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Linear control semigroups 6 e = Gl(d, N) are associated with semilinear control 
systems of the form 

2(t)=A(u(t))x(t) ,  t ~ ,  x(0) = x0~ ~d\{0} 

u ~ q / : =  {u: R ~ Era: measurable, u(t) ~ U= Era} 

where A: R" ~ gl(d, E) is continuous in some open set containing U. The semi- 
group 50 then corresponds to the solutions with piecewise constant controls, i.e., 

y =  {e'~ B . . . . . .  et,8~:tj>~O, Bj=A(uj),ujEU, j= l , . . . , n~N}  

50 acts in a natural way on Ea\{0}, on the sphere ~ a - t ,  and on the projective 
space p a - t .  Under the assumption that the group generated by 50 in Gl(d, [~) 
acts transitively on p a - t ,  we analyze the control structure of the action of 50 
on p d - t :  We characterize the sets in p~-a,  where the system is controllable 
(the control sets) using perturbation theory of eigenvalues and (generalized) 
eigenspaces of the matrices g ~ 50. For nonlinear control systems on finite- 
dimensional manifolds M, we study the linearization on the tangent bundle TM 
and the projective bundle P M  via the theory of Morse decompositions, to 
obtain a characterization of the chain-recurrent components of the control flow 
on ok" x PM. These components correspond uniquely to the chain control sets on 
PM, and they induce a subbundle decomposition of q /x  TM. These results are 
used to characterize the chain control sets of 5 ~ acting on P'~- ~ and to compare 
the control sets and chain control sets. 
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1. INTRODUCTION 

While the structure of linear Lie groups acting transitively on a sphere 
~ d - l c  R d, or on Ra\{0}, is well understood (see, e.g., Ref. 5), this is not 
true for linear semigroups acting on these spaces. The problem is of 
considerable interest, however, in control theory, where transitivity of the 
systems semigroup translates into complete controllability. The problem of 
complete controllability of systems given by Lie groups has found various 
solutions (cf. Refs. 4, 15, 19). In this paper we study linear control semi- 
groups acting on projective spaces (or on spheres) that describe situations, 
where the system is not completely controllable. We characterize the 
dynamical and the control behavior of such semigroups. 

Linear control semigroups arise in connection with semilinear control 
systems of the form 

2 ( t ) = A ( u ( t ) ) x ( t ) ,  t e ~ ,  x ( O ) = x o e ~ d \ { O }  
(1.1) 

ueSg := {u: R --~ ~m: measurable, u( t )e  Ua.e.} 

where U c  ~m, A: V---~ gl(d, ~) is continuous on an open set V~ U. [Here 
gl(d, ~) denotes the space of real d x d-matrices. ] We will assume that (1.1) 
has for every Xo r 0 and every u e q/, a unique trajectory (p (., x0, u) on R. 

Associated with (1.1) is the control semigroup 

5: = { # " "  .... . etlBl: t: >~ O, B: = A(u:), u: ~ U, 

j= 1,..., ne ~} =Gl(d, ~) 

corresponding to solutions of (1.1) with piecew!se constant u e ~.  Note that 
5: acts in .a  natural way on ~d\{0}, on the sphere $a-1,  and on the 
projective space pa-  1. If 5: acts transitively on one of these spaces M, i.e., 
if for all x, y s M  there exists g e S :  with y---gx, then the system (1.1) is 
called completely controllable on M. Conditions for controllability of 
bilinear systems 2 = A 0 x + Z  uiAix with unbounded control range, i.e., 
ui(t) e ~, on the state space Rd\{0} can be found, e.g., in Ref. 6 or 21. If 
the matrices Ao ..... Am are skew symmetric, then the system lives on the 
sphere with radius lXo[, and Ref. 7 gives criteria for controllability in this 
case. 

Here we are interested in the action of 5: on the projective space 
pd-X. This action is given by the following control system: Denote 
s = (x/[x]) ~ ~gd-1, and define h(s, u) := [ A ( u ) - s r A ( u )  s . id]  s. Then 
h(s, u) can be considered as vector field on pa-1, and the projection of 
(1.1) onto pal-1 reads 

~(t)=h(s(t) ,  u(t)), tE~ ,  s(0) = so e pal-1 (1.2) 
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For uE~//denote by (p(-, x o, u) the solution of (1.1) and by s(-, So, u) the 
corresponding solution of (1.2) with So=Xo/[Xo[. Then s(t, So, U)= 
[~0(t, Xo, u)]-1 ~0(t, Xo, u) for all t s  N, and hence (1.2) describes the action 
of 5 P on pd-i .  

In this paper we analyze the controllability properties of (1.2) under 
the assumption that the Lie group ~f, generated by 5 p in Gl(d, N), acts 
transitively on pd 1. The point of view here is the same as in Ref. 9, where 
the notions of control sets (see Definition 2.3 below) and chain control sets 
(see Definition 4.6 below) were related to dynamical systems properties of 
control systems, such as topological mixing or chain recurrence. We will 
completely describe the k control sets, 1 ~< k ~< d; their interior consists of 
eigenspaces of the matrices in int 5 ~, and these sets can be ordered linearly 
according to the teachability structure of (1.2); see Theorem 3.10. 

Under additional assumptions (U compact, A(u) affine in u) we can 
describe also all chain control sets of the system (1.2). This is based on the 
connection, derived in Ref. 9, between chain control sets and the connected 
components of the chain recurrent set of an associated dynamical system 
(here: a linear flow) on ~//x pal-1. Thus we can apply Conley's theory of 
(finest) Morse decompositions in order to describe the chain control sets. 
There are l chain control sets with l<~ l~k~d  (see Theorem4.9). 
Theorem 5.6 describes their relation to the main control sets. According to 
the results in Ref. 9, the main control sets correspond to the maximal 
topologically transitive components of the associated dynamical system. 
Hence our results on control sets bear some resemblance to Smale's decom- 
position of the nonwandering set of Axiom-A flows (cf. Remark 5.3). 

The consequences of these results for the Lyapunov exponents, and 
hence for the stability properties of the semilinear control system (1.1), will 
be studied in a forthcoming paper (10). Some results pertaining to the 
extremal control sets and the extremal Lyapunov exponents are given in 
Refs. 8 and 11. Applications to robustness analysis of linear systems are 
contained in Ref. 12. Our results about control sets of (1.2) on pal-1 apply 
to directional control of linear systems in the following way: 

Given the linear control system in Na with input in ~m, 

2(t)=Ax(t)+Bu(t), y(t)=Cx(t), y ~ n  (1.3) 

We say that (1.3) is directionally controllable from Xoe~d\{0} to 
x leNa\{0} , i i f  there exists an admissible control u(.), and c~e~\{0} 
such that (p(t, Xo, u) = exl, for some t > 0. The problem is to find a (time- 
varying) output feedback u(t)= F(t) y(t), such that the closed loop system 

2(t) = Ax(t) + BF(t) Cx(t) (1.4) 
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is directionally controllable, where, due to systems constraints, the feed- 
back satisfies F(t)Eg2cM(m, n; ~), the real m• matrices. The closed 
loop system (1.4) is of the type (1.1), and (1.3) is directionally controllable 
from x0 to Xl, via restricted output feedback, if we have for the projected 
points sz = xi/Ix,I, i= 0, 1, that sl ~ 5Ps0. In particular, Xo is directionally 
controllable to xl, and xl directionally controllable to Xo iff So and sl are 
in the (interior) of the same control set. The ordering between control sets 
(see Theorem 3.10) tells us which directions can be reached from all Xo v L 0. 
On the other hand, directions in the minimal control set can be reached 
only from within this.set. Of course, (1.3) is completely directionally con- 
trollable via restricted, time-varying output feedback iff the corresponding 
system (1.2) has exactly one control set; compare Remark 3.16. 

The structure of this paper is as follows: In Section 2 we collect 
preliminary results on the action of linear control semigroups on pa-1, on 
control sets, and on the behavior of eigenvalues and eigenspaces under 
continuous perturbations. Section 3 contains the construction of the main 
control sets of (1.2) on pa-~. In Section4 we study nonlinear control 
systems on finite dimensional manifolds M and their linearizations on the 
tangent bundle TM from a dynamical systems point of view. In particular, 
we use the theory of Morse decompositions for the induced system on the 
projective bundle PM to characterize the chain control sets. Section 5 
contains our results on chain control sets for bilinear systems, and the 
comparison of these sets with the main control sets. 

