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1. Introduction are more similar to the current situations obtain larger weights
Consider the task to forecast a process of interest. There are of-
ten several competing models available for this purpose with their
strong and weak sides. How should forecasts from these different
models be combined? Starting from the seminal contribution of
Bates and Granger (1969) there has been suggested a large number
of approaches to determine weights for model combination. These
weights are usually related to the model prediction success proba-
bilities (cf. Elliott and Timmermann, 2004) which can be inter-
preted as occurrence probabilities for the states in the coming
period. The ability to evaluate probabilities is crucial for the classi-
cal decision theory in spirit of von Neumann–Morgenstern. How-
ever, such probabilistic approach is not always possible or desired.

By making decisions in situations under uncertainty or igno-
rance a decision maker can be unable or unwilling to evaluate
probabilities but prefers to rely on thinking by analogy for learning
from the past about the future. The analogical (case based) reason-
ing is widely applied for decision making in medicine, law,
business, politics, or artificial intelligence (cf. Gilboa and Schmei-
dler, 2001). The case based decision theory presumes analogous
thinking of human beings in cases where the current situation is
evaluated by considering its similarity to previously experienced
(past) situations (cf. Gilboa and Schmeidler, 2001). Cases which
compared to those which are less similar. The concept of empirical
similarity (Gilboa et al., 2006; Gilboa et al., 2011) provides the
econometric framework for estimation of the similarity function
from the data (Gilboa and Schmeidler, 2012). It allows to measure
distances between cases (problems, situations) as they are
perceived by decision makers.

In this paper we suggest and apply a methodology how to use
the empirical similarity (ES) concept in order to combine fore-
casts from different models in a non-probabilistic manner. In
our setting alternative forecasts originating from competing
models could be evaluated as cases, which are to some extent
similar to the currently observed state or realization. A model
which recently provides more precise point forecasts should ob-
tain a larger current weight compared to alternatives. The core
idea of our approach is to measure the empirical similarity
distance between the current observation and the last one-
period-ahead forecasts from different models. This similarity dis-
tance determines model weights for the next period forecasts.
Thus, our approach exploits the information about the recent
performance of different models in order to determine the
weights of the forecasting model combination. The advantages
of such ES combination approach compared to the probabilistic
alternatives are that (i) it does not require knowledge of model
success probabilities; (ii) it relates the weights of the forecasting
models to the preferences of economic agents; and (iii) it reveals
from the data how decision makers evaluate the similarity
between forecasts and realizations.
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We illustrate the application of the proposed ES forecast combi-
nation approach by modeling the daily process of realized volatil-
ities. For this purpose we evaluate empirical similarities for
combining volatility models which can be treated as approaches
reflecting different investment horizons (cf. Ghysels et al., 2006;
Corsi, 2009). In particular, we model series of daily realized volatil-
ities of the leading world financial indices for about 13 recent years
characterized by both high and low volatility periods. The param-
eters of the ES approach are estimated with the maximum likeli-
hood methodology (cf. Lieberman, 2010) for both full sample and
mowing windows of 250 daily observations. We compare forecast-
ing performance of the ES approach with a set of popular volatility
models by conducting both in-sample and out-of-sample predic-
tions. The obtained estimation results reveal how forecasts from
various volatility models are aggregated via the empirical similar-
ities in the perception of decision makers. A special attention is
drawn to the analysis of volatility patterns during and immediately
after the recent subprime crisis with a highly complex volatility
dynamics. The proposed empirical similarity model appears to pro-
vide the most suitable description of the volatility process during
that period.

The rest of the paper is organized as follows. In Section 2 we
propose a novel empirical similarity approach which allows to
combine forecasts from different models. The ES methodology for
combining volatility forecasts or components is presented in Sec-
tion 3. The empirical study in Section 4 is devoted to the estimation
and forecast comparison of competing volatility models. Moreover,
we draw a special attention to the recent subprime crisis period
which is characterized by a highly nonlinear volatility dynamics.
Section 5 concludes the paper.
2. Empirical similarity for model combination

Assume that there are p models (forecasts, recommendations)
which could be combined in order to forecast the variable of
interest ytþ1. Define a finite set of distinct forecasts from different
models as fx1;t ; . . . xp;tg and consider the task of combining them
in a parsimonious manner. A family of linear forecast combinations
remains popular starting from the seminal paper of Bates and
Granger (1969). A linear forecast combination is given as

ŷtþ1 ¼
Xp

i¼1

ai;txi;t; ð1Þ

where non-negative ai;ts are the proportions of the ith model withPp
i¼1ai;t � 1. There is a straightforward probabilistic interpretation

for the weights ai;t , which are in general related to model success
probabilities (cf. Elliott and Timmermann, 2004). Weighting models
as in (1) presumes the ability to choose the weights ai;t appropriately
by considering some given objective functions. Various probabilistic
approaches are proposed for the choice of the proportions ai;t , how-
ever, there is no dominating methodology up to now.

Now let us consider situations under uncertainty or ignorance
where economic agents do not have specific (probabilistic) beliefs
about model weights in future but simply prefer models which
performed well in similar cases in the past. In these situations
the agents should form their decisions relying on analogical case
based reasoning (Gilboa and Schmeidler, 2001). The case based
decision theory (cf. Gilboa and Schmeidler, 2001) is developed
for situations where decision makers refrain from evaluating prob-
abilities but relies on their experience in order to evaluate
distances (similarities) between past cases (situations) and the
current state of nature.

