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Summary: There is an increasing demand for models of multivariate time-series with time-varying
and non-Gaussian dependencies. The available models suffer from the curse of dimensionality or
from restrictive assumptions on the parameters and distributions. A promising class of models is
that of hierarchical Archimedean copulae (HAC), which allows for non-exchangeable and non-
Gaussian dependency structures with a small number of parameters. In this paper we develop
a novel adaptive estimation technique of the parameters and of the structure of HAC for time-
series. The approach relies on a local change-point detection procedure and a locally constant
HAC approximation. Typical applications are in the financial area but also recently in the spatial
analysis of weather parameters. We analyse the time varying dependency structure of stock
indices and exchange rates. Both examples reveal periods with constant and turmoil dependencies.
The economic significance of the suggested modelling is evaluated using the Value-at-Risk of
a portfolio.

1 Introduction
The key difference between univariate and multivariate time series analysis is the fact that
the future dynamics is affected not only by the univariate past but also by cross-sectional
dependencies. These dependencies are not constant and vary in time. Their dynamics,
form and strength are important in many applications. Risk diversification, asset allo-
cation, and financial spillovers illustrate this importance. The most straightforward and
therefore best established approach to modelling such dependencies is via the correlation
(or covariance) matrix. The correlation matrix uniquely characterises the dependency if
the data is driven, for example, by a multivariate normal distribution. Similar arguments
also hold for arbitrary elliptical distributions (as the multivariate t). Due to its simplicity,
the covariance matrix has become the standard parametrisation of dependency. In many
applications the dependency structure varies over time. Time varying conditional volatili-
ties are modelled using, e.g., GARCH-type processes. For a recent review of multivariate
GARCH processes, including Dynamic Conditional Correlation (DCC), Constant Condi-
tional Correlation (CCC), Baba, Engle, Kraft, and Kroner (1990) (BEKK), and others, we
refer to Silvennoinen and Teräsvirta (2009). These models still assume that the parameters
for the process are constant over an entire estimation period. Such an approach has been
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challenged even in the univariate case, as the growing literature demonstrates, see Lam-
oureux and Lastrapes (1990). In practice, it is likely that the parameters characterising
the dependency change with time in possibly a nonstationary manner.

Another disadvantage of covariance-based dependency modelling is the fact that it
fails to capture important types of data features. First, covariances are measures of lin-
ear dependence and therefore fail to represent nonlinear relationships. As an alternative
approach, one may consider other measures such as Kendall’s tau or Spearman’s rho,
see Joe (1997). However, the extensions of these measures to higher dimensions is prob-
lematic, see, e.g., Schmid and Schmidt (2006). Secondly, elliptical distributions postulate
symmetric dependency, i.e., the strength of the relationship is the same for high and low
values. This is, however, in some applications too restrictive an assumption. Thirdly, the
covariance matrix – used as a parameter for a multivariate normal distribution – fails
to fit the heavy tails typical of asset returns. An approach which partially solves these
problems is based on copulae, proposed by Sklar and reviewed in Joe (1997) and Nelsen
(2006). Copulae allow us to model dependency separately from marginal distributions
and provide a better fit for heavy tails, asymmetries, etc.

Time-varying copulae were considered recently by Breymann, Dias, and Embrechts
(2003), Jondeau and Rockinger (2006), Patton (2004), Rodriguez (2007), and Giacomini,
Härdle, and Spokoiny (2009). Patton (2004) considers an asset-allocation problem with
a time-varying parameter of bivariate copulae. Rodriguez (2007) studies financial conta-
gion using switching-parameter bivariate copulae. In contrast to those papers, Giacomini,
Härdle, and Spokoiny (2009) used a novel method based on local adaptive estimation
discussed in Spokoiny (2010). The idea of that approach is to determine a period of
homogeneity wherein the parameter of a low-dimensional Archimedean copula (AC) can
be approximated by a constant.

The online instantaneous selection of high dimensional dependency structures via
multivariate copulae is still an open problem. Here we tackle this problem via multivariate
hierarchical Archimedean copulae (HAC). A detailed analysis of this copula class is given
in Okhrin, Okhrin, and Schmid (2013a). Unlike simple AC, the HAC is characterised not
only by its parameters, but also by its structure. The time-varying dependency therefore
affects its structure and parameters simultaneously. The variability of the parameters
implies that the dependency becomes stronger or weaker; the variability of the structure
implies that there is a change not only in the strength of the dependency, but also in
its form. The proposed technique allows us to determine the periods with local constant
structure and parameters. It is based on the selection of an appropriate interval out of a set
of candidate intervals. This procedure requires the calculation of a sequence of critical
values (by simulations) that are used in testing local homogeneity. Local homogeneity is
checked via a test against a change point alternative.

To assess the performance of the methodology developed, we perform extensive
simulations and empirical studies. Within the simulation study, we show that this novel
technique quickly reacts to shifts in the structure and in the parameters. The varying
estimation window allows of an increase in the precision of the estimators in stable
periods, but simultaneously of reacting quickly to changes if they occur. The detection
delay clearly demonstrates the effectiveness of the procedure compared to a rolling
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window estimation. In the empirical study, we give one example with changes only in
parameters and another example with changes both in the parameters and in the structure.

This paper is structured as follows. In the next section we give a short theoretical
background for HAC with estimation and grouping techniques. Section 3 extends the
local adaptive estimation procedures to copulae. Sections 4 and 5 deal with applications
to simulated and real data.

2 Hierarchical Archimedean copulae
The advantage of a copula is that it allows of splitting the multivariate distribution into its
margins and a pure dependency component: It captures the dependency between variables,
eliminating the impact of the marginal distributions. Formally, copulae were introduced
in Sklar (1959). The main result states that if F is an arbitrary d -dimensional continuous
distribution function of the random variables X1; : : : ;Xd , then the associated copula is
unique and defined to be the continuous function C W Œ0;1�d ! Œ0;1� which satisfies the
equality

C.u1; : : : ;ud / D F ¹F �1
1 .u1/; : : : ;F �1

d .ud /º; u1; : : : ;ud 2 Œ0;1�;

where F �1
1 .�/; : : : ;F �1

d
.�/ are the quantile functions of the corresponding marginal dis-

tributions F1.x1/; : : : ;Fd .xd /. If F belongs to the class of elliptical distributions, then
this results in a so called elliptical copula. Note, however, that this copula cannot be
given explicitly, because the distribution function F and the inverse marginal distribu-
tions Fi usually have only integral representations. One of the classes that overcomes this
drawback of elliptical copulae is the class of Archimedean copulae (AC)

C.u1; : : : ;uk/ D �¹��1.u1/ C�� �C��1.ud /º; u1; : : : ;ud 2 Œ0;1�; (2.1)

where � 2 L D ¹� W Œ0I1/ ! Œ0;1� j�.0/ D 1; �.1/ D 0I .�1/j �.j / � 0I j D 1;: : : ;1º.
The function � is called the generator of the copula and usually depends on a single
parameter � . For example, the Gumbel generator is given by � D exp.�x1=� / for 0 �
x < 1; 1 � � < 1. The generator � is required to be d -monotone, i.e., differentiable
up to order d � 2, with .�1/j �.j /.x/ � 0, j D 0; : : : ;d � 2 for any x 2 Œ0;1/, and with
.�1/d�2�.d�2/.x/ non-decreasing and convex on Œ0;1/ (e.g., McNeil and Nešlehová
(2009)). For a detailed review of the properties of AC can be found in McNeil and
Nešlehová (2009) and Joe (1996).