Notation.  The projective space pa-1 in R e is denoted P throughout 
this paper (the dimension being clear from the context), and for A c Ea, 
PA denotes the set of elements in P obtained by projecting the nonzero 
elements of A onto P. 

2. P R E L I M I N A R I E S  

In this section we introduce some notation and collect preliminary 
results. In particular, control sets are defined and the behavior of eigen- 
values and eigenspaces under continuous perturbations is studied. 

Using piecewise constant controls, one can associate with system (1.1) 
the systems group and semigroup, respectively: 

fq := t~exp(t"B") '"exp(t lB1): tJ~ 'Bj=A(uj) '}  c G l ( d ' N ) u j ~ U , j = l , . . . , n , n ~ N  (2.1) 

5~:= t~exp(t" B,)...ujeU, j = I  exp(t 1B1):n, neNtj>~0, Bj=A(uj),} c Gl(d, ~). (2.2) 
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Then ~4 is a Lie group, since it is a path-connected subgroup of Gl(d, N) 
(cf., e.g., Ref. 20, pp. 275). The sets of group and semigroup elements at 
time t, i.e., with Z I til = t, are denoted by ~ and ~ ,  respectively. Note that 

acts naturally on Nd\{0}, and on the projective space P := pa-1 via 
g(x)=P(gx), where P: N d \ { 0 } ~ P d  1 is the natural projection. We do 
not distinguish in our notation between these two actions, because it is 
always clear from the context, which one is referred to. 

The positive (and negative, respectively) orbit of an element x e P up 
to time t ~> 0 is given by 

(9 ~t(x) = {y E P: there is g e 5~ with y = gx} 
(2.3) 

(9 ~t(x) = {y e P: there is g ~ 5~t  with x = gy} 

(9+(x) (and (9-(x)) are the orbits (9<+oo(x) (and (9~o~(x)), i.e., with respect 
to the entire semigroup 5". Under the assumptions above, cl(9<+t(x) 
coincides with the closure of the set of points in P attainable from x in time 
~ t  with controls u e~#; this follows from the fact that such trajectories 
can (uniformly on bounded intervals) be approximated by trajectories 
corresponding to piecewise constant controls. 

The following hypothesis (H) will frequently be imposed. Let 

~ =  ~A{h( . ,  u), ue U} 

denote the Lie algebra generated by the vectorfields h(., u), u e U, on P, 
and let Aao denote the corresponding distribution in the tangent bundle 
TP; we assume that 

A~(x)=TxP for all x ~  (H) 

This hypothesis guarantees that system (1.2) is locally accessible on P, i.e., 
for all x s P and all neighborhoods V of x we have int (9 ~(x)c~ Vr  ~ for 
all t > 0 ,  and similarly for the negative orbit (cf. Proposition 2.1 below). 
Furthermore, (H) implies that the systems group ~ acts transitively on P, 
i.e., for all x e P  one has {gx: g~(r = P .  

We recall the following facts from the theory of Lie groups (cf., e.g., 
Ref 16): Let ~ be a Lie group acting transitively on a manifold M and fix 
x s M. Let ~ be the isotropy group of x e M, i.e., 

N~= {geN:  gx=x} 
Then the following diagram is commutative 

o >M 
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with O(g)=  gx; n~ is the natural projection and 0 x the induced map. 
Furthermore, 8 is open and continuous, nx is an open and continuous 
projection, and O~ is a diffeomorphism. 

2.1. Proposition. Let hypothesis (H) be satisfied. 

(i) For all t > 0 and all x e P, cl int (9 +,(x) = cl (9 .<+,(x). 
( ii) For all t >0,  cl int 5e<~ = cl 6e<,, where the interior is taken w.r.t. 

the topology of  the Lie group ~. 
I f  gEin t  5a<,, then g x e i n t  (9<+,(x) and x e i n t  (9~.,(gx) for all (iii) 

x e P .  
(iv) I f  gie in t  ;T<t,, for i= 0, 1, then there is a continuous path in 

5~<.to+ q connecting go and g l. 

Proof. For (ii) see, e.g., Ref. 19 (Lemma 6.1); then (i) and (iii) are 
easy consequences of (ii) and the preceding remarks. In order to see (iv), 
represent go and gl as in (2.2): 

 9 i i i i gi = exp(s,iBn)..- exp(s 1B1), i = 0, 1 

with s j>0 ,  Z / = I  i _  ,~ s )_ t i ,  n ieP~, i=O,  1. 
- -+  .  9 k 1 k + l  1 Define a continuous path g: [0, tl-] 6e. if t e [Z /=oSj ,  ~2j=o sj) 

1 1 1 1 for some k e  {0, 1,..., n , -  1}, set g(t)=exp(s,Bk). . ,  exp(slB 1) go, where 
1 k s t = t - b Z j = o s  ) and sol=0. Then g (0)=goe in tSe< ,  0 , g ( t l ) = g ~ g o e  

int 5e<,0+ ,1, and hence g(t) e int 5e<,0 + ,1 for all t ~ [0, t ,] .  Similarly one can 
connect glgo continuously with gt. Taken together, there exists a 
continuous path from go to g l in int o~<t0+tl.  9 

We obtain the following approximation result. 

2.2. Proposition. Assume that (H) is satisfied and let g e ~ ,  t > O. 
Then there are tn ", t and gn e ~ c~ int 5e< t, such that g, --+ g. In particular, 

for every g e ~ there are gn e ~ n i n t  50< t + 1 with gn --+ g. 

Proof. The second assertion is obvious from the first one. By the 
preceding proposition, there are hn~int 5e<~, with % N 0. A look at the 
construction, e.g., in Ref. 18 (p. 69), shows that we may assume that hn --+ id 
for n -+ oo. Then hn e 5co, for some o-, with 0 < an ~< %. Since t > 0, it is also 
clear that there are h'n e ~ _  o, with h',--+ g. Thus by continuity for n large 
enough, 

g, := hn.h'n e ~  ~ in t  5P<t, 

with t~ :=  % + t - a n ' ~  t a n d g n ~ g .   9 

Next we introduce the notion of control sets (cf. Ref. 9, Remark 3.2). 
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2.3. Definition. 
system (1.2) if 

(i) 
(ii) 

A set D c P  is called a control set of the control 

D c c l  O+(x) for every x e D ;  
for every x e D  there is u ~ #  such that the corresponding 
trajectory of (1.2) satisfies (p(t, x, u)e  D for all t e ~; 

(iii) D is maximal (with respect to set inclusion) with the properties 
(i) and (ii). 

Of particular interest are control sets with nonvoid interior, since 
in their interior exact controllability in finite time holds (cf. Ref. 11, 
Proposition 2.3). 

2.4. Proposition. Assume that (H) is satisfied and let D be a control 
set with nonvoid interior for (1.2). Then for all x ~ D, all y ~ int D there is 
g ~ 5~ with y = gx. 

In Section 3 we describe all control sets with nonvoid interior of (1.2), 
called the main control sets. 

Next we cite a result on the behavior of eigenvalues and generalized 
eigenspaces under continuous perturbations. Let spec A denote the set of 
different eigenvalues of a bounded linear operator A s gl(d, N). Then the 
following holds (see, e.g., Ref. 3, Chap. II.8). 

2.5. Proposition. Fix Ao~gl(d, ~). 

(i) I f  N is an open set of  complex numbers with N ~ s p e c A o =  
{21,..., 2r}, then N ~  spec A for all A E gl(d, ~) with [[A - Aol [ ~< c~ 

for some ~ > O, where I[" Ir is an arbitrary norm on the space of 
bounded linear operators on Nd. 