The empirical similarity (ES) approach of Gilboa et al. (2006)
provides the econometric framework for estimation of the
similarity functions from the data. In order to describe their con-
cept assume that there is a vector of variables zt characterizing
the current situation, which is followed by the realization ytþ1 in
the next period. The ES postulates that the model combination
weights ai;t should be replaced by non-negative similarity-based
frequencies /½zs; zt �, which sum up to unity and serve as weights
for the experienced realizations ysþ1. In this setting the DGP is dri-
ven directly by its historical observations weighted by /½zs; zt �’s.
Then the corresponding ES model equation is given as

ytþ1 ¼
X
s<t

/½zs; zt �ysþ1 þ etþ1; et � ð0;r2Þ; ð2Þ

where zs is a vector characterizing the situation at time s; ysþ1 is the
realization of the process of interest experienced in the next period.
Thus, the similarity function measures the distance between the
vectors zt and zs as it is assessed by a decision maker.

Relying on the ES concept of Gilboa et al. (2006), we suggest an
ES approach for combining forecasting models. For this purpose we
unite the ideas behind the forecasting Eq. (1) and the ES model in
(2). The resulting ES forecast combination is given as

ytþ1 ¼
Xp

i¼1

/½yt; xi;t�1�xi;t þ etþ1; et � ð0;r2Þ: ð3Þ

The essential difference to Eq. (2) is that we replace the vector of
characteristics zs by the forecast from the ith model xi;t�1, so that
we now measure the distance between the previous forecast xi;t�1

and the corresponding realization yt in order to obtain the weights
/½yt; xi;t�1�. Then the forecast combination which is a weighted sum
of the forecasts fx1;t; . . . ; xp;tg is given as

ŷtþ1 ¼
Xp

i¼1

/½yt; xi;t�1�xi;t:

In our ES combination setting the process of interest ytþ1 is driven
directly by the alternative forecasts xi;ts, allowing to interpret (3)
as a proxy for the true DGP as it is perceived by decision makers.

The model in (3) incorporates nonlinear autoregressive features
due to the fact that yt enters the similarity function /½�; �� which
determines the DGP of ytþ1. Moreover, it has a spatial property
by measuring distances between the forecasts and the realization,
which are used for weighting xi;ts in order to assess ytþ1. This
point corresponds to the suggestion of Gilboa et al. (2006, pp.
437–438) that for time series the current observation could be
compared not with a history but with a profile (cross-section)
of components.

The weights /½�; �� depend on the previous experience of
decision makers. The distance between the proxy of the current
realization and the ith model forecast is measured in our case as

/½yt ; xi;t�1� ¼
h½yt ; xi;t�1�Pp
j¼1h½yt; xj;t�1�

: ð4Þ

The weights /½yt; xi;t�1� 2 ½0;1� can be interpreted as normalized
relative empirical similarities with the property

Pp
i¼1/½yt ; xi;t�1� �

1, whereas h½yt; xi;t�1� is the similarity (distance) function parame-
terized below. The interpretation of the similarity measures
h½yt ; xi;t�1� is straightforward, namely a small distance between yt

and xi;t�1 implies a high similarity value of h½yt; xi;t�1�, while a large
distance indicates on low similarity.

There are several possibilities to specify the similarity function
h½yt ; xi;t�1�P 0 (cf. Golosnoy and Okhrin, 2008; Guerdjikova, 2008;
Lieberman, 2010). In this paper we exploit a flexible specification
of the exponential similarity function of Billot et al. (2008), which
is given as

h½yt ; xi;t�1� ¼ exp �xiðyt � xi;t�1Þ2
� �

; with xi 2 R: ð5Þ
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Thus, the empirical similarity function is known up a p-dimen-
sional vector of parameters x ¼ ðx1; . . . ;xpÞ0 which reflects the
opinion of decision makers concerning the similarities of forecasts
and realizations. The distance in (5) is symmetric and not direc-
tional, however, asymmetric specifications can be applied as well
(cf. Lieberman, 2010). Eq. (3) implies that yt is a weighted sum (lin-
ear combination) of the model forecasts with an additive noise
component. This feature makes estimation of this model quite
straightforward. Lieberman (2010, 2012) provides the estimation
theory for a broad family of similarity models.

The empirical similarity concept for combining forecasts intro-
duced in (3)–(5) allows to estimate from the data how decision
makers form their believes concerning performance of particular
forecasting models. This is the essential difference between the
weights ai;t from Eq. (1) and ES weights /i;t , because the latter
are actually inferred from the experience of decision makers, while
the former are related to some exogenous performance criteria.
Moreover, by estimating the parameters xis, we can test whether
xi is significantly different from zero, i.e. whether the distance to
the ith model is of importance for the formation of the process yt .
3. Empirical similarity for volatility forecasts

To illustrate our ES approach we consider prediction of daily
volatility in financial markets, which is of much importance in con-
temporary finance. First we briefly describe the stylized features
frequently found in volatility time series and discuss some popular
models for volatility forecasting purpose. Then we apply the
suggested ES approach for combining volatility forecasting models.