A disadvantage of AC is the fact that the rendered dependency is symmetric with
respect to the permutation of variables, i.e., the distribution is exchangeable. Moreover,
the multivariate dependency structure is somewhat stiff, since it depends on a single
parameter of the generator function �. The Hierarchical Archimedean Copulae (HAC)
overcome this problem by considering the compositions of simple AC. For example, the
special case of 4-dimensional HAC fully nested copula can be given by

C.u1;u2;u3;u4/ D C1¹C2.u1;u2;u3/;u4º D �1¹��1
1 ı C2.u1;u2;u3/ C��1

1 .u4/º
D �1¹��1

1 ı �2Œ��1
2 ¹C3.u1;u2/º C��1

2 .u3/�C��1
1 .u4/º: (2.2)
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Composition can be applied recursively using different segmentations of the variables,
leading to more complex HACs. For notational convenience let the expression s D
¹.: : : .i1 : : : ij1

/ : : : .: : : / : : : /º denote the structure of an HAC, where i` 2 ¹1; : : : ; d º is
a reordering of the indices of the variables. sj denotes the structure of subcopulae with
sd D s. Further, let the d -dimensional HAC be denoted by C.u1; : : : ;ud Is;���/, where ���

the set of copula parameters. For example the fully nested HAC (2.2) can be expressed as

C.u1; : : : ;ud Is D sd ;���/

D C ¹u1; : : : ;ud I..sd�1/d/;.�1; : : : ;�d�1/>º
D �d�1;�d�1

.��1
d�1;�d�1

ı C ¹u1; : : : ;ud�1I..sd�2/.d � 1//;.�1; : : : ;�d�2/>º
C ��1

d�1;�d�1
.ud //;

where s D ¹.: : : .12/3/: : :/d /º. In Figure 2.1 we present a fully nested HAC with structure
s D ...12/3/4/ and a partially nested HAC with s D ..12/.34// in dimension d D 4.

θ1

θ2 u4

θ3 u3

u1 u2

θ1

θ2 θ3

u1 u2 u3 u4

Figure 2.1 Fully and partially nested copulae of dimension d D 4 with structures s D (((12)3)4)
on the left and s D ((12)(34)) on the right.

HAC are thoroughly analysed in Joe (1997), Whelan (2004), Savu and Trede (2010),
Embrechts, Lindskog, and McNeil (2003), Hofert (2012), Hering, Hofert, Mai, and
Scherer (2010), etc.

Note that the generators �i within an HAC can come either from a single generator
family or from different generator families. If they belong to the same family, then the
complete monotonicity of �i ı ��1

iC1, needed for HAC to be a proper copula, imposes
some constraints on the parameters �1; : : : ;�d�1. Theorem 4.4 of McNeil (2008) provides
sufficient conditions on the generator functions to guarantee that C is a copula. If �i 2 L
for i D 1;: : : ;d �1 and �i ı��1

iC1 has a completely monotone derivative for i D 1;: : : ;d �2,
then C is a copula. For the majority of generators, a feasible HAC requires decreasing
parameters from the lowest to the highest level. However, in the case of different families
within a single HAC, the condition of complete monotonicity is more difficult to check.

In general the structure s of the HAC can be arbitrary. On the one hand this makes
it a very flexible and at the same time parsimonious distribution model. If we use the
same single-parameter generator function on each level, but with a different value of � ,
we may specify the whole distribution with d � 1 parameters. From this point of view,
the HAC approach can be seen as a alternative to covariance driven models. On the
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other hand, for each HAC not only are the parameters unknown, but also the structure
has to be determined. One possible procedure is to enumerate and estimate all possible
HACs. Using a suitable goodness-of-fit test we then determine the optimal structure.
This approach is however unrealistic in practice even in moderate dimensions. Okhrin,
Okhrin, and Schmid (2013a) suggest a computationally efficient procedure, which allows
to estimate an HAC recursively.

We restrict the discussion to binary copulae, i.e., at each level of the hierarchy only
two variables are joined together. Joining more than two variables dramatically increases
the number of formal candidate distributions and the needed computational power. At
the lowest level, we fit a bivariate copula to every couple of the variables. The estimation
procedure is discussed below. We select the couple of variables with the strongest fit
and denote the set of indices of the variables by I1 and the respective estimator of the
parameter at the first level by O�1 D O�.I1/. The selected couple is joined together to
define the pseudo-variables C ¹�1; O�1º.ui /¹i2I1º, i.e we evaluate the copula defined via

the generator �1 with the parameter O� for the observations of variables from I1. At the
next level we proceed in the same way by considering the remaining variables and the
new pseudo-variable. This procedure allows us to estimate the structure of the copula.

More formally, the pair Ij to be grouped at the level j is determined from

Ij D argmax
Ik�j C1;i ; jIk�j C1;i jD2

�.Ik�j C1;i /;

where Ik�j C1;i ’s are all possible sets of pairs from k � j C 1 variables at level j and
�.Ik�j C1;i / is the corresponding copula parameter. This approach always leads to a fea-
sible copula function with k � 1 parameters.

If the true copula is not binary, this procedure leads to a potentially mis-specified
model. Despite the difference in the structures, the difference in the distribution functions
in general is minor. To motivate this point we consider the following binary HAC

C1.�;.�1;�2/I..12/3//.u1;u2;u2/:

If the parameters are close, i.e., for some fixed small " W j�1 � �2j � ", then the de-
pendency structure imposed by C1 is very close to the dependency structure imposed
by C2.�;�1I .123//.u1;u2;u2/. This property is referred to as associativity of AC, see
Theorem 4.1.5 of Nelsen (2006). It says that if the parameters are equal then the copula
structures .12/3 and .123/ lead to the same copula.