(ii) For 2o e spec Ao, choose e > 0 such that the dotted disk 
0 <  12t-2tol ~<~ contains no eigenvalue of Ao. Then the Riesz 
Projection 

1 
P(A)-=~ifp~. ~oJ=~ ( 2 - A ) - 1  d2 

is, in a certain neighborhood of Ao, a continuous function of A. 
The range of P(Ao) is the generalized eigenspaee of 2to and for A 
close to Ao, 

n(20) = ~ n(2) (2.4) 
).~ spec A c~ {2:12 201 < e }  

where n(2o) and n(2) denote the algebraic multiplicities of the 
eigenvalues 2t o of Ao and of 2 of A, respectively. 
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In the following, we consider for eigenvalues 2 the real generalized 
eigenspace E(2), i.e., if 2 e C \ ~  is an eigenvalue of a real matrix A, then 
E(2) denotes the subspace of Ed obtained by adding the real and the 
imaginary parts of the complex generalized eigenspace of A (cf., e.g., 
Ref. 14). 

2.6. Proposition. Assume that (H) is satisfied and let g ~ 5'~, t > O. 
Then for every ~ > 0 there is g' e 5~t c~ int 5~<t + 1 with II g - g' II < e such that 

for all 2sspec  g, there is 2 '~spec  g' with [2-2 '1  < e  and the generalized 
eigenspaees E(2) and E(2') satisfy 

inf{d(x, x'): x ~ PE(Z), x' e PE(2')} < e 

here d denotes some Riemannian metric on P. 

Proof. By Proposition 2.2, there are gn e ~ c~ int 5p< t + 1 with gn ~ g. 
Now the assertion follows from Proposition 2.5. [] 

The metric d referred to in Proposition 2.6 and the norm II'll in 
gl(d, ~) will be kept fixed in the sequel, but all results hold for arbitrary 
Riemannian metrics on P and arbitrary norms in gl(d, E) 

3. C O N S T R U C T I O N  OF THE MAIN C O N T R O L  SETS 

In this section we analyze the behavior in P of trajectories correspond- 
ing to increasingly more general control functions. Theorem 3.10, the main 
result of this section, characterizes the main control sets, i.e., the control 
sets with nonvoid interior. 

We start by analyzing the behavior of trajectories corresponding to 
constant controls in the generalized eigenspaces. Consider for A e gl(d, R) 
the equation 

~c(t)= Ax(t)  (3.1) 

and its projection onto P 
~(t) = h(A, s(t)) (3.1') 

with h(A, s )= [A --srAs . id]s.  

3.1. Lemma. Consider Eq. (3.1). 

(i) I f  A is a single Jordan block corresponding to a real eigenvalue 2 
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( i i)  

A = 

then every  solut ion o f  (3 .1 ' )  converges f o r  t - ~  + ~  to 
Iz(1 0 0) ~ = :  0ZEo 
I f  A is a single (real )  Jordan b lock  corresponding to a pair  o f  
comp lex  eigenvalues 2, ~ e C \ E ,  2 = a + ib, a, b e 

a - b  : 1 0 : 

b a : 0 1 : 

: a - b  : 

: b a : 
 9 .  9 

0 

0 

 9 .  9 1 0 

" .  " 0 1 

~ a - b  

b a 

then every solution of (3.1') converges for t-> _+~ to the projected linear 
space PE0 corresponding to 

Eo := span{(1, 0, 0 ..... 0) ~, (0, 1, 0 ..... 0) T} 

more precisely for every solution ~p(.) of (3.1'), and every e > 0 ,  there is 
T I > 0  such that for all It] > T~ 

d((o(t), ~ZEo) < e 

Proof. Consider first part (ii). The corresponding fundamental 
solution g~ of (3.1) with ~ ( 0 ) = i d  has the form (cf., e.g., Ref. 17, p. 84) 9 

B l k _ l  t k _  t 

cos bt - s in  bt i t cosbt - t  sin bt ( k -  1~! cos bt ~ s i n  bt 

t k - t i k - 1 

sinbt cosbt : t s inbt  tcosbt  (k-1)~s inbt  ~ c o s b t  
~.1 = e a t  

cos bt - s in  bt 
sin bt cos bt 
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For large [t[, the first two components become dominant. Hence (ii) 
follows. Note that gt(t) has the eigenvalues e (~+-~b)t. The proof of part (i) 
follows similarly.  9 

Using Lemma 3.1 one easily verifies the following result for general 
A ~ gl(d, ~). 

3.2. Proposition. Let 2 h ..... 2ij ~ spec A with Re 2 h . . . . .  Re 2ij. Then 
for every e > 0  there is T(s )>0  such that for all T>  T(e) and all 
x, y s  P(E()~h)@ .-. |  there are k E N  and xl ..... XkE P such that 
X 1 : X ,  X k : y, and 

d(q~(T, x i ) ,x~+l)<e for i =  1,..., k -  1 (3.2) 

where ~o(-, x) is the trajectory of  (3.1') corresponding to the initial value 
~p(O, x) = x. 

3.3. Remark. As is well-known (Refs. 13 and 25) P(E(2i~)@ ...  | 
E(2~)) is a connected component of the chain recurrent set (hence chain 
transitive) of system (3.1'), provided that there are no other eigenvalues of 
A with equal real part. The property indicated above is a slight strengthening 
of chain transitivity, since the time T in (3.2) is fixed in advance, depending 
only on e. Note that k also depends on T. 

Next we analyze the behavior of the trajectories corresponding to the 
system semigroup ~ .  Recall that elements g of the systems semigroup 
correspond to piecewise constant periodic control functions in the 
following way: Every 

g = exp(A(u,) t,).., exp(A(Ul) tl) ~ ~ (3.3) 

with uz~ U, t~>0, i =  1,..., n, Z~ t~=t, corresponds to UgSql defined by 

Ug(Z)=u~ for ~ [-t~+ ...  +t~, t1+ ... +t i+t~+t)  (3.4) 

extended t-periodically to E. Conversely, every piecewise constant 
t-periodic control function u defines an element gu of ~ .  

Combining Proposition 3.2 with Floquet theory, one obtains a result 
corresponding to Proposition 3.2 for elements g of ~ .  

3.4. Proposition. Let g 6 5~t be given by (3.3) and suppose 
2il ..... 2ijE spec g with 12it I = 12i21 . . . . .  ]2~jl. Then for every e> O, there is 
N(e ) s  N such that for all x, y ~  P(E()~i~)(~ "" @E(2ij)) and all n>~N(e), 
there are k~  N and Xl,..., xk~ P with xl =x ,  xk= y, and 

d(g2nxi, x i+ l )<~  for i = 1  ..... k - 1  
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Proof. Consider the differential equation with t-periodic coefficients 

s = A(ug(Z)) x(z), z ~ ~ (3.5) 

with Ug given by (3.4). By Floquet theory (see, e.g., Ref. 24, p. 455), there 
exists a 2t-periodic coordinate transformation P(t) with P ( 0 ) = i d ,  trans- 
forming (3.5) into an equation 

, ( t )  = ~x( t )  

of the form (3.1). Note that the doubling of the period comes from the 
requirement that B must be a real matrix. Choosing T as a multiple of 2t 
in Proposition 3.2, one obtains the assertion, since 2 ~ spec B (modulo 2~i) 
iff e ;' E spec g.  9 

The following two crucial lemmas connect the chain transitivity 
property indicated in Proposition 3.4 to control sets. The first one states a 
certain uniform interior reachability condition. 

3.5. Lemma. Assume (1-1) and let g ~ int 5P<,, t > O. Then there is e > 0 
such that for all x E ~, 

B~(gZx) c i n t  (9:2t(x) and B~(x) c i n t  (9 ~2t(g2x) 

where B~(z) := ( y ~ P :  d(y,z)<<.e}. 