3.1. Measuring and forecasting volatility

As the true daily volatility v t is not directly observable it should
be replaced by proper measures. The availability of ultra high-fre-
quency (intraday) data enables much more precise volatility mea-
sures than those based on the daily data. The daily realized
volatility estimator rv t is constructed from the intraday log asset
returns denoted by rt;j ¼ pðt � 1þ j=j�Þ � pðt � 1þ ðj� 1Þ=j�Þ;
j ¼ 1;2; . . . ; j�, where pð�Þ is a log price of the risky asset and j� is

the number of intraday periods. These realized volatility measures,
popularized by Andersen and Bollerslev (1998), Barndorff-Nielsen
and Shephard (2002), provide consistent estimators of daily vola-
tility. The simplest realized volatility measure is given as

rv tðj�Þ ¼
Xj�

j¼1

r2
t;j; ð6Þ

with limj�!1rv tðj�Þ!
L v t so that rv tðj�Þ is a consistent estimator of the

daily quadratic variation v t . Hereafter we differentiate among the
true (unobservable) volatility v t , its forecast v̂ t and the realized vol-
atility measure rv t . The unobservable true value v t is replaced by its
measure rv t for the further analysis, i.e. we consider the estimation
risk as negligible. A more recent discussion of these issues can be
found e.g. in Andersen et al. (2011). The availability of intraday data
allows to construct some alternative volatility measures, such as the
bipower variation (Barndorff-Nielsen and Shephard, 2004) or real-
ized absolute values (Forsberg and Ghysels, 2007). The same set of
volatility models could be estimated with these measures. However,
since our empirical similarity approach is focused on revealing deci-
sions of representative investors we concentrate on the realized vol-
atility measure which is mostly applied in practice. Note that trying
alternative volatility estimators leads to the forecasting results which
are very similar to those found for the realized volatility measure.

Forecasting volatility remains a challenging task of the financial
economics and econometrics. Dynamic properties of the volatility
process are of crucial importance for proper volatility forecasts.
Alternating periods of high and low volatility, denoted as volatility
clusters, motivate the famous GARCH model family. A long memory
feature with slowly decaying autocorrelation function is an essen-
tial characteristic of the volatility time series. In order to understand
the origins of this phenomenon, Andersen and Bollerslev (1997)
demonstrate that a mixture of numerous heterogenous short-run
information arrivals may lead to a long-run dependence in the vol-
atility process. Differences in investment time horizons for various
types of trader allows to consider both long memory and volatility
clustering from the volatility component perspective (cf. Müller
et al., 1997). The idea to separate volatility components roots in eco-
nomic interpretations of the volatility process. E.g., for the two com-
ponent volatility model of Engle and Lee (1999), the secular
component can be seen as driven by fundamental economic factors,
whereas the short-term component reflects uncertainty in response
to recent news. The informational cascade approach (cf. Bikhchan-
dani et al., 1998) or multifractal volatility models (cf. Calvet et al.,
2006) suggest alternative interpretations for these issues.

The recently proposed heterogeneous autoregressive (HAR)
model of Corsi (2009) appears to be a very successful attempt to
introduce a parsimonious component approach in order to forecast
daily volatilities. It can be seen as an approximation of more sophis-
ticated MIDAS (cf. Ghysels et al., 2006) and ARFIMA volatility models
(cf. Andersen et al., 2011). The HAR combines volatility measures
(components, aggregates) sampled at different frequencies in a sim-
ple linear regression framework. The HAR approach allows to mimic
dynamic features of volatility time series so that it provides a
reasonable out-of-sample forecasting results in applications. The
standard HAR model for the daily volatility process v t is given as

v t ¼ a0 þx1v ðdÞt�1 þx2v ðwÞt�1 þx3v ðmÞt�1 þ et ; et �
iidð0;r2Þ; ð7Þ

where v ðdÞt�1 ¼ v t�1 is daily, v ðwÞt�1 and v ðmÞt�1 are the average weekly and
monthly volatility measures, respectively. They are defined as
v ðwÞt ¼ 5�1P5

i¼1v t�iþ1 and v ðmÞt ¼ 22�1P22
i¼1v t�iþ1. The HAR model

can be estimated as a standard OLS regression framework by replac-
ing the true unobservable v t with the realized volatilities rv t . The
economic interpretation of volatility components relate the long-
term component v ðmÞ to the fundamental macroeconomic
uncertainty factors. The medium-term component v ðwÞ reflects the
current market uncertainty concerning processing of news, and
the short-term component v ðdÞ accounts for the speculative
momentum uncertainty.

3.2. Empirical similarity for volatility models

The empirical similarity concept allows to estimate the fore-
casting weights of volatility models (components) directly from
the experience of decision makers. Denote the competing volatility
forecasts by v ðhÞt , which are the elements of a set of various models
(components) H. Then the empirical similarity model for volatility
forecasts in line with Eqs. (3)–(5) is given as

v t ¼
X
h2H

/½v t�1; v ðhÞt�2� � v
ðhÞ
t�1 þ et

¼
P

h2Hh½v t�1; v ðhÞt�2� � v
ðhÞ
t�1P

h2Hh½v t�1;v ðhÞt�2�
þ et : et �iidð0;r2Þ: ð8Þ

The similarity function, defined as h v t ;v ðhÞt�1

h i
¼ exp

�wh v t � v ðhÞt�1

� �2
� �

, measures a distance between the current

volatility state v t and the hth model forecast v ðhÞt�1. The non-nega-

tive weight / v t ;v ðhÞt�1

h i
is assigned to the current component v ðhÞt

in order to forecast v tþ1. Recall that
P

h2H/ v t�1;v ðhÞt�2

h i
� 1.
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As we use the HAR model as a benchmark, we concentrate on
combining its three components with the ES approach. Our aim
is to evaluate how decision makers assess relative distances
between the current volatility state (realized measure) and volatil-
ity aggregates sampled at different horizons, which are transferred
to weights of competing forecasts. Thus, we want to explore by
means of the ES toolkit how economic agents with heterogenous
investment horizons combine their views about the volatility
process. The ES model with the HAR components, further denoted
by ES1 approach, is given as