Multi-stage maximum-likelihood estimation is a convenient tool for recursive esti-
mation. At the first stage, we estimate the marginal distributions either parametrically or
nonparametrically. At the next stage, we estimate the parameter of the copula at the first
level replacing marginal distribution functions by their estimates. At further stages, the
next level copula parameter is estimated assuming that the margins as well as the copula
parameters at lower levels are known.
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Let ��� D .�1; : : : ; �p/> be the parameters of the copulae starting with the lowest up
to the highest level and ˛̨̨ D .˛̨̨1; : : : ;˛̨̨d /> be the vector of parameters of the marginal
distributions. The multistage ML estimator O� of � D .˛̨̨>;���>/> solves the system

 
@L1

@˛̨̨>
1

; : : : ;
@Ld

@˛̨̨>
d

;
@LdC1

@�1

; : : : ;
@LdCp

@�p

!>
D 0; (2.3)

where Lj D
nX

iD1

lj .Xi /; for j D 1; : : : ;d Cp;

lj .Xi / D log fj .xij ;˛̨̨j /; for j D 1; : : : ;d; i D 1; : : : ;n;

lj Cd .Xi / D log
�
c
�¹ OFm.xim;˛̨̨m/ºm2sj

I sj ;¹�`º`D1;:::;p

� Y
m2sj

Ofm.xim;˛̨̨m/
�

for j D 1; : : : ;p; i D 1; : : : ;n:

where c is the copula density (see Joe (1997), Savu and Trede (2010)), OFi .�/ is an
estimator of the marginal cdf Fi and Xj D .x1j ; : : : ;xnj /> is the vector of observations
of the variable Xj . If we estimate the margins parametrically, then OFi .�/ D Fi .�; Ǫ̨̨ i /. The
marginal density Of .�/ is estimated accordingly. For the nonparametric estimation of the
margins the ML procedure will have the form:

 
@L1

@˛̨̨>
1

; : : : ;
@Lp

@˛̨̨>
p

!>
D 0; (2.4)

where Lj D
nX

iD1

lj .Xi /; for j D 1; : : : ;p;

lj .Xi / D log c
�¹ OFm.xim/ºm2sj

I sj ;¹�`º`D1;:::;p

�
for j D 1; : : : ;p; i D 1; : : : ;n:

Chen and Fan (2006) and Okhrin, Okhrin, and Schmid (2013a) provide the asymptotic
behaviour of the estimates.

3 Inhomogeneous dependence
Numerous models have been proposed for time-varying correlation structure, with the
multivariate GARCH model being among the most popular ones. In these models, the
correlations are defined as functions of (lagged) explanatory variables which may influ-
ence the variation in the current dependency structure (measured via the correlation). This
implies that the conditional correlation changes at each moment of time, but the parame-
ters of the conditioning functions are assumed to be constant. This approach suffers from
two important drawbacks. First, the estimation of this type of model is tedious because
of the large number of parameters to be estimated. Second, there is evidence that the
parameters do change with time, see, e.g., Lamoureux and Lastrapes (1990). Neglecting
this fact may lead to inconsistent estimators.
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Dynamic structured copula models 367

In order to cope with a time varying dependency structure, we propose a parsimonious
alternative that is based on a locally constant HAC approximation. With a once-and-for-all
calculated set of critical values, we determine the periods of homogeneity instantaneously
at each time point. The corresponding theory and applications may be found in Čı́žek,
Härdle, and Spokoiny (2009), Mercurio and Spokoiny (2004), and Chen, Härdle, and
Jeong (2008). This method can be applied to virtually any dependency model. When
applied to HACs, it allows us to control not only for periods with constant parameters, but
also for periods with constant structure. Moreover, this method is applicable not only to
abrupt changes in the dependency, but also to smooth transitions in the model parameters.

Let st and ��� t denote the time varying but unknown copula structure and parameters.
The idea is to select for each time t0 an interval I in which ��� t and st can be well
approximated by constant ���� and s�. The discrepancy between two copulae C.�Is;���/ and
C.�Is0;��� 0/ is measured by the Kullback–Leibler (KL) divergence K:

K¹C.�Is0;��� 0/;C.�Is;���/º D E s0;��� 0 log
c.�Is0;��� 0/
c.�Is;���/

where c is the copula density, see Nelsen (2006). The aim is to select I as close as possible
to the so-called ‘oracle’ choice interval. Define the ‘oracle’ choice Ik� of interval as the
largest interval I D Œt0 �mk� I t0� for which the small modelling bias condition (SMB) is
fulfilled:

4I .s;���/ D
X
t2I

K¹C.�Ist ;��� t /;C.�Is;���/º � 4; for some 4 � 0; s;��� : (3.1)

The unknown local constant copula parameter (at t0) can be best estimated on the largest
interval argmaxI 4I .s;���/ D Œt0 �mk� I t0� fulfilling (3.1). This means that on the interval
I , the model st ; ��� t can be well approximated by a constant s; ��� . The methods of
estimation of the HAC discussed in Okhrin, Okhrin, and Schmid (2013a) maximise the
ML with respect to the structure s and parameters ��� , which leads to the best parametric
fit to the underlying model on I , defined by QsI ; Q���I . Recall that the Kullback–Leibler
divergence plays a particular role in the analysis and estimation of mis-specified models,
see White (1982). In the case of minimising 4I .s;���/ with respect to the length of the
interval I , we minimise the loss caused by the ignorance of the time variation in the
copula.

Note that the true time-varying parameters ��� t and st are unknown. Therefore also the
‘oracle’ choice mk� is unknown. In a data-driven algorithm based on the Local Change
Point (LCP) detection procedure, see Spokoiny (2010), we sequentially test whether
��� t D ���� and the structure of the HAC st D s� is constant within some interval I . Here
the aim of the LCP technique is not to detect a change point, but rather to conveniently
determine the period of constant dependency. Alternative techniques can be found, for
example in Čı́žek, Härdle, and Spokoiny (2009).

The risk arising in the estimation of locally constant copulae under the SMB is
bounded. Let L.s;���/ denote the log-likelihood function based on the HAC with the
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parameters s and ��� . Following Čı́žek, Härdle, and Spokoiny (2009), let Q���I and QsI be any
estimators on an interval I . If the SMB holds for some I , s, and ��� , then

E st ;��� t
log

´
1 C jL.QsI ; Q���I / �L.s;���/jr

Rr.s;���/

μ
� 1 C4; (3.2)

where Rr .s;���/ is an upper bound satisfying

E s�;���� jL.QsI ; Q���I / �L.s�;����/jr � Rr .s�;����/

which is called a ‘propagation condition’. We set r D 0:5 since this choice is also proposed
in the literature. The bound given in (3.2) tells us that the risk in an estimated local constant
model (under SMB) differs from the risk in the true constant model by 4.

The LCP is based on sequentially testing the hypotheses of homogeneity on intervals
Ik . We select Ik with k D �1;0;1; : : : as a sequence of intervals Ik � IkC1, starting with
k D 1. If there are no change points in Tk � Ik n Ik�1, then we accept Ik as an interval
with constant copula parameter and structure. At the next step we take TkC1 and test it
for homogeneity. We repeat these steps until rejection or the largest possible interval IK

is accepted, leading to an interval I Ok .
Two sources of error occur in practical applications. Let Ik� denote the oracle choice.