Proof. Since g E int 5~ Proposition 2.1 implies that for x ~ P there 
are neighborhoods V1 of x and V2 of gZx such that 

+ X V i c i n t ( 9 ~ ( g x )  and V2 t i n t  (9 <,(g ) 

Hence there is 6 = 6(x)> 0 such that B~(x)~  V~ and B~(gZx)= V2. Denote 

g-2[B6/2(gZx)] ~ B6(x) := V~ 

Then for all yE V~ we obtain g2y~Be/2(gZx), and with V~cin t  (9~,(gx), 
this implies for all y ~ V~ : B~/z(gZy) ~ int (9 +2,(Y). Now a compactness 
argument over x ~ P completes the proof of the first assertion; the second 
one follows similarly. I 

3.6. Lemma. Assume (H) and let x, y ~ P  and g~intS"<t,  t > 0 .  
Suppose that for every e > 0 there are n ~ N, n >1 2, k ~ N and xl ,..., x~ ~ P 
with xl = x, xk = y such that 

d('gnxi, x i+~)<e for all 

Then y ~ i n t  C+T(x) for some T>O. << 

i= 1 ..... k -  1 (3.6) 
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Proof. Choose e > O  as the uniform constant determined by 
Lemma 3.5 and take n ~> 2, k 6 t~ and x~ ..... xk with the properties indicated 
above. Since n ~> 2 

g~xi = gZg , -  2Xi with n - 2/> 0 

Hence, by choice of e 

xi + l ~ B~( g~xi) c int (9 + <.2,(g -2x~) 
+ X c i n t  (9 ~ T~(i) for some T i > 0 

Thus x , = y ~ i n t  (9+r(x) for some T > 0 .   9 

Combining Lemma 3.6 with Proposition 3.4, we obtain the following 
result. 

3.7. Proposition. Assume (H);  let gs in tSe~t  for  some t > 0 ,  and 
suppose that 2il,..., 2i:Espec g are such that 12ill . . . . .  I)~,)l. Then there 
exists a control set D such that the corresponding generalized eigenspaces 
satisfy 

P(E(2;I)  9 ""   9 E(~.,))) c i n t  D 

Proof. By Proposition 3.4 for all x, yEP(E(J.,-~)G . - - G E ( 2 i ) )  and 
every e > 0 ,  there are n~>2, k e  N, and xl,..., xke  P with Xl = x ,  Xk= y, and 

d(g"x i ,  x i+ 1) < 

Hence Lemma 3.6 implies ye in t (9~T(X)  for some T > 0 ;  similarly, 
x e i n t  (9 +T,(y). Thus x, y e D  for some control set D. 

By Lemma 3.5 there is s > 0  such that B,(x )c in t (gZ2t (g2x) .  By 
(9<r,(y). Note that restricting e, if necessary, we have also B~(x )c in t  + 

~T,(z) 2 = g2xG P(E(2~,)O ... OE(2~)). Then y e i n t  (9 and therefore 
B,(x)  c D. Since x e P(E(2~I) @ ...  | E(2;:)) was arbitrary, this finishes the 
proof.  9 

The next proposition shows that the interior of every control set 
(provided it is nonvoid) consists of eigenspaces of elements g e int 5 e. 

3.8. Proposition. Assume (H)  and let D be a control set with nonvoid 
interior. Then for  every x 6 i n t D  there are t > 0 ,  g ~ n i n t S e ~ t + l ,  and 
2 ~ spec g n ~ with x E PE(2)  c int D. 

Proof. By the remarks preceding Proposition 2.1, we have for 
x ~ i n t D  that V : =  { h ~ f : h x ~ i n t D }  is open in f~. Since x e i n t D  there 
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i s  for some ~ > 0 ,  a h e ~ c ~ V .  By Proposition 2.2, there are 
h , e ~ c ~ i n t S P ~ + l  with h , ~ h .  Since V is open, we can find nE 
such that h , e  V. Fixing this h, we can, by exact controllability in 
int D (Proposition2.4),  find g~Se~ such that gh~x=x .  Clearly 
gh, ~ 5r + ~ c~ int 5e~ ~ +; + 1- This proves that x is in some eigenspace of some 
element of ~ c~ int 5P~, + 1 with t : = a + ~. II 

3.9. Remark. For d =  2, a corresponding result is true for all x ~ D, 
D any control set on p l: If xeOD,  then there exists u e  U such that 
g , x  = x, see Ref. 1. For  d >  2, ~?D will in general not consist only of pro- 
jected eigenspaces of elements g e 5 p. 

Next we formulate the main result of this section. 

3.10. Theorem. Assume that the semilinear control system (1.2) in gz 
satisfies hypothesis (H).  Then it has the following properties. 

(i) There are k control sets Di with nonvoid interior in ~ and 
1 ~ k <~ d; we call these control sets the main control sets o f  the 
system. 

(ii) The main control sets are linearly ordered, where the order is 
defined by 

D i < D  j i f f thereexist  xi~D~, x j~Dj ,  t>~O, 

and g ~ 5~ with gxi = xj 

We enumerate the control sets such that D 1 < D 2 <  9 . .  < D k .  

(iii) For every t > 0 and every g ~ int 5P~, and every 2 6 spec g, there 
is a main control set D i such that the generalized eigenspace E(2) 
satisfies 

P(E(2))  c i n t  Di 

the interior o f  the main control sets consists exactly of  those 
elements x E P which are eigenvectors for a (real) eigenvalue of  
some g ~ ~ c~ int 5P<, +, for some t > O. 

(iv) For every g ~ 5r and every 2 ~ spec g there is some main control 
set D i with PE(2) ~ cl D~ -r ~ ;  for every main control set D i and 
every g ~ 5r there is 2 ~ spec g with PE()o) c~ el D i r $2~. 

(v) The eontrol set C : =  Dk is closed and invariant and 
C = 0 x ~ p c l ( 9 + ( x ) ;  the control set C * : - = D  1 is open and 
cl C* = N x ~  cl (9-(x);  all other main control sets are neither 
open nor closed. 
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Proof. (i) By Proposition 3.7 there exists a control set with nonvoid 
interior. Hence k ~> 1. Next we show that the number k of control sets D 
with nonvoid interior is less or equal d. For every such D there exist by 
Proposition 3.8 for some t > 0  an element g ~ n i n t  ~<t+~ and 2~spec g 
such that P E ( 2 ) c i n t D .  Clearly, it suffices to prove that there is 
hE6ev~int  5e<T+ ~ for some T>O, such that for all control sets D with 
nonvoid interior there is 2 ~ spec h with PE(2) c i n t  D. 

Let gj ~ ~j nint 6e<,j+ 1, tj > 0, j = 0, 1 and let 2 ~ spec go be such that 
the corresponding eigenspace satisfies PE(2) ~ int D for some control set D 
with nonvoid interior. 

By Proposition 2.1 there is a continuous path g(o), a~  [0, 1], in 
int 5e<,0+,~+ 2 such that g(0)=  go and g(1)=  ga. Thus, by Proposition 2.5 
there is Oo>0 such that for all o~ [0, Oo) there is an eigenvalue 2(o-) 
of g(o) with corresponding generalized eigenspace E(2(a)) satisfying 
PE(2(o)) ~int D 4 ~ .  Proposition 3.7 and maximality of control sets 
imply ~ZE(2(o-)) c i n t  D. 

Now define 

6 := sup ~ "~r~ for all a ~ [0, ao) there is a generalized eigenspace~ 
L E(2(a)) of g(a) with PE(2(a)) c int D J 

Consider a, .z ~ and corresponding eigenvalues 2(a,) with E(2(o , ) )c  
int D. Since the spectral radius of g(o) is bounded, we may assume that 
Z(o,) converges to some eigenvalue 2(if) of g(8). By Proposition 3.7, 
E(2(ff)) is contained in the interior of some control set /5. By Proposi- 
tion 2.5, PE(2(o,)) c~/5 # if5 for n large enough. Hence/5 = D, and there is 
a neighborhood N(#) of ~ such that for all z ~ N(~), there is a generalized 
eigenspace of g(r) in int D. Thus ~ = 1. 

We have found that gl has an eigenvalue 2(1) such that the corre- 
sponding generalized eigenspace satisfies PE(2(1))c  int D. This shows that 
gl has a generalized eigenspace in each control set with nonvoid interior 
and hence the number k of main control sets satisfies k ~< d. 

Actually, we have proved more than statement (i), namely, for each 
g E int 5v~,, t > 0, and each main control set D i there exists 2 e spec g such 
that PE(2) c i n t  Dr. 