v t ¼
h½v t�1;v t�2�v t�1 þ h½v t�1;v ðwÞt�2�v

ðwÞ
t�1 þ h½v t�1;v ðmÞt�2�v

ðmÞ
t�1

h½v t�1;v t�2� þ h½v t�1; v ðwÞt�2� þ h½v t�1; v ðmÞt�2�
þ �t ; �t � ð0;r2Þ; ð9Þ

with h½v t�1; v t�2� ¼ expð�x1ðv t�1 � v t�2Þ2Þ; h½v t�1;v ðwÞt�2� ¼ exp

�x2 v t�1 � vw
t�2

� �2
� �

and h v t�1;v ðmÞt�2

h i
¼ exp �x3 v t�1 � v ðmÞt�2

� �2
� �

.

The ES1 approach can be interpreted as a combination of fore-
casting models which suggests a simple weighting average of the
different volatility aggregates. The component v t�1 is a forecast
from a random walk model, while v ðwÞt�1 and v ðmÞt�1 are nothing else
but moving window forecasts with different window sizes. Then
the daily volatility v t in (9) is just a weighted sum of the previous
daily realized volatilities. Note the ES1 model has one parameter
less than the HAR, namely there is no constant. Since there is no
a priori knowledge about the ES1 weights, we also consider a naive
1=3 combination of these three components in the empirical study
in the next section.

Of course, the proposed ES approach can also be used for com-
bining any volatility predictors. In the empirical study we addition-
ally consider the ES2 model which combines the previous day
volatility v t�1, the popular RiskMetrics forecast v ðrmÞ

t�1 as well as
the HAR predictor v ðharÞ

t�1 in order to reflect the short run, medium
run and long run volatility components, respectively. The equation
for the ES2 model is given as

v t ¼
h½v t�1;v t�2�v t�1þh v t�1;v ðrmÞ

t�2

h i
v ðrmÞ

t�1 þh v t�1;v ðharÞ
t�2

h i
v ðharÞ

t�1

h½v t�1;v t�2�þh v t�1;v ðrmÞ
t�2

h i
þh v t�1;v ðharÞ

t�2

h i þ�t ;

�t �ð0;r2Þ: ð10Þ

As earlier, we define h½v t�1; v t�2� ¼ expð�x1ðv t�1 � v t�2Þ2Þ, etc.

4. Empirical illustration

4.1. Data and preliminary analysis

The aim of the empirical analysis is to illustrate the ES forecast
combination approach by predicting daily volatility of major
financial indices. For this purpose we use the data provided by
Oxford-Man Institute particularly the daily realized variance series
based on 5 min returns with subsampling. Further details on data
Table 1
Basis statistics for the realized volatility series.

Min Max Mean Sd Skewn

Full sample statistics for the realized volatility series
S&P500 4:264� 10�4 0.8545 0.0117 0.0258 14.34

NASDAQ 4:466� 10�4 0.4804 0.0156 0.0262 7.079

Nikkei 6:857� 10�4 0.3153 0.0113 0.0174 9.127

Subprime period statistics for the realized volatility series
S&P500 4:264� 10�4 0.8545 0.0227 0.0476 8.827

NASDAQ 4:466� 10�4 0.4804 0.0196 0.0339 6.258

Nikkei 7:138� 10�4 0.3153 0.0163 0.0294 5.964
preparation and data cleaning can be obtained from the documen-
tation of the Oxford-Man Institute under www.oxford-man.ox.
ac.uk. We multiply the time series of realized volatilities with
102 for the numerical stability of the optimization algorithms.
The chosen dataset contains the realized volatilities for NASDAQ,
S&P500, and Nikkei225 indices covering the period from over
03.01.2000 till 25.02.2013. This period is characterized by both
calm and highly volatile periods. Moreover, we draw a special
attention to the subperiod from November 2007 till February
2011 which corresponds to the time during and after the recent
subprime crisis (cf. Bekaert et al., 2012).

The basic statistical properties of the considered time series are
summarized in Table 1 for both full sample and subprime crisis
subsample. In general, the evidence from all time series supports
the common stylized facts about the realized volatilities. They
exhibit strong and persistent memory, the full-sample distribution
is heavily right-skewed. Fig. 1 provides the plots and autocorrela-
tion functions of S&P500, NASDAQ and Nikkei daily realized
volatility series. Note that Nikkei exhibits an exponential decay
of autocorrelation, whereas the decay of S&P500 and NASDAQ
indices appears to be hyperbolic.

The volatility characteristics (e.g., mean, standard deviation,
median) during the subprime crisis period are in general higher
than those during the full sample. The autocorrelations during
the subprime period decay much quicker as shown in the autocor-
relation plots in Fig. 1 (right column). They appear to be insignifi-
cant already after about 2 months of daily observations pointing on
a much quicker transfer of information during the crisis.

4.2. Full sample estimation results

The HAR model given in (7) and two ES models in (9) and (10)
are estimated from the full sample with the maximum likelihood
methodology by assuming normality for the process innovations.
The parameter estimates, the corresponding standard errors in
parenthesis and the residual variances are provided in Table 2.
Moreover, we report residual autocorrelations which are much
lower compared to the original data in Table 1. This finding implies
that all three models in general succeed in removing autocorrela-
tion from the daily volatility processes.