This implies that for Ik (k < k�) the SMB holds. The first type of error (‘false alarm’)
occurs if Ok < k�. In this case the estimation is based on a shorter data period and therefore
implies higher variability. Let Osk and O���k be the respective estimators and Qsk and Q���k denote
the corresponding fixed-sample estimators on Ik . Under the SMB condition on Ik� and
assuming that maxk�k� Es;��� jL.Qsk ; Q���k/�L.s;���/jr � Rr .s;���/, we obtain by Theorem 4.2
of Čı́žek, Härdle, and Spokoiny (2009)

E st ;��� t
log

´
1 C jL.Qs Ok; Q��� Ok/ �L.s;���/jr

Rr.s;���/

μ
� 1 C4; (3.3)

E st ;��� t
log

´
1 C jL.Qs Ok; Q��� Ok/ �L.Os Ok; O��� Ok/jr

Rr.s;���/

μ
� � C4:

The inequalities (3.3) say that if we observe a false alarm at the step Ok < k�, then the
estimation risk measured by jL.Qs Ok ; Q��� Ok/ �L.Os Ok; O��� Ok/jr is of the same order as the risk of
a pure parametric estimation with fixed interval given by I Ok .

The second type of error arises if Ok > k�. Outside the oracle interval we are exploiting
data which does not support the SMB condition. This implies that the bounds in (3.3)
increase. Theorem 4.3 of Čı́žek, Härdle, and Spokoiny (2009) provides general bounds
for the adaptive estimator, showing that

E st ;��� t
log

´
1 C jL.Qsk� ; Q���k�/ �L.Os Ok; O��� Ok/jr

Rr.s;���/

μ
� 1 C4 C log

²
1 C zr

k�

Rr.s;���/

³
; (3.4)

where z Ok are the critical values of the test for homogeneity and are defined below. This

statement implies that the copula based on Os Ok and O��� Ok belongs with high probability to the

confidence interval of the oracle copula with Qsk� and Q���k� .
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3.1 Local test of homogeneity
A local homogeneity test can now be performed. Let us fix some t0 and let I D Œt0 �m;t0�

be an interval candidate and TI be a set of interval points within I . We estimate the copula
parameter ��� and the structure s from observations in I , assuming the homogeneous model
within I , i.e., using the notation from the previous section, O��� t0 D Q���I and Ost0 D QsI . The
null hypothesis H0 means that 8� 2 TI W ���� D���; s� D s, i.e., the observations in I follow
the model with the dependence parameter ��� and the structure s. The alternative (change
point) hypothesis H1 claims that 9� 2 TI W ��� t D ���1 and st D s1 for t 2 J D Œ�; t0� and
��� t D ���2 ¤ ���1 or st D s2 ¤ s1 for t 2 J c D Œt0 �m;�/, i.e., either the parameter ��� or the
whole structure s changed spontaneously at some intermediate point � of the interval I .
In other words,

H0 W 8� 2 TI ; ��� t D ���; st D s; 8t 2 I D J [ J c D Œ�; t0�[ Œt0 � m;�/

H1 W 9� 2 TI ; ��� t D ���1; st D s1I 8t 2 J D Œ�; t0�;

and ��� t D ���2 ¤ ���1 or st D s2 ¤ s1;8t 2 J c D Œt0 � m;�/:

If LI .s;���/ and LJ .s1;���1/ CLJ c .s2;���2/ are the log-likelihood functions corresponding
to H0 and H1, respectively, the likelihood ratio test for the single change point with
known fixed location � is given by

TI;� D max
s1;���1;s2;���2

¹LJ .s1;���1/ CLJ c .s2;���2/º � max
s;���

LI .s;���/:

Since the point � is unknown, one defines the test statistics:

TI D max
�2TI

TI;� :

It tests the homogeneity hypothesis in I against a change point alternative with unknown
location � (in the set TI ). The decision rule of the test requires comparing TI with the
critical value zI . The critical value depends on the interval I , the dimension, and the
parameter of the copula. We reject the hypothesis of homogeneity if TI > zI . To run
the test, several parameters have to be specified. This includes the choice of the interval
candidates (Ik) and internal points Tk D TIk

for each of this intervals and the choice of
the critical values zk D zIk

. One possible example of the implementation is based on the
choice of the interval candidates (Ik) in the form of a geometric grid. If the length of the
interval I1 is fixed at m1, then we define m0 D a1m1 and m�1 D a2m1 for a1 > a2 2 .0;1/

and mk D Œm1ck�1� for k D 1;2; : : : ;K and c > 1, where Œx� means the integer part of
x. Further we set Ik D Œt0 �mk; t0� and Tk D Œt0 �mk�1; t0 �mk�2� for k D 1;2; : : : ;K ,
see Figure 3.1.

For each particular copula model and for each sequence of intervals the critical
values zk are determined from simulations. Under the null hypothesis of homogeneous
dependence, the adaptive estimator should coincide with the largest allowed interval
IK . However, if the estimated interval is I Ok with Ok < K , then the test rejects a correct
null hypothesis. The critical values are therefore determined not from the classical level
condition, but relying on the precision of the parameter estimators. If Ok is small, the
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Ik

IkC1

TkC1 Tk Ik�1

t0 � mkC1 t0 � mk t0 � mk�1 t0
� �� �� �

� �

� �

Figure 3.1 Interval selection.

volatility of the parameter estimator is high. This implies that false decisions with small Ok
more severely deteriorate the test of homogeneity. To overcome this problem, we ensure
that

E s�;�� jL.Qsk ; Q���k/ �L.Osk; O���k/jr � �kRr.s�;����/;

where �k D �k=K � � and Rr .s�;����/ D maxk jL.Qsk; Q���k/�L.s�;����/jr . The parameter
� plays the role of the level of significance and influences the sensitivity of the procedure
to inhomogeneity.

In this paper we used the sequential choice of critical values zk discussed in Spokoiny
(2009). In the situation after k steps of the algorithm, we distinguish between two cases.
In the first, the change point is detected at some step ` � k and in the other case no change
point is detected. Following the notation in Spokoiny (2009), let B` be the event meaning
the rejection of the null hypothesis at step `

B` D ¹T1 � z1; : : : ;T`�1 � z`�1;T` > z`º;

and .Osk; O���k/ D .Qs`�1; Q��� `�1/ on B` for ` D 1; : : : ;k. By Monte Carlo simulations from
some fixed parametric models discussed in Section 4, we found sequentially the minimal
value of zl that ensures the following inequality:

max
kDl;:::;K

E s�;�� jL.Qsk ; Q���k/ �L.Qs`�1; Q��� `�1/jr I.B`/ � �Rr.s�;����/k=.K � 1/;

where I is the indicator function. For ` D 1 this inequality depends only on z1 in B1 D
¹T1 > z1º. For every ` � 2 we take z1; : : : ;z`�1 fixed from the previous step, which means
that B` is controlled only by z`. Throughout the study, we fix r D 0:5. Large values of �

lead to smaller critical values, and small � to larger.

