as well
as of the characteristic function. Moreover, the obtained results increase significantly the
efficiency of the numerical studies involving such a product by reducing the computational
time substantially. Finally, several interesting and important properties of the singular
Wishart distribution are derived.
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