Next we characterize the parameter estimates for the empirical
similarity models. The parameters of the ES1 model with the HAR
components are economically reasonable and consistent with our
expectations. The parameter x1 which determines the daily simi-
larity h½v t�1;v t�2� is positive and significant for all indices. This im-
plies that a decreasing distance /½v t�1;v t�2� (more similarity)
increase the role of daily random walk forecast v t�1 as a part of
the DGP v t . The parameters of the second (weekly) component is
positive and significant only for Nikkei but remains insignificantly
different from zero for two other indices. Note that insignificance
of x2 does not imply that this component is irrelevant for the vol-
atility process as this component transmits its influence via the
other ES components due to normalization as in Eq. (4). The third
ess Kurtosis Med q1 q2 Length

372.5 5:811� 10�3 0.623 0.616 3276

83.93 7:659� 10�3 0.659 0.598 3281

120.6 7:482� 10�3 0.741 0.651 3180

126.1 9:596� 10�3 0.577 0.586 773

58.34 10:31� 10�3 0.611 0.613 773

45.11 8:369� 10�3 0.784 0.712 773

http://www.oxford-man.ox.ac.uk
http://www.oxford-man.ox.ac.uk
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Fig. 1. The time series of the realized volatilities (left) and the corresponding ACFs for the full sample (middle) and the ACFs for the crisis subperiod (right) S&P500, NASDAQ,
and Nikkei (from top to bottom).
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(monthly) component is significant and positive for SP500 and
Nikkei, and significantly negative for NASDAQ. For negative x
values a large distance between v t�1 and v ðmÞt�2 increases the weight
of the component v ðmÞt�1. This result points on a type of mean-revert-
ing behavior. For example, if the current realized volatility heavily
deviates from the monthly volatility average, then the ES model
with a negative weight x3 implies that in future the process should
revert to this monthly average.

Concerning the ES2 approach which combines previous day vol-
atility, RiskMetrics and HAR forecasts, the previous day coefficient
x1 is significantly positive for all indices. This finding indicates
that a large distance implies decreasing weight of the daily forecast
as we also found for the ES1 approach. The HAR coefficient x3 is
always positive but not always significant. The evidence concern-
ing the RiskMetrics coefficient x2 is mixed, it is strongly signifi-
cantly positive for NASDAQ series.

The normalized ES1 weights / appear to be close to 1/3 during
quite long period of time. For this reason we additionally investi-
gate the 1/3 approach which can be seen as a naive combination
of volatility components. It is mathematically equivalent to a sim-
plified version of exponentially weighted moving average with
step-wise decreasing weights which are constant over time. In par-
ticular, the daily measure v t�1 gets the largest weight, v t�2; . . . ;v t�5

get the same smaller weight and v t�3; . . . ;v t�22 obtain the same
smallest weight. In order to analyze the performance of the 1/3-
rule more precisely, we sum up absolute deviations between the
ES1 component weights and fixed weight of 1/3 byP

hj/ v t ;v ðhÞt�1

h i
� 1=3j. The resulting measure is plotted in the left

column of Fig. 2. We observe that the periods with bursting abso-
lute deviation sum strongly overlap with high volatility periods.
The scatter plots of the deviations from 1=3 vs. realized volatilities
are provided in the right column of Fig. 2. There is a positive depen-
dence with moderate R2 values of about 0.1–0.3. The simple 1=3
averaging appears to be close to the ES weights in calm or stable
phases, when all approaches produce reasonable forecasts and
market participants are relatively certain about future volatility
dynamics. However, during and after volatility shocks the ES
weights strongly deviate from the 1/3-benchmark.

4.3. Full sample forecast comparisons

In this subsection we compare both in-sample and out-of-sam-
ple forecasting performance of several models for daily volatility.
In particular, we estimate the HAR, ES1 and ES2 models. Addition-
ally, we consider the rule assigning 1=3-weights for all three HAR
components as well as the RiskMetrics forecasting approach with
the smoothing parameter k ¼ 0:94. To run a fair forecast compari-
son we employ the family of homogenous loss functions advocated
by Patton (2011). These functions are robust to the presence of
noise in realized volatility proxies and can be used for ranking
alternative forecasting models. Parameterized by b, the family of
loss function is defined as:

Lðrv ; bv ;bÞ ¼
1

ðbþ1Þðbþ2Þðrvbþ2� bv bþ2Þ� 1
bþ1
bv bþ1ðrv� bv Þ for b:2f�1;�2g

bv � rvþ rv � logðrv=bv Þ for b¼�1
rvbv � log rvbv �1 for b¼�2

8>><
>>:

where rv is a volatility measure and v̂ is a corresponding forecast.
Note that for b ¼ �2 the loss function corresponds to the ML
criteria, while for b ¼ 0 we obtain the mean squared error (MSE)



Table 2
The full sample parameter estimates, the corresponding standard deviation, the variance of the residuals for the considered models and the first two autocorrelations of the
residuals. The autocorrelations significant at 5% level are marked with (⁄).