4 Simulation study
How quickly does the LCP react to shifts in the parameters and/or in the structure? We
consider a 3-dimensional HAC with Gumbel generators and uniform margins. To simulate
from an HAC, we used the algorithm of McNeil (2008). We consider samples of size 400,
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where a change in parameters and structure occurs at t D 200. The parameter changes
are modelled by

Ct .u1;u2;u3Is;���/

D
8<
:

C ¹u1;C.u2;u3I�1 D 3:33/I�2 D 1:43º for 1 � t � 200;

C ¹u1;C.u2;u3I�1 D 2:00/I�2 D 1:43º for 200 < t � 400I
(4.1)

Ct .u1;u2;u3Is;���/

D
8<
:

C ¹u1;C.u2;u3I�1 D 3:33/I�2 D 1:43º for 1 � t � 200;

C ¹u1;C.u2;u3I�1 D 3:33/I�2 D 2:00º for 200 < t � 400:

(4.2)

Via model (4.1), we investigate the sensitivity of a downward jump in �1, while (4.2) is
designed for study of an upward jump in �2. The initial parameters �1 D 3:33 and �2 D 1:43

correspond to Kendall � equal to 0.7 and 0.3, respectively. In (4.1), �1 decreases to 0.5
from 0.7, while in (4.2) �2 increases to 0.5 from 0.3. Note that in both cases the difference
between the parameters becomes smaller.

The change point in the structure is modelled in a similar way:

Ct .u1;u2;u3Is;���/

D
8<
:

C ¹u1;C.u2;u3I�1 D 3:33/I�2 D 1:43º for 1 � t � 200;

C ¹C.u1;u2I�1 D 3:33/;u3I�2 D 1:43º for 200 < t � 400:

(4.3)

Our technique is implemented with a family of interval candidates of a geometric grid
form defined by m0 D 20; 40 and c D 1:25. The values of m0 and c have turned out
to provide stable results, which is confirmed in the literature cited earlier. Note that the
simulated critical values are indifferent to the form of the initial structure s1 D ..12/3/ or
s2 D .1.23//, but depend on the parameters. Using the fact that for a Gumbel copula the
parameter � 2 Œ1I1/ is unbounded from above, we define the grid based on Kendall’s �

by
��� D .�1;�2/> D ¹�.�1/;�.�2/º>;

where
¹�1;�2º 2 ¹0:1;0:3;0:5;0:7;0:9º2; �1 � �2:

This grid in correlation space corresponds to the grid in parameter space given by ¹�1;�2º
2 ¹1:11;1:43;2;3:33;10º2; �1 � �2. Thus, we simulate from copulae C ¹u1;C.u2;u3I
�1 D 3:33/I�2 D 1:43º, C ¹u1;C.u2;u3I�1 D 2:00/I�2 D 1:43º, etc. The case �1 D
�2 corresponds to the simple 3-dimensional AC C.u1;u2;u3; �1/. To estimate zk k D
1; : : : ;K D 10, we simulate N D 10000 samples of size n D Œm0cK �C1 using the same
geometric grid of the intervals. Knowing the true pair .s�;����/ we used for simulations,
we calculate Rr .s�;����/ for each sample as the largest absolute deviation (to the power r)
of the likelihood with ML estimates .Qsk; Q���k/ over the given interval k from the likelihood
with given true parameters .s�;����/.
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Figure 4.1 Simulated critical values of the 3-dimensional Gumbel HAC as a function of k
with the parameters of the geometric grid set to m0 D 20 (left) and m0 D 40 (right). � and
�1 are fixed and equal to 0.5 and 0.1, respectively, while �2 varies: �2 D 0.1 (solid black),
�2 D 0.3 (dashed black), �2 D 0.5 (dotted black), �2 D 0.7 (solid grey), �2 D 0.9 (dashed
grey).

Figure 4.1 shows the behaviour of the critical values as a function of k for different
values of �2.

Usually, it is difficult to work with grids in higher dimensions, as the number of
possible models increases exponentially. In this case we propose an on-line calculation
of the critical values for every ¹ Q���I ; QsI ;º. The critical values are not calculated in advance,
but are computed for each occurring parameter constellation individually. This makes
the whole procedure computationally more expensive, but still appropriate in higher
dimensions. Furthermore, the procedure is more precise, since we use the exact parameter
values, instead of approximations via the grid points. Thus small changes in the parameters
should be also identifiable. Nevertheless, our simulation study and empirical analysis are
in three dimensions, which allows us to use the grid.

In each change point model we simulate n D Œm0cK �C400 observations, where the
first Œm0cK � values are used as a pre-run for model estimation. For each t D t0 starting
from Œm0cK � C 1 we apply the LCP to the recent observations, i.e., we determine the
interval with constant dependency and estimate the corresponding HAC. The results are
shown in Figures 4.3, 4.4 and 4.5. m0 is set to 20 in the left column and to 40 in the
right column, � is set to 0:5. The solid lines show the average values, the dashed line the
median values and the grey areas show the interval containing 95 of 100 replications.

The shifts in the first parameter for (4.1) and in the second parameter for (4.2) are
plotted in the first rows of Figures 4.3 and 4.4 respectively. Figure 4.5 illustrates the
application of LCP to the change-point model (4.3), where in the first row we show the
changes in the structure and in the second row the changes in the parameters. For all three
types of shift, we observe that the average estimated parameter or structure smoothly
moves from the value before the shift to the value after the shift. The delayed reaction
naturally depends on m0. Smaller values of m0 allow our procedure to react more quickly
to changes. On the other hand the precision of the estimation decreases with decreasing
sample size.
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The last two rows of all three figures show the dynamics of the average length of the
estimated interval of homogeneity and the behaviour of the maximum-likelihood. The
estimation is initiated with the shortest available interval of homogeneity.Since the copula
is stable and more observations become available, the length of the interval increases to
the largest allowed value. After the shift the length of the interval decreases and increases
only after the change-point leaves the smallest allowed interval.

m0 D 20 m0 D 40
model r Q1 Med. Mean Q3 SD Q1 Med. Mean Q3 SD

(4.1)
0.25 2.00 8.0 11.74 19.25 12.00 8.00 21.0 22.65 31.25 18.59
0.50 12.00 18.0 20.86 28.00 13.52 28.00 37.0 39.83 46.25 20.09
0.75 16.75 27.0 30.75 39.00 22.51 37.00 52.5 59.53 73.75 31.83