Turning to assertion (ii), note that in the proof of (i) we have con- 
structed g e int ~ ,  such that each main control set contains a generalized 
eigenspace of g in its interior. Some of these generalized eigenspaces may 
lie in the same main control set; certainly this is true for all generalized 
eigenspaces corresponding to eigenvalues of equal absolute value by 
Proposition 3.7. For the other generalized eigenspaces, one obtains a linear 
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ordering according to the absolute values of the eigenvalues. This induces 
a linear ordering between the main control sets of the form 

A 
D i < Dj iff there exist x ~ ~ int D i, xj~int  Dj, t > 0 ,  

and g e ~ c~ int ~ t + ~ with gx~ = xj 

That this defines the same order as the one in the statement of (ii), can be 
seen as follows: Recall that for each xj  9 Dj there exists r > 0 and h e int 5Q<~ 
such that y : = h x j  9  hence if D i < D j ,  then there are 
x i  9  y e i n t  D j, a > 0 ,  and g  9  5Q<~ with y =  gxi. Since g is a dif- 
feomorphism, there exists a neighborhood V of xi such that g V c  int Dj; in 
particular, there is x s int Di with y = gx. Now by maximality of the control 
sets, the order does not depend on the choice of g, which proves (ii). 

(iii) follows directly from Propositions 3.7 and 3.8. 
(iv) is a consequence of the proof of (i) and the approximation result 

in Proposition 2.6. 
It remains to prove (v), by Ref. 2 (Lemma 3.1) there is for every x e  P 

an invariant control set CxcCl  (9+(x). By Ref. 2 (Remark 3.2), each Cx is 
compact with nonvoid interior. Now the linear ordering from (ii) between 
main control sets implies that all Cx coincide proving the assertion for 
C : =  Cx=Dk .  By Ref. 2 (Remark 3.1), C is the only closed control set. 
Then the proof of the other assertions in (v) is immediate from Proposi- 
tion 3.20 below. [] 

3.11. Remark. The proof of (v) above greatly simplifies the proof of 
Ref. 2 (Theorem 3.1), which states uniqueness of the invariant control set. 

Next we study the relation between main control sets and generalized 
eigenspaces more closely. 

3.12. Lemma. Assume (H)  and let D be a main control set. Then for 
every g  9 int Y~ t, t > 0, 

P ( @  E(2)) c i n t  D 
2 

where the sum & taken over all 2  9 spec g such that the corresponding 
generalized eigenspaee E(2) satisfies PE(2) c i n t  D. 

Proof. Take 0 ~ x  9 @~ E(2) as above, and consider a representation 
of x as 

x = x l +  ... +x~ 
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where the xj lie in the direct sum of the generalized eigenspaces correspond- 
ing to eigenvalues of equal absolute value. By Proposition 3.7, gmxj ~ int D 
for all m e 2. Now, for m --> 0% gmx is attracted by the eigenspaces corre- 
sponding to eigenvalues with maximal absolute value, and for m ~ -0% 
gmx tends toward those eigenspaces corresponding to eigenvalues with 
minimal absolute value. Hence x e int D.  9 

For g e 5e and D~ a main control set define, with Ug as in (3.4) 

De(ug) = {x e P: (p(t, x, Ug) e cl D e for all t e R} 

3.13. Theorem. 
l <<. i ~ k. Then 

(3.7) 

Assume that (H) holds and let g e i n t  6e~t, t > 0 ,  and 

x can be represented as 

k 

x=yxj 
j = l  

with x j e O  E(2), where the sum is taken over all 2 such that 
P ( G  E(2)) c i n t  Dj, j = 1,..., k. Suppose that there is j > i with xj # 0. Take 

j maximal with this property. Then 

qo(t,X, U g ) ~ P ( ( ~  E(2)) 

where the sum is taken over all 2 with P (E(2) )cDj .  Then we have 
P ( G  E(2)) c i n t  Dj, which contradicts q~(., x, ug) ~ cl Di. Now assume 
that x = Y'.~ = 1 xj with l < i. Then we arrive at a contradiction in a similar 
way. Thus Di(ug)cP((~)  E(2)), with 2 as above.  9 

where the sum is taken over all 2 e spec g with ~ E ( 2 ) c  int D e. 

Proof. B y  Lemma 3.12 

P ( ~  E(2) )cDi (u~) ,  2 as above 

Suppose that there is x e Di(ug)\P(@ E(2)). Since 

Ra= @ E(2) 
2 e spec g 
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3.14. Remark. The result above shows that for all g ~ int 5~ t > 0, 

~ a =  @ ~ E(2): where the sum is taken over all~ 
~= ~ ~'~. )~ ~ spec g with PE(2) ~ cl D~ J 

k 
= @ P-l[Di(ug)] 

i = I  

The first decomposition does not remain valid for general g c ~ ,  since it 
may happen that PE(2) n D i r ~ and PE(2) c~ Dj ~ ~ for i r j, 2 e spec g. 
The second decomposition is not valid for general g E ~ ,  since here the 
Di(ug ) may not be linear objects, cf. Example 5.8 for both cases. 

Nevertheless, the following result is valid. 

3.15. Corollary. Suppose that (1.1) satisfies Hypothesis (H),  and let 
g ~ 5". Then there exists a basis {x~,..., Xd} of ~d such that for every xj there 
are ,~ E spec g and a main control set D~ with 

Pxj 6 cl D~ c~ E(2) (3.8) 

Proof. By Theorem 3.13, the assertion is true for g~ in t  6e~t, t > 0. 
Now approximate g ~ ~ by gn e ~ n i n t  5e~t + 1 according to Proposi- 
tion 2.6. Then one finds for every n E N a basis (x7 ..... x~} with 

Px} ~ PE(2,) c i n t  D~ (3.9) 

with 2~spec  g, ,  z=l( j ,  n), Di some main control set. For n ~  ~ ,  one 
obtains by Proposition 2.5 {xl,..., xa} with (3.8). Since (3.9) holds; formula 
(2.4) and Theorem 3.13 show that the x~ may be chosen such that the 
{Xl,..., xd} form a basis of Ed. [] 

3.16. Remark. According to Theorems 3.10 and 3.13 we can define 
for each g~ in t  5e<t, t >  0, the multiplicity of a main control set D: 

m(D) := # {2:2 is an eigenvalue of g with PE(2 )c  int D} 

where each 2 is counted according to its multiplicity. By the proof of 
Theorem3.10(i), the number m(D) is independent of g~int6e~,  for all 
t > 0. But Example 5.8 shows that for other elements g E 5 e, the number 
re(D) may not be the multiplicity of all eigenvalues with eigenspaces inter- 
secting with intD; compare Remark 3.14. It follows from Theorem 3.13 
that Z f = l  m(Di)=d, and hence system (1.2) is completely controllable iff 
there exists a control set D c P with re(D)= d or, equivalently, iff there 

865/5/3-10 
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exists a g ~ int ~ ,  for some t > 0 such that all generalized eigenspaces of g 
are contained in one main control set. 

We now analyze the behavior of the main control sets under time 
reversal and the fine structure of their boundary. The time-reversed system 
corresponding to (1.1) has the form 

:~*(t) = -A(u( t ) )x*( t ) ,  t e ~ ,  x (O)=xoeR a 
(3.10) 

uEq/  

3.17. Proposition. Assume that (H) is satisfied. Then the time reversed 
system (3.10) has the same number k of main control sets as the forward 
system (1.1). The order among the main control sets is reversed, and for the 
corresponding main control sets one has 

int D* = int Dk+l_ i  for i=l , . . . ,k  

where D* denotes main control sets of (3.10). 

Proof. First observe that (H) remains true under time reversal. 
Furthermore, Proposition 2.4 shows that in the interior of control sets 
exact controllability holds. This proves the assertion.  9 

3.18. Definition. Let D be a main control set. Define the following 
subsets of tD: 

F(D) := {x ~ 0D: there exist y ~ int D and g ~ 5 P with x = gy} 

F*(D) := {x ~ OD: there exist y e int D and g ~ 50 with y = gx} 
i 

F(D) := ( x~ tO:  (_0 + ( x ) n D  = ~ and (9-(x)  n D = ~ }  

These sets are called the exit, entrance, and tangential boundary, 
respectively. 

By maximality of control sets, the three sets defined above form a 
decomposition of tD. 