Model a0 � 10�3 x1 x2 x3 r2 � 10�4 q1 q2

Estimation results for S&P 500
HAR 1.159 0.200 0.489 0.208 3.412 �0.019 0.167⁄

(0.385) (0.021) (0.036) (0.032) –
1/3 – – – – 3.484 �0.128⁄ 0.175⁄

– – – – –
RM – – – – 4.288 0.369⁄ 0.359⁄

– – – – –
ES1 – 227.329 �3.833 31.358 3.056 0.0902⁄ 0.123⁄

– (38.679) (7.887) (12.836) –
ES2 – 215.525 �17.901 18.802 3.055 0.083⁄ 0.166⁄

– (41.665) (11.575) (14.155) –

Estimation results for NASDAQ
HAR 1.397 0.329 0.289 0.279 2.855 �0.031 0.159⁄

(0.384) (0.020) (0.033) (0.030)
1/3 – – – – 2.892 �0.035⁄ 0.153⁄

– – – –
RM – – – – 6.966 0:662⁄ 0:586⁄

– – – –
ES1 – 14.761 5.959 –73.988 2.749 0:041⁄ 0:165⁄

– (6.817) (11.264) (15.417)
ES2 – 56.750 37.489 2.559 3.005 �0.141⁄ 0:186⁄

– (9.356) (5.763) (1.172)

Estimation results for Nikkei
HAR 1.175 0.524 0.173 0.199 1.293 �0:043⁄ 0:062⁄

(0.272) (0.020) (0.032) (0.028)
1/3 – – – – 1.351 0:143⁄ 0:122⁄

– – – –
RM – – – – 1.875 0:550⁄ 0:397⁄

– – – –
ES1 – 69.239 194.108 23.309 1.295 0:062⁄ 0:097⁄

– (20.466) (47.724) (8.873)
ES2 – 51.507 531.992 16.143 1.228 �0:052⁄ 0:084⁄

– (21.365) (235.619) (8.865)
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measure. For high positive values of b the loss function penalizes
overestimation of the true value more heavily, while for negative
values of b underestimation of the true value has higher impact
on losses (cf. Patton, 2011). In the study we use the values
b 2 f1; 0;�1;�2g. We concentrate here on comparing average
losses because the models appear to be rather close in forecasting
performance during the long calm period in the middle of the
sample so that statistical significance could be hardly established.
The results on statistical significance are provided in the next sub-
section where we focus on volatility prediction during the recent
subprime crisis period.

First we report the in-sample forecasting evidence which is
based on the full sample model estimates. The in-sample model
losses averaged over the full sample for all analyzed models in
Table 3. The ES1 approach shows superior performance for all
values of b. The HAR model is quite close to the ES2 approach,
while the performance of the 1/3 model improves with lower
values of b. The RiskMetrics approach is uniformly the worst one.

Next, in order to assess the out-of-sample forecasting ability of
the similarity-based models we conduct a one-step-ahead
forecasting exercise. In a moving window setup we reestimate
each model using the recent 250 observations and compute
one-step-ahead forecasting errors. The difference between the pre-
dicted values and the true observed realized volatility is measured
using the robust loss functions as above. The corresponding losses
averaged over the full sample are summarized in Table 4. We ob-
serve the performance of the ES1 model is still superior over the
HAR for all values of the parameter b. However, the 1=3-approach
should be slightly preferred for the out-of-sample forecasting pur-
pose. This evidence is not surprising, because 250 daily observa-
tions (one year) is a rather short for estimation of the ES models
with such complex dynamics. Thus, the success of 1=3-component
weighting can be seen as an equivalent to the finding that it is
rather hard to beat the uninformed 1=N approach of selecting the
optimal portfolio composition (cf. DeMiguel et al., 2009).

Summarizing, we report that the ES1 (HAR-component)
approach outperforms the HAR model both in sample and out of
sample although it has one parameter less. Moreover, we find that
a naive weighting with 1=3 proportion for each of three volatility
components provides a decent out-of-sample performance. This
evidence corresponds to the intuition that uninformed decision
makers tend to forecasting the next day volatility by keeping equal
weights for the recent daily, weekly and monthly volatility aggre-
gates. These results remain stable for all considered volatility
series.

4.4. Forecasting volatility during the crisis

Analyzing volatility behavior during the recent subprime crisis
is for sure of immense importance for both practice and research
due to extreme turbulence of global markets. For this reason in this
subsection we investigate the subperiod covering time during and
immediately after the crisis with respect to the success of the
empirical similarity approach in volatility forecasting. We select
November 2007 as the starting point of the subperiod and February
2011 as the end point, which appears to be in line with the crisis
dating of Bekaert et al. (2012). The model comparison is conducted
in line with those in the previous subsection. The average losses for
daily out-of-sample volatility forecasts during this subperiod are
summarized in Table 5, whereas the ordered/sorted models and
the corresponding p-values from the model confidence set (MCS)
of Hansen et al. (2011) are provided in Table 6.
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Fig. 2. The deviation measure
P

hj/ðv t ;v ðhÞt�1Þ � 1=3j (right) and scatterplots of realized volatility vs. the deviation measure (left) of the ES1 model for the full sample
estimation for S&P500, NASDAQ and Nikkei. R2 measures equal to 0.29, 0.06 and 0.32 respectively.

Table 3
Average values of the in-sample losses for the considered models estimated based on
the full sample information.