(4.2)
0.25 0.00 9.0 13.20 20.00 14.23 8.00 28.5 30.87 50.25 24.14
0.50 8.75 25.0 25.02 35.00 19.41 36.75 50.0 52.58 63.25 26.47
0.75 19.00 31.0 35.19 47.00 25.77 50.00 63.5 72.71 87.00 35.18

(4.3) 15.00 18.0 17.78 21.00 5.23 28.00 32.0 32.45 37.00 5.90

Table 4.1 Detection delay statistics for LCP, � D 0.5.

rolling window
model r Q1 Med. Mean Q3 SD

(4.1)
0.25 10.00 26.0 26.69 40.25 19.12
0.50 36.75 57.5 55.90 74.75 24.38
0.75 77.00 95.5 95.53 112.50 29.82

(4.2)
0.25 6.25 35.5 39.57 64.50 34.52
0.50 51.00 75.5 76.64 103.00 38.16
0.75 85.25 113.0 109.70 128.20 35.90

(4.3) 68.00 75.5 75.53 84.25 11.40

Table 4.2 Detection delay statistics for a rolling window with length of the estimation period
equal to the average length of the intervals of homogeneity.

The detection ability of the proposed procedure is conveniently characterised by the
detection delay. Denote by �i the size of the jump at time t D 200, i.e., �i D �i t � �i;t�1

with i D 1 for the model (4.1) and i D 2 for the model (4.2). The detection delay ı at rule
r 2 Œ0;1� is defined by

ı.t;�i ;r/ D min¹u � t W O�iu � �i;t�1 � rj�i jº � t

and shows the number of steps needed to detect the fraction r of the jump in the true
� . For the model (4.3) we just look for the time point after t D 200 where the structure
s2 D .1.23// is obtained for the first time

ı.t/ D min¹u � t W Osu ¤ st�1º � t:

Spokoiny (2010) argued that the detection delays are proportional to the probability of an
error of type II. Table 4.1 represents the descriptive statistics of the detection delay for
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different models (4.1), (4.2) and (4.3), r 2 ¹0:25;0:5;0:75º and m0 2 ¹20;40º. To detect
half of the shift in the parameters, the procedure needs 20 to 25 observations for m0 D 20

and 40 to 50 observations for m0 D 40. The detection ability of the procedure for changes
in the structure is similar. We also observe that the mean detection delay is higher for
upward jumps than for downward jumps. The mathematical reason for this is explained
below. Table 4.2 contains the detection delays for the rolling window estimation. To make
the comparison fair, we set the length of the estimation window equal to the average length
of the intervals of homogeneity in the LCP procedure. We observe that the flexible choice
of the interval of homogeneity leads to substantially shorter detection delays, compared
to the rolling estimation.

To get more insight into detection delay we consider the difference

KŒC ¹s0I�.0:1;0:2/>º;C ¹s0I�.�1;�2/>º� (4.4)

�KŒC ¹s0I�.�1;�2/>º;C ¹s0I�.0:1;0:2/>º�;
where �.�1; �2/ denotes the vector of parameters corresponding to the Kendall �s given
by �1 and �2. The first term in (4.4) denotes the KL divergence between the true copula

tau2
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Figure 4.2 The difference between the KL divergences for mis-specified models in (4.4).
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with �.�1;�2/ and the mis-specified copula with the same structure s0 but with �.0:1;0:2/.
�1 and �2 take values between zero and one. Thus we observe in general an increase in
the parameters from the true values �.0:1I0:2/ to the mis-specified values �.�1I�2/. In
the second term in (4.4) the situation is the opposite, and we observe a decrease in the
copula parameters from the true values �.�1; �2/ to the mis-specified values �.0:1;0:2/.
The difference in (4.4) is plotted in Figure 4.2. The KL divergence is larger for increasing
parameters and the difference becomes larger with increasing �1 and �2. This explains
why the adaptive detection procedure based on the KL divergence reacts more quickly to
an increase in parameters than to a decrease.

5 Empirical study
We now apply the local estimation procedure developed to multivariate data on stock
indices and exchange rates. The data on indices contains the daily returns values for the
Dow Jones (DJ), DAX, and NIKKEI, while the second data set consists of the daily values
for the exchange rates JPN/USD, GBP/USD, and EUR/USD. Both data sets are taken
from DataStream. The indices are obtained for the period Œ01:01:1985I23:12:2010�

resulting in 6778 observations, and the exchange rates cover the period Œ4:1:1999I
14:8:2009�, resulting in 2771 observations.

To eliminate the intertemporal conditional heteroscedasticity we fit a univariate
GARCH-type process to each marginal time series of log-returns. We assume that the
corresponding parameters are constant over time, but select model specifications which
reflect the peculiarities of the data such as asymmetries. Alternatively, the parameters of
the marginal processes can be estimated by LCP as in Mercurio and Spokoiny (2004). Us-
ing the Bayes information criteria (BIC) as a goodness-of-fit measure, we selected for the
indices the APARCH(1,1) model with the residuals following the skewed-t distribution;
i.e.,

Xj;t D �j C	j;t "j;t (5.1)

with 	
ıj

j;t D !j C
j ¹jXj;t�1 � �j j � �.Xj;t�1 � �j /ºıj C ǰ 	
ıj

j;t�1;

(5.2)

where "j;t � tskewed.�I�/, j D 1; : : : ; 3. The parameters � and � stand for the skewness
and shape (degrees of freedom) of the distribution. For the exchange rates, the best fit
was a simple GARCH(1,1) process with GED residuals.

Xj;t D �j C	j;t "j;t with 	2
j;t D !j C
j 	2

j;t�1 C ǰ .Xj;t�1 � �j /2 (5.3)

and "j;t � GED.�GED I�GED/, j D 1;: : : ;3. Similarly to the above, the parameters �GED

and �GED reflect the skewness and shape of the distribution.
The estimates of the parameters, p-values of the Box–Ljung test with 12 lags and

the Kolmogorov–Smirnov test applied to the residuals, for the indices and exchange rates
can be provided upon request. All the parameters are significant at the 5% significance
level. The residuals exhibit the typical behaviour: they are not normally distributed, which
motivates nonparametric estimation of the margins. From the results of the Box–Ljung test
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Dynamic structured copula models 379

we conclude that the autocorrelation of the residuals is significant only for the GBP/EUR
rate. An additional autoregressive component, however, does not lead to a decrease in the
BIC. Hereafter, we work only with the residuals of the fitted processes.

5.1 Rolling window estimation
The dependency variation is measured by Pearson’s and Kendall’s correlation coefficients:
Figure 5.1 shows the behaviour of both coefficients calculated in a rolling window of
width r D 250. Their dynamic behaviour is similar, but not identical. The shadowed area
presents the 95% confidence intervals of the corresponding correlation measures. They
allow us to conclude that the variation of the coefficients in time is statistically significant.
This opens the door for a time varying copula based model.