3.19. Lemma. Let D be a main control set. 

(i) I'(D) and F*(D) are open in OD, F(D) is closed in ~D. 
(ii) ,P(D) c cl F(D) c~ cl F*(D);  in particular, int~o F(D)  = ~ .  

Proof .  

(i) Since g~Se  is a diffeomorphism on P, F(D), and F* (D) are 
open in 0D. This implies closedness of _Y(D) by the decomposi- 
tion property. 
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(ii) Let x ~ F(D) and pick y E int (9 ~,(x). Then there exists g ~ int Y<t 
and a neighborhood V of x such that g V c  int O,<+,(x). Since V 
contains points in intD, and ( 9 + ( x ) c ~ D = Z ,  we see that 
x e cl F(D). A similar argument holds for (9 ~t(x), showing that 
x E c l F * ( D ) .  [] 

The next proposition clarifies the behavior of the boundary under time 
reversal [and hence completes the proof of Theorem 3.10(v)]. 

3.20. Proposition. Let D i be a main control set. Then for x ~ OD i we 
have 

(i) 
(ii) 

(iii) 

Proof. 

x 6 F * ( D i )  iff  xEDi .  
x ~ F ( D i )  iff  x * ~ O k + l - i .  
x e F ( D i )  iff  xq~Dit-;D~+1_i. 

(i) follows directly from the definition. (ii) is just the fact that 
(97(x) are the forward orbits of the time reversed system. And (iii) follows 
from (i) and (ii) because of the decomposition property. [] 

We note the followir~g: invariance properties of main control sets. 

3.21. Proposition. Let D be a main control set. 

(i) For all u ~ ql there extsts x ~ D with ~o(x, u) := 
{~p(t, X, u): t~ ~} =cl  O~ 

(ii) For all x ~ cl D there exists u ~ ql with q)(x, u) c cl D. 

Proof. 

(i) The assertion is true for all ug, g ~ int 5~<,. Hence it follows from 
density of these controls in q/ (cf. Ref. 9). 

(ii) The assertion is valid for all x'~ int D and hence by compactness 
o f q t f o r a l l x ~ c l D .  [] 

4. CHAIN CONTROL SETS AND MORSE DECOMPOSITIONS OF 
LINEARIZED FLOWS 

In this section we first recall some notions and results from the theory 
of flows on vector bundles, suitable for our purposes. Then we will consider 
nonlinear control systems on a manifold M and show that the linearized 
system defines a linear flow on the tangent bundle T M  and an induced flow 
on the projective bundle PM. For these flows we obtain a finest Morse 
decomposition, which is related to the so-called chain control sets on PM. 
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Chain control sets were introduced in Ref. 9, where they were used to 
characterize certain ergodic properties of nonlinear control systems. Here 
the emphasis is on the linearization of control systems on TM, and on PM, 
if the control system itself is already chain recurrent, i.e., has only one 
chain control set. In Section 5 this theory is applied to the analysis of linear 
control semigroups acting on projective spaces pd-1. 

For  the following notions and results see, e.g., Refs. 13, 23, and 25. Let 
M be a compact, metric space and n: E--* M a vector bundle over M, 
whose fibers are finite-dimensional, real vectorspaces. A continuous map 
~9: ~ x E ~  E is called a flow, if ~(t  + s, e) = ~(t, ~(s, e)) and ~(0, e) = e for 
all e e E. ~ is a linear flow on the vector bundle ~, if for e, e'e E with 
n(e)=n(e'), one has nO(t,e)=nO(t,e'), O(t,e)+O(t,e')=t~(t,e+e'), 
2O(t,e)=~(t, 2e) for all t e e  and 2 e E .  

Let { U ~ , ~ e I }  be a finite covering of M with associated 
homeomorphisms 

q)~: 7 c - 1 ( U ~ )  ~ U s x V 

defining the vector bundle structure on E; then the zero section of E is 
defined by Z : =  {eeE:~o~(e)=(Tr(e),O) whenever ~(e)e  U~}. Note that 
the zero Section Z is homeomorphic to M. The linear flow ~u on E induces 
flows on the base space M, the zero section Z, and the projective 
bundle P E. 

Now let O: ~ x S ~ S be a (continuous) flow on a compact metric 
space S. The limit sets of Y c S  are cg(Y):= 0t~>ocl{O(s, Y), s>~t} and 
o * ( Y ) : =  0 t~ocl{O(s ,  Y),s<.t}. A set K c S  is an isolated invariant 
set, if there exists a compact neighborhood N of K, such that 
{O(t, x): t e ]~} c N implies x e K. 

A compact invariant set A is said to be an attractor, if it admits 
a neighborhood N such that cg(N)=A. In this case the set 
A * =  {x ~ S: c~(x)c~ A = ~ }  is its complementary repeller, i.e., there exists 
a neighborhood N* of A* with o * ( N * ) =  A*, and co*(x)cA*,  o ( x ) ~ A  
for all x(~A wA*; see, e.g., Refs. 13 and 22. The pair (A, A*) is called an 
attractor-repeller pair. 

4.1. Definition. For  e > 0  and T > 0  an (~, T)-chain from x e S  to 
y E S consists of a sequence Xo ..... x ,  in S and a sequence to ..... t~_ ~ in 
such that tj >~ T, x0 = x, xk = y, and d(O(tj, xj), xj+ ~) ~< e for j = 0 ..... k - 1, 
where d(., .) is the metric on S. For  X ~  S define 

g2(X) :=  {y E S: for all ~ > 0, all T >  0 there exists x e X 
and an (~, T)-chain from x to y } 

~*(X)  :=  {y e S: for all e > 0, all T >  0 there exists x ~ X 
and an (e, T)-chain from y to x} 
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By Ref. 13 (II 4.1.C), 

f2(X) = ~ {A: A attractor, co(X) c A }  

f2*(X) = (-] {A*: A* repeller, co*(X)=A*} 

The dynamical system on S is called chain recurrent, if x e f2(x) for all 
x~ S or, equivalently, S =  A w A* for every attractor-repeller pair. It is 
called chain transitive, if y ~ f2(x) for all x, y e S or, equivalently, if A -- S 
and A = ~2~ are the only attractors in S. Note that the flow on S is chain 
transitive iff it is chain recurrent and S is connected. 

By Ref. 13(II 6.2) the chain recurrent set cg~, i.e., the maximal chain 
recurrent subset of S, is given by 

cg~ = ~ {A w A*: A is an attractor}. 

4.2. Proposition. Let A be an attractor in PE for a linear flow ~P on 
a vector bundle E with base space M and suppose that the induced flow on 
M is chain transitive. Then {eeE: e C Z ~  Pe~A}  is a subbundle of E. 

Proof. It suffices to show (cf. (Ref. 23, Lemma A2) that P - t  A is a 
closed subset of E which intersects each fiber in a linear subspace Fp, 
p E M ,  and d i m F p = d i m F q  for all p, q s M .  Closedness is clear by 
definition of A; by Ref. 23, (Corollary 2.11), for all p EM 

Ap:= { e ~ E p : e C Z ~ P e s A }  

is a linear subspace of Ep with 

dim Aq >1 dim Ap for all q E f2(p) 

Hence chain transitivity implies that dim Ap is constant for p s M. [] 

A Morse set is the intersection of an attractor and a repeller. A Morse 
decomposition of a flow O on S is given by the following: Let 

( 2 ~ = A o ~ A l c  ... ~ A , = S  

be an increasing sequence of attractors and define 

4 ..= A j ~ A * I ,  j = l  ..... n 

Then {Jgl,.-., ~ ' ,} is a Morse decomposition of (S, O). Morse decomposi- 
tions have the following properties; see Ref. 13, (II.7.1 and 2). 
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4.3. Proposition. 

(i) 
(ii) 

(iii) 

(iv) 

Let  {Jgl ..... ~,,} be a Morse decomposition. 