Model b ¼ 1 b ¼ 0 b ¼ �1 b ¼ �2

Average losses for S&P500
HAR 4:055� 10�11 1:704� 10�8 2:133� 10�5 1:422� 10�1

1/3 4:310� 10�11 1:742� 10�8 2:076� 10�5 1:330� 10�1

RM 4:184� 10�11 2:144� 10�8 3:248� 10�5 1:960� 10�1

ES1 3:706� 10�11 1:528� 10�8 1:986� 10�5 1:325� 10�1

ES2 3:679� 10�11 1:527� 10�8 2:010� 10�5 1:343� 10�1

Average losses for NASDAQ
HAR 1:712� 10�11 1:426� 10�8 2:378� 10�5 1:315� 10�1

1/3 1:754� 10�11 1:446� 10�8 2:366� 10�5 1:252� 10�1

RM 6:017� 10�11 3:483� 10�8 4:115� 10�5 1:769� 10�1

ES1 1:612� 10�11 1:375� 10�8 2:331� 10�5 1:252� 10�1

ES2 1:881� 10�11 1:502� 10�8 2:394� 10�5 1:256� 10�1

b ¼ 1 b ¼ 0 b ¼ �1 b ¼ �2

Average losses for Nikkei
HAR 6:249� 10�12 6:445� 10�9 1:684� 10�5 1:295� 10�1

1/3 6:550� 10�12 6:753� 10�9 1:726� 10�5 1:299� 10�1

RM 8:160� 10�12 9:374� 10�9 2:484� 10�5 1:758� 10�1

ES1 6:176� 10�12 6:475� 10�9 1:690� 10�5 1:292� 10�1

ES2 5:696� 10�12 6:139� 10�9 1:670� 10�5 1:290� 10�1

Table 4
Average losses for one-step-ahead forecasts. The models are reestimated using the
last 250 observations.

Model b ¼ 1 b ¼ 0 b ¼ �1 b ¼ �2

Average losses for S&P500
HAR 11:496� 10�11 3:082� 10�8 2:372� 10�5 1:440� 10�1

1/3 4:654� 10�11 1:834� 10�8 2:030� 10�5 1:322� 10�1

RM 4:432� 10�11 2:131� 10�8 3:002� 10�5 1:896� 10�1

ES1 4:694� 10�11 1:842� 10�8 2:032� 10�5 1:322� 10�1

ES2 6:229� 10�11 2:130� 10�8 2:085� 10�5 1:343� 10�1

Average losses for NASDAQ
HAR 2:106� 10�11 1:284� 10�8 2:043� 10�5 1:340� 10�1

1/3 1:219� 10�11 0:969� 10�8 1:851� 10�5 1:238� 10�1

RM 1:236� 10�11 1:169� 10�8 2:553� 10�5 1:675� 10�1

ES1 1:223� 10�11 0:970� 10�8 1:851� 10�5 1:238� 10�1

ES2 1:426� 10�11 1:037� 10�8 1:864� 10�5 1:243� 10�1

b ¼ 1 b ¼ 0 b ¼ �1 b ¼ �2

Average losses for Nikkei
HAR 25:620� 10�12 11:813� 10�9 1:888� 10�5 1:373� 10�1

1/3 6:919� 10�12 6:800� 10�9 1:662� 10�5 1:291� 10�1

RM 8:654� 10�12 9:543� 10�9 2:423� 10�5 1:752� 10�1

ES1 6:916� 10�12 6:798� 10�9 1:662� 10�5 1:291� 10�1

ES2 8:390� 10�12 7:368� 10�9 1:683� 10�5 1:298� 10�1
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Table 5
Average losses for one-step-ahead forecasts in the subprime crisis subperiod. The
models are reestimated using the last 250 observations.

Model b ¼ 1 b ¼ 0 b ¼ �1 b ¼ �2

Average losses for S&P500
HAR 8:590� 10�12 10:033� 10�9 2:670� 10�5 1:899� 10�1

1/3 5:683� 10�12 7:962� 10�9 2:224� 10�5 1:496� 10�1

RM 5:983� 10�12 9:125� 10�9 2:940� 10�5 2:257� 10�1

ES1 5:650� 10�12 7:875� 10�9 2:201� 10�5 1:489� 10�1

ES2 6:759� 10�12 8:570� 10�9 2:283� 10�5 1:602� 10�1

b ¼ 1 b ¼ 0 b ¼ �1 b ¼ �2

Average losses for NASDAQ
HAR 13:616� 10�12 1:233� 10�8 2:761� 10�5 1:857� 10�1

1/3 8:085� 10�12 0:953� 10�8 2:474� 10�5 1:597� 10�1

RM 8:154� 10�12 1:018� 10�8 3:050� 10�5 2:318� 10�1

ES1 8:038� 10�12 0:945� 10�8 2:460� 10�5 1:595� 10�1

ES2 10:023� 10�12 1:031� 10�8 2:446� 10�5 1:632� 10�1

b ¼ 1 b ¼ 0 b ¼ �1 b ¼ �2

Average losses for Nikkei
HAR 2:429� 10�13 1:452� 10�9 1:185� 10�5 1:399� 10�1

1/3 2:203� 10�13 1:314� 10�9 1:065� 10�5 1:250� 10�1

RM 2:601� 10�13 1:544� 10�9 1:271� 10�5 1:525� 10�1

ES1 2:207� 10�13 1:314� 10�9 1:065� 10�5 1:249� 10�1

ES2 2:368� 10�13 1:397� 10�9 1:119� 10�5 1:303� 10�1
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The results in Tables 5 and 6 indicate that the ES1 approach
with the HAR components provides rather sound performance
which is in many situations significantly better than the alterna-
tives. The ES1 approach is almost everywhere the best one with
the 1/3-strategy as the closest competitor. Furthermore, the MCS
results state that for almost all cases only the ES1 and 1/3
Table 6
The ordered models using the out-of-sample model confidence sets for the crisis subperiod.
The p-values are given in parentheses and the last model with p ¼ 1 is the best.