To justify the use of a copula-based distribution to model the residuals, we further
estimate alternative parametric models using a rolling window of the same width. We
consider the binary HAC with Clayton or Gumbel generators; and the 3-dimensional
Gaussian and 3-dimensional AC. The maximum-likelihood (ML) and the BIC are used
as goodness-of-fit measures. Since the number of unknown parameters in the nonpara-
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Figure 5.1 Rolling window estimators of Pearson’s (left) and Kendall’s (right) correlation
coefficients between the residuals of indices (top) and exchange rates (bottom). For the
indices: DAX and NIKKEI (solid line), DAX and DJ (dashed line), DJ and NIKKEI (dotted
line). For the exchange rates: JPY and EUR (solid line), JPY and GBP (dashed line), GBP and
EUR (dotted line). The width of the rolling window is set to 250 observations. The shadowed
area shows the 95% confidence interval around the corresponding estimates.
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Figure 5.2 BIC for indices over rolling window for HAC (dashed lines), AC (dotted lines)
with Gumbel (top panel) and Clayton (bottom panel) generators. Solid line in both panels
represents BIC for Gaussian copula. The width of the rolling window is 250 observations. The
grey line shows the variation of L2 norm of the difference in the parameter matrices of the
copulae. The dots mark the changes in the structure of HAC using rolling window estimation.

metric case is unknown, it is incorrect to compare the models with nonparametrically
and parametrically estimated margins using BIC. In such cases we consider only the
parameters of the copula function. Figure 5.2 illustrates the dynamics of the BIC for five
multivariate models for the indices. The HAC models is clearly dominated by the Gaus-
sian model in some periods, but shows very competitive performance in other periods.
Similar conclusions can be drawn for the exchange rates.

We check whether the variation in the dependency can be linked to some characteristics
of the distribution. The dots in Figure 5.2 depict the time-points of changes in the HAC
estimated using a rolling window procedure. There is no visible relationship between the
dynamics of the model fit measured by the BIC and the changes in the structures. The
thin grey line shows the dynamics of the jjb‚‚‚t �b‚‚‚t�1jj2, where b‚‚‚t denotes the matrix of
copula parameters estimated at t and jj � jj2 denotes the L2 matrix norm, which is defined
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Dynamic structured copula models 381

Data Generator Structure ML
Indices Clayton ..DAX:DJ/0.45967(0.02125):NIKKEI/0.15543(0.01226) 545.399

Gumbel ..DAX:DJ/1.27274(0.01255):NIKKEI/1.10339(0.00765) 542.736
Ex. rates Clayton ..JPY:USD/0.80889(0.04261):GBP/0.40134(0.02504) 617.268

Gumbel ..JPY:USD/1.52149(0.02504):GBP/1.30340(0.01657) 736.341

Table 5.1 Estimation results for HAC with Clayton and Gumbel generators for indices and
exchange rates using full samples. The standard deviations of the parameters are given in
parentheses.

by jjAjj2 Dp
max.A>A/, where max is the largest eigenvalue of the matrix A>A. HAC

is closed under the marginalisation, meaning that taking any subset of variables following
an HAC will also follow an HAC of smaller dimension, see Okhrin, Okhrin, and Schmid
(2013b). This implies, that all the bivariate margins are AC with the parameters from
the original HAC. For example, if u1;u2;u3 follows C�1

¹C�2
.u1;u2/;u3º, then .u1;u2/

follows C�2
.u1;u2/, .u1;u3/ follows C�1

.u1;u3/ and .u2;u3/ follows C�1
.u1;u2/. Based

on this we can define the matrix of parameters as ‚‚‚t D ¹�i;j ºi;j D1;:::;d Ij ¤j , where �i;j

corresponds to the parameter of the AC between ui and uj . From the changes in the
norms we see, that the parameters do contain important information about changes in the
copula and their precise estimation achieved by the LCP procedure is of importance.

5.2 Local window estimation
The previous section provided evidence on two important issues. First, the univariate
marginal distributions are not normal and the joint distribution can be modelled using an
HAC based distribution. Second, the dependency is not constant, but varies with time.
Since we model the dependency by HAC, this implies that either the structure of the HAC
or the copula parameters are time-dependent. In this section we apply the local window
procedure to compute a robust estimator of HAC.

The setup of our procedure is as follows. The set of mks defining the length of Ik

and Tk is determined by a geometric grid with mk D Œm0ck � for k D 1;2; : : : ;K . The
starting values are set to m0 D 40, � D 0:5, and c D 1:25, where Œx� denotes the integer
part of x. The critical values z are taken from the simulation study. This is a feasible
procedure since the time series were filtered with the AR-GARCH processes to remove
autocorrelation and heteroscedasticity. Thus the dependence structure of the residuals can
be monitored using the critical values computed for the unautocorrelated uniformly dis-
tributed random variables. The structure, the parameters, and the corresponding standard
deviations estimated from the whole data sample are given in Table 5.1.

Figures 5.3 and 5.4 illustrate the results of the application with Clayton generator. The
upper plots show the changes in the structure. For the indices, the changes in structure
are very frequent for the first half of the period, implying that the dependencies between
different pairs of variables are similar. The structure ..1:2/:3/ is very robust in the second
half of the period. This fact is supported by the rolling window estimation of the correlation
coefficients in the previous section. Initially, the correlation lines intersect frequently. In
this case, the procedure can hardly distinguish between different but similar structures.
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In the second half of the period the correlation lines stay apart and a dominant structure
evolves. In the analysis of exchange rates we observe two stable structures ..1:3/:2/ and
..2:3/:1/. On the other hand with the indices, the switches between the structures are not
frequent.

The second two pictures show the parameters’ estimators over the intervals of ho-
mogeneity transformed to Kendall’s � . The grey line depicts the larger parameter, while
the black line depicts the smaller parameter. If the order of the parameters changes, we
observe a change in the structure. We see that the algorithm captures even relatively small
changes in parameters. The figure for the indices shows that the parameters become more
distant in the second half of the period. However, for the exchange rates, the parameters
appear to be more widespread over the whole sample.

The third pictures indicate the dynamics of the ML criteria over the intervals of
homogeneity. Recall that the local window procedure is based on the stability of the
fit measured by maximum-likelihood. The overall fit of the HAC increases in time for
the indices, but decreases for the exchange rates. Note that neither the changes in the
structure nor changes in the parameters can explain the variation in the ML. However, the
overlapping of both shifts closely follows the drift in the ML criteria. The bottom figures
present the length of the intervals of homogeneity. For the indices, the intervals are close
to the minimum of m0 D 40 in the period of frequent changes in the structure, but steadily
increases over stable periods. For the exchange rates, the intervals of homogeneity exhibit
longer increases due to stabler structures and parameters. In general we observe clear
variation in the lengths of the intervals of homogeneity, which justifies the application of
the suggested methodology to HAC estimation.