~1  u . . .  w J ~  = 0i=1 (Ai ta A * ), hence J/l 1 u .. u Jgn D cgN. 
For all x ~ S  there are i, j with i<<.j such that co(x)cM/4, 
co*(x) ~ J'l;; i f  i=  j, then x e J l i =  Jg ;. 
Assume that J/g'~,..., Jg'm is' a collection o f  disjoint invariant sets in 
S. Suppose that for  all x e S there are i, j with i <~j such that 
oa(x) c d/'i, co*(x) c dgj, and, i f  i=  j, then x e d//'i=~ggj. Then 
{ M'I ,..., Jg'm }. t'S a Morse decomposition. 
Let  also {dg'l,..., J / l ' }  be a Morse decomposition, and define 
J//~q = Jgi c~ J/g j, i = 1,..., n, j = 1 ..... m. Any  ordering o f  the J//4o with 
the property that, i f  dg~; comes before ~g~1, then either i<  k or 
j < l, is a Morse decomposition (o f  course, several o f  the ~/i~ may 
be empty).  

4.4. Definition. Let {~/gl ..... J/~} and (Jg'l ..... Jg~,} be Morse decom- 
positions. Then the first one is finer than the second one if for every 
there is J/t) with Jr M). A finest Morse decomposition is a Morse 
decomposition which is finer than every other Morse decomposition. 

4.5. Theorem. Consider a linear f low ~ on a vector bundle E with base 
space M and suppose that the induced f low on M is chain transitive. Then 
there exists a (unique) f ines t  Morse decomposition { J/l 1 ..... M/t} o f  P ~ ,  the 
induced f low on the projective bundle PE, and l <<, d := dim,Ep, p e M; every 

defines a subbundle of  E via 

~/~i= {e: e f ~ Z ~  Pe e.//gi} 

and the following decomposition into a Whitney sum holds: 

E = ~ |  . |  

Proof. Note first that there always is a Morse decomposition of P~ :  
Define A0 = ~ ,  Al = PE and J//1 =A1 h A * ;  then a Morse decomposition 
is given by {J/{1}. Next we claim that for every Morse decomposition 
{d//a,..., J/n} corresponding to an attractor sequence JZ~ = A o c  A1 c --. 
A n= PE, all P - i d / I ~ = P J / / ~ = P - I A i n P - I A  *_1 define subbundles. For  
n = 1, this is obviously true. So we assume that the assertion is true for 
n -  1 and prove it for n. Clearly ~/1 = A1 is an attractor, and hence by 
Proposition 4.2 A1 and A* are subbundles. We show that the assertion is 
true for {A1, A*} and that {~'2 ..... ~ , }  is a Morse decomposition of A*. 
The second clahn follows from Jg~cA* for i>~2 and Proposition 4.3(iii). 
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For the proof of the first claim denote A : = A 1, choose p ~ M, and assume 
that the corresponding fibres of A and A* have dimensions r and s, 
respectively. Since A and A* are disjoint, it suffices to prove that r+s>>. 
dim E = : k. 

Fix p E M and consider a subspace Fp k- ~ of Ep complementary to A*. 
By the definition of A*, co(PFpk-S)cA. Since A is an attractor, also 
F2(PFkp-S)cA. Now chain recurrence and Ref. 23, (Corollary2.11) show 
that for each q e M, the set O(Fkq -s) m e e t s  PEq in a subspace of dimension 
at least k - s. Therefore r ~> k - s. 

Now let {dr d/t,} and {~1 ..... ~Tm} be two Morse decompositions 
corresponding to the attractor sequences ~ = A o c  . . - c A , , = P E  and 
~ = J o  c . " c . , ~ m = P E .  By Proposition 4.2, all P - IAi ,  p - l @  are 
subbundles of E; hence by a dimension argument n,m <~ d. 

By the result proven above p-1/~/___ P-~Aic~ p - I A ~ I  and P-~d/~= 
p -- l~j (-~ p -- lz,~j~ - 1 are subbundles. By Proposition 4.3(iv), ~g4,j = ~ c~ J//lj 
defines a Morse decomposition. This shows that a refinement of Morse 
decompositions of (PE, P ~ )  leads to finer subbundle decompositions of E. 
Therefore, again by a dimension argument, there exists a (unique) finest 
Morse decomposition {J/g1 ..... de'x} of P~ ,  with l<~d. [] 

We now return to control systems and consider the following class 
of nonlinear systems on a para-compact d-dimensional manifold M, with 
constrained control: 

2 ( 0 : =  Xo(x(t))+ ~ ui(t)Xi(x(t)), t~N, 
i=1  

u := (ui)~ql := {u: ~ --* U: measurable} 

x(0) = Xo E M 
(4.1) 

where U c ~m is compact and convex, and J(0,---, Jim are C ~ vectorfields 
on M. We assume that for all u s~  and xosM, Eq. (4.1) has a unique 
solution ~0(., x0, u), defined on N. Some aspects of control systems as 
dynamical systems were treated in Ref. 9. We recall some definitions and 
facts from this paper. 

Associated with the control system (4.1) is a control flow, i.e., a 
dynamical system ~ on P x M defined by 

~(t,U, Xo):= (u(t+ "),q)(t, Xo, U)), t6N 

Here %' c L~(N, ~ m )  is considered as a compact, metric space with topol- 
ogy given by the induced weak*-topology of L~(N, N") = (LI(N, Nm)),. 

The control theoretic meaning of chain recurrence is expressed by 
chain control sets. 
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4.6. Definition. A set E ~  M is called a chain control set of the 
system (4.1) if 

(i) for all x, y e E  and all e, T > 0 ,  there are k e ~ ,  
X=Xo,..., x~= y e M ,  Uo,..., uk_l ~ / / a n d  to,..., t~_l ~> T with 

d(q)(ti, xi, ui), xi+ 1) < ~ for i = 0,..., k - 1 (4.2) 

(ii) for every x e E  there is u e q l  such that q)(t, x, u ) e E  for all t e  A, 
and 

(iii) E is maximal with properties (i) and (ii). 

Here d denotes some Riemannian metric on M (which will be fixed in the 
sequel). The following result was proved in Ref. 9. 

4.7. Theorem. 

(i) Let E be a chain control set for (4.1). Then the set 

: =  {(y, u) e M x ~ll: q~(t, y, u) e E for all t e ~ } (4.3) 

is a maximal invariant chain transitive set for the induced dynami- 
cal system on ell x M. 

(ii) Let ~ be a maximal invariant chain transitive set in ~ll x M. Then 

n g g  := { y e M :  there is ue~li with (u, y ) ~ g }  (4.4) 

is a chain control set. 

In this paper, we are interested in linear control flows on vectors 
bundles, i.e., in linearized control systems. Linearizing system (4.1) with 
respect to the state variable x, we obtain a system defined on the tangent 
bundle TM : 

(J'x)(t) = TXo(Tx) + ~ ui(t) TXi(Tx),  t e 
i = l  (4.5) 

(Tx)(O) = (Xo, Vo) e TxoM, the tangent space at xo ~ M 

u : =  ( u ; )  ~ 5/z 

where for a vector field X on M its linearization is denoted TX = (X, DX). 
Locally this means: If Xj = Z~= 1 ~kj(X)(O/3Xk), denote the Jacobian of the 
coefficient functions by 

A j ( x ) = \  ~xt J 
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Then TXi(x  , v) = (c~j(x), A j (x )  v), and (4.5) is a pair of coupled differential 
equations, given locally by 

x( t )  = O~o(X ) Jr" ~ Ui(t ) ~i(X), x(O) = X 0 
i = 1  

f;(t) = Ao(x) v + ~ ui(t) A i (x )  v, v(O) = Vo 
i = 1  

Note that if x ( t ) =  Xo e M is a rest point of each Xi, then the linearized 
equation is a bilinear control system, as a special case of the set up in 
Section 1. 

System (4.5) induces a control system on the projective bundle PM, 
given by 

( I Zx ) ( t ) =PXo ( PX) +  ~, ui(t ) PX,(Px), t e ~  
i = 1  

(4.6) 
(Px)(0) = (Xo, So) e Pxo M, the projective space at Xo ~ M 

u :=  (u3 e 

where Px is the projection of a vectorfield T X  on T M  onto PM, i.e., 
the PXj read locally PXj(x ,  s) = (ej(x),  h(Aj(x) ,  s)) with h(Aj(x) ,  s) = 
[ A j ( x ) - s r A ~ ( x ) s . i d ]  s. The trajectories of control system (4.5) will be 
denoted Tq~(t, Tx, u), t e ~, and those of (4.6) by P~o(t, Px, u). 