b ¼ 1 b ¼ 0

S&P 500 HAR, ES2, RM, 1/3, ES1 HAR, RM, ES2, 1/3, ES1
(0.060,0.060,0.060,0.068,1) (0.039,0.039,0.114,0.114,

NASDAQ HAR, ES2, RM, 1/3, ES1 HAR, RM, ES2, 1/3, ES1
(0.330,0.330,0.330,0.373,1) (0.010,0.010,0.425,0.425,

NIKKEI RM, ES2, HAR, ES1, 1/3 RM, HAR, ES2, ES1, 1/3
(0.099,0.099,0.099,0.369,1) (0.045,0.045,0.045,0.712,

Table 7
Average losses for the weekly volatility forecasts during the subprime crisis subperiod. Th

Model b ¼ 1 b ¼ 0

Average losses for S&P500
HAR 2:521� 10�12 6:104� 10�

1/3 1:765� 10�12 4:663� 10�

ES1 1:687� 10�12 4:469� 10�

Average losses for NASDAQ
HAR 3:000� 10�12 5:942� 10�

1/3 2:015� 10�12 4:902� 10�

ES1 1:863� 10�12 4:558� 10�

b ¼ 1 b ¼ 0

Average losses for Nikkei
HAR 1:615� 10�13 10:659� 10�

1/3 1:045� 10�13 6:675� 10�

ES1 1:045� 10�13 6:676� 10�
strategies remain in the MCS, i.e. are statistically superior at 10%
significance level. Note that extremely high volatility during the
subprime crisis complicates establishing further statistical signifi-
cance results during this subperiod.

Predicting volatility is of practical interest not only for daily
data frequency but also for other, e.g. weekly, time horizons (cf.
Andersen et al., 2007; Byun and Kim, 2013). For these reasons we
also consider forecasting weekly volatility measure during the cho-
sen subperiod by contrasting the HAR, 1/3 and ES1 approaches. The
models are reestimated with the moving window of 250 days
which is shifted for one day ahead. The averages losses for the
weekly volatility forecast are presented in Table 7.

As for the one day ahead volatility forecasts, the ES1 model is
overall the best one in forecasting the weekly measure. It appears
to be rather close to 1/3 for Nikkei volatility, but is much better for
S&P500 and NASDAQ indices. Thus, the empirical similarity con-
cept appears to be applicable for weekly forecasting horizon as
well. Note that volatility forecast comparisons for longer (monthly,
quarterly) horizons are hardly reasonable with the similarity
approach because the long term component is driven mostly by
changes in (macro)economic fundamentals but not by short run
daily fluctuations (cf. Andersen et al., 2005). Thus, the models for
daily volatility are not very suitable for long term forecasting.
5. Conclusions

In this paper we propose the empirical similarity (ES) approach
for combining forecasts of different models. The ES concept should
be applied in situations where probabilistic model combinations
are undesired or hardly possible. The ES concept of Gilboa et al.
(2006) provides the econometric framework for analogy-based
reasoning, which grounds on the case based decision theory (cf.
Gilboa and Schmeidler, 2001). The ES allows to estimate how
The first models in the MCS can be dropped up to the corresponding significance level.

b ¼ �1 b ¼ �2

RM, HAR, ES2, 1/3, ES1 RM, HAR, ES2, 1/3, ES1
1) (0.009,0.009,0.145,0.145,1) (0.020,0.020,0.285,0.636,1)

RM, HAR, 1/3, ES1, ES2 RM, HAR, ES2, 1/3, ES1
1) (0.045,0.045,0.499,0.875,1) (0.022,0.022,0.435,0.435,1)

RM, HAR, ES2, 1/3, ES1 RM, HAR, ES2, 1/3, ES1
1) (0.047,0.047,0.047,0.771,1) (0.014,0.057,0.117,0.482,1)

e models are reestimated using the last 250 observations.

b ¼ �1 b ¼ �2

9 2:618� 10�5 2:018� 10�1

9 1:943� 10�5 1:488� 10�1

9 1:893� 10�5 1:474� 10�1

9 2:451� 10�5 1:945� 10�1

9 2:071� 10�5 1:592� 10�1

9 1:987� 10�5 1:569� 10�1

b ¼ �1 b ¼ �2

10 9:081� 10�6 10:221� 10�1

10 5:913� 10�6 7:369� 10�1

10 5:914� 10�6 7:370� 10�1
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economic agents evaluate the current situation with respect to
their experience. In our approach the model combination weights
are assigned by evaluating the similarity of the current realization
to the recent model forecasts. The proposed ES forecast combina-
tion approach incorporates both time series and cross-section sim-
ilarity features.

The suggested ES methodology is used for the purpose of daily
volatility forecasting. We estimate the ES-based models in order to
determine the weights of the volatility components sampled at
different frequencies (daily, weekly, monthly) as in the HAR ap-
proach of Corsi (2009). We find that the ES model with the HAR
components is systematically better than the original HAR both
in sample and out of sample for various forecasting performance
measures. Moreover, a naive ES strategy of assigning 1/3-weights
to all three components is quite successful for the out-of-sample
volatility prediction purpose. The volatility forecasting exercise
for the subperiod during and after the subprime crisis supports
the usefulness of the empirical similarity concept for explaining
complex volatility dynamics.
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