Some changes in the structure or in the parameters can be caused by specific economic
events. Regarding exchange rates, drastic changes in the parameters and some jumps in
the structure at the beginning of 2000 reflect the fact that the euro reached its lowest level
against the U.S. dollar in its history. Changes before the end of 2001 may be affected
by the slumping US economy in August–September 2001, i.e., a negative growth rate
in the third quarter 2001. The changes in the middle of 2003 are probably influenced
by the rejection of the euro by Britain in June 2003. The changes in the structures and
parameters in the model for indices can be partially explained by the following economic
events. The jumps of the structure at the end of 1998 and the beginning of 1999 are
caused by the financial crisis in Asia. The penultimate group of peaks in the changes of
the structure were probably caused by the Iraq war. The last peaks in the structure plot,
which also correspond to volatile behaviour in the parameters, corresponds to the changes
of the government in Germany which influenced the DAX index, and a general election
in Japan, influencing the NIKKEI.

5.3 Value-at-Risk with HAC

To assess the economic significance of the local estimation procedure for HAC, we
consider the Value-at-Risk (VaR) of a portfolio of three assets with weights w, assuming
individual GARCH-type data generating processes for each asset. We fit an HAC with
Gumbel and Clayton generators to each class of assets. The DCC model of Engle (2002)
with Gaussian residuals serves as a benchmark. The profit and loss function of the
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Figure 5.3 Changes in the structure, changes in the parameters, and variation of the maximum-
likelihood over the intervals of homogeneity for DJ, NIKKEI, and DAX modelled with binary
Clayton HAC. m0 is set to 40 and � D 0.5.

portfolio is defined as LtC1 D P3
j D1 wj Pjt .e

Rj;tC1 � 1/, where Pjt and Rjt are the
price and the log-return of the asset j , respectively, at t . Let FL denote the distribution
function of LtC1. This leads to the VaR of the portfolio at level ˛ being defined by
VaR.˛/ D F �1

L .˛/. The distribution function FL is estimated by simulating the paths

of the asset returns from the alternative multivariate processes. The bVaR.˛/ is computed
as the corresponding empirical quantile. Figure 5.5 shows the true path of the profit and
loss function with the VaR estimator for equally weighted portfolio and the HAC with
Clayton generator. The empirical PL function is shown with dots, while the VaR for
different estimation techniques is shown by the solid line. The exceedances are marked
with pluses on the horizontal axis .
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Figure 5.4 Changes in the structure, changes in the parameters, and variation of the maximum-
likelihood over the intervals of homogeneity for JPY, GBP, EUR modelled with binary Clayton
HAC. m0 is set to 40 and � D 0.5.

Using backtesting, we assess the economic significance of the chosen model for the
assets. We estimate the realised ˛ as the relative fraction of the exceedances in the time
series, i.e.,

Ǫw D 1

T

TX
tD1

I¹Lt < bVaRt .˛/º:

The precision of the underlying model is measured by the relative distance between the
estimated Ǫw and the true ˛, calculated by

ew D . Ǫw � ˛/=˛:
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Clayton Gumbel DCC
˛ 0.0100 0.0500 0.1000 0.0100 0.0500 0.1000 0.0100 0.0500 0.1000

Indices Ǫw� 0.0054 0.0390 0.0935 0.0033 0.0249 0.0683 0.0155 0.0460 0.0830
AW �0.3902 �0.1781 �0.0497 �0.6187 �0.4496 �0.2686 0.5979 �0.0687 �0.1739
DW 0.0930 0.0508 0.0286 0.0953 0.0932 0.0638 0.0959 0.0829 0.0609

Ex. Rates Ǫw� 0.0100 0.0487 0.0951 0.0091 0.0474 0.0977 0.0156 0.0413 0.0817
AW �0.0217 �0.0328 �0.0557 �0.0895 �0.0526 �0.0341 0.5482 �0.1652 �0.1852
DW 0.0649 0.0186 0.0125 0.0632 0.0406 0.0272 0.0335 0.0091 0.0042

Table 5.2 Exceedance ratios for portfolios of indices (top) and exchange rates (bottom) with
w� , wi ; i D 1; :: : ;5, the average exceedance AW over all portfolios, and its standard
deviation DW .

Figure 5.5 The profit and loss function (dots) for indices with the 99%-VaR bound (solid line)
and the time points of the exceedances (pluses) for the HAC model with Clayton generator.

As in Giacomini, Härdle, and Spokoiny (2009), we compute Ǫw and ew for a set W D
¹w�;wnIn D 1; : : : ;99º of portfolios: for each wn D .wn;1;wn;2;wn;3/0 is the realisation
of a random vector uniformly distributed on S D ¹.x1;x2;x3/ 2 R

3 WP3
iD1 xi D 1;xi �

0:1º and w� D .1=3;1=3;1=3/0 is the equally weighted portfolio. The performance of
each model is measured by the average relative exceedance over the portfolios and its
corresponding standard deviation

AW D 1

jW j
X

w2W

ew; DW D
´

1

jW j
X

w2W

.ew � AW /2

μ1=2

:

The results of this backtesting are summarised in Table 5.2 for indices and exchange
rates. For the indices, we conclude that the Clayton-based HAC outperforms the HAC
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with Gumbel generator and the DCC model for small and large levels of ˛, while DCC
shows smaller AW for ˛ D 0:05. Moreover, the copula-based models tend to underestimate
the true level, while DCC overestimates it for ˛ D 0:01. For the exchange rates, the HAC
with both generators is clearly dominant compared with the DCC model, and the general
performance of the copula-based models is significantly better than for the indices.

6 Conclusions
We proposed a method of estimating time-varying dependencies. The joint distribution of
multivariate observations is modelled by a Hierarchical Archimedean copula characterised
by a dependency structure and generator function. We assume that over specific time
intervals, the time-varying copulae can be approximated by constant copulae. The optimal
intervals for these homogeneous structures and homogeneous parameters was determined
using a Local Change Point detection procedure. This proposal was evaluated in an
extensive simulation study and compared to the classical rolling window estimation. The
optimal estimation period rapidly drops after a shift in the structure or in the parameters,
allowing for less biased estimators. The real data application was performed using a three
dimensional time series of index returns and exchange rates. The results disclosed periods
of stable structure in both data sets and strongly varying periods of homogeneity, leading
to the conclusion that the rolling window estimation cannot be suitable for the data. The
economic significance of the suggested estimation procedure was evaluated with VaR for
portfolios. The locally estimated HAC clearly dominated the popular DCC model used
as a benchmark. Summarising, the local estimation procedure improves the properties of
the estimators and is economically attractive for modelling time-varying dependencies of
financial assets.
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