Associated with (4.5) is the control flow of the linearized system: 

T~5: [Rx~Zx T M  --, ql x TM, TqS( t, u, Tx ) = ( u( t + .), TO(t, Tx, u ) ) 

which defines a linear flow on the vector bundle q /x  T M  with base space 
x M. Similarly, P~b will denote the control flow on U x PM. 

If the state space M of control system (4.1) is compact, we can apply 
Theorem 4.5 to the linearized control flow and obtain: 

4.8. Corollary. Assume that M & compact and that the control f low q~ 
on ~ll x M is chain transitive. Then the induced dynamical system P ~  on 
ql • DM admits a unique finest Morse decomposition {~/1,..., Jgt}, where 
t ~ l < ~ d = d i m M .  For i = 1  ..... l, 

:= {(u, T x ) ~ q i  x TM: (u, T x ) r  

=*" (u( t + .), Pq~(t, Tx, u) ) e ~g,. for  all t ~ R } 

are &variant subbundles o f  og x T M  and 

~ x T M  = ~ r . . .  @ ~t 
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Proof. The flow T~b is a linear flow on the vector bundle ~ x TM, 
the induced flow on oy x M is 4. From Theorem 4.5 we obtain that for 
i = 1,..., l, the sets 

4 =  {(u, Tx)e~ TM: (u, T x ) r  Px) e Jg~} 

are subbundles of J//x T M  with ~//x T M  = g~  9 "-' | 4 .  Now note that 
Morse sets are flow invariant, i.e., here the ~ /  are PC invariant, which 
shows that the 4 are of the form stated in the formulation of the 
corollary.  9 

The main resuIt of this section is the following characterization of 
Morse decompositions and chain control sets of the linearized control flow. 

4.9. Theorem. Assume that M & compact and that M is the chain con- 
trol set of  (4.1). Then the induced control system on P M  has I chain control 
sets E1 ..... Et, with 1 <<. l<~ d. The chain control sets are compact, pairwise 
disjoint, connected, and linearly ordered by 

E~<Ej if thereis (u, P x ) ~ # x P M  

with co*(u, Px)  ~ E i and co(u, Px) c Ej 

We enumerate the chain control sets such that Ei < Ej iff i < j. 
Define the lift o f  a chain control set E c P M  to ~ll x T M  by 

:= {(u, Tx)Egl lx  TM: (u, Tx)dAZ 

Pep(t, Tx, u) ~ E for all t ~ ~ } (4.7 } 

Then the 4's are invariant subbundles of  ~ x T M  with 

~ll x T M = 8 1 0  "" G 4  

and {Pgl,..., P 4 }  is the (unique)finest Morse decomposition of  the flow 
(~ll x PM, PC), where P 4  is the projection of  4 ~ ql x T M  onto ~ll x PM. 

Proof. Since M is a compact chain control set, Theorem 4.7 implies 
that the corresponding dynamical system ~b on 0//x M is chain transitive. 
Hence the assumptions of Corollary 4.8 are met and the induced flow on 
oh, x P M  admits a unique finest Morse decomposition. This is a decomposi- 
tion of the chain recurrent set cg~ into its connected components, which 
are chain transitive. Hence by Theorem 4.7 again, these components 
uniquely correspond to the chain control sets of the induced control system 
on PM, and their relation is given by (4.7). It remains to show that the 
chain control sets Ei are compact, pairwise disjoint and connected. But this 
is Lemma4.8 in Ref. 9.  9 
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5. CHAIN C O N T R O L  SETS AND C O N T R O L  SETS OF LINEAR 
C O N T R O L  SEMIGROUPS 

In this section we analyze a class of bilinear control systems, for which 
the results from Sections 3 and 4 are applicable. We characterize the chain 
control sets on projective spaces, and their relations to the main control 
sets. 

Consider the system 

~( t )  = u(t)  x( t ) ,  t ~  R, x(O) = Xo e ~\{o} 
(5.1) 

u E q/: = {u: R --* gl(d, R): u measurable and u(t) E U a.e. } 

where U c  gl(d, N) is compact and convex. 
Clearly (5.1) is a special case of systems (1.1) and (4.5). Note that, in 

particular, the bilinear control systems 2 = Aox + ~ uiAix with a compact 
and convex set of control values fit into the framework above. 

5.1. Remark. Every control system of the form (1.1) with bounded 
set {A(u): u e U} can be embedded into a control system of the form (5.1): 
Define 

and 

Then the system 

0 :=  cl co{A(u): u ~ U} ~ gl(d, JR) 

@:=  {fieLd(JR, gl(d, R)): ti(t) ~ Ua.e.} 

2 ( 0  = flU) x ( t ) ,  x(O) = Xo ~ R a 
ae~2 (5.2) 

can be viewed as a completion of the original system: In general, 
trajectories xk(.) of the original system converging uniformly on bounded 
intervals will not converge to a trajectory of the original system, but to a 
trajectory of the system (5.2), which is the corresponding relaxed system 
(cf. e.g., Ref. 27). It is interesting to note that the numbers of the corre- 
sponding main control sets Di and b i  coincide and that int D i =  in t / ) i  for 
i = 1,:.., k. This follows from exact controllability in the interior of control 
sets. 

The control system (5.1) induces a control system on the projective 
space P :=  pal-1 [cf. Eq. (1.2)], and also, according to the discussion in 
Section 4, control flows on q /x  Nd and on ~ x P. From Theorems 3.10 and 
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4.9 we obtain competing control structures for the system on P: one corres- 
ponding to the main control sets D1 ..... Dk [provided (5.1) satisfies the rele- 
vant Lie algebra condition] and one corresponding to the chain control 
sets El,..., Et. In order to clarify the relation between these two structures, 
we first characterize the main control sets via a dynamical systems 
property. 

5.2. Theorem. 

(i) 

(ii) 

Assume that system (5.1) satisfies hypothesis (H). 

The control sy,~tem induced by (5.1) on P has exactly 1 <~ k <~ d 
control sets with nonvoid interior D 1,..., D k. These main control 
sets are linearly ordered and have the properties indicated in 
Theorem 3.10. 
The dynamical system P ~  induced by (5.1) on ql x P has exactly 
1 <~k<<. d maximal topologically transitive components ~1,:.., ~k 
with int n v ~ i r  QS, i= 1,..., k. These main topologically transitive 
components are topologically mixing and 

n p ~ i = c l D i ,  i =  1,..., k 

Here np denotes the projection of q /x  P onto the second component. 

Proof. Assertion (i) follows from Theorem 3.10. Assertion (ii) is a 
consequence of (i) and Theorem 3.8 in Ref. 9.  9 

5.3. Remark. Theorem 5.2 shows that the number of maximal 
topologically transitive components @~ with int n p ~  r ~ is finite and 
bounded by d. This result may be viewed as an analogue of Smale's decom- 
position of the set of nonwandering points of Axiom A Flows into finitely 
many maximal topologically transitive sets (cf. Ref. 26). The situation con- 
sidered in the theorem above arises from a semigroup (the systems semi- 
group 5 p) in a Lie group (the systems group fr acting by Hypothesis (H) 
transitively on P: 

5.4. Remark. Consider for i = 1 ..... k the following subsets of s//• ~d: 

{(U, X) e S//X ~d: X~0=~ Pq~(t, X, U)eel D i for all t~ ~} 

Example 5.8, below, shows that these sets need not be subbundles of 
~,•  ~a. Hence, in general, the (closures of the) main control sets 
Di, i = 1 ..... k, will not coincide with the chain control sets. 

Concerning the relation between control sets and chain control sets, 
one can say in general that several control sets, even with nonvoid interior, 



Linear Control Semigroups 523 
can be contained in one chain control set and that chain control sets may 
contain points, which are in no control set; see, e.g., Examples 4.11 and 
4.12 in Ref. 9. [Note that these examples are projections of systems of type 
(5.1), i.e., they fit into the present framework.] Obviously, every main 
control set lies in some chain control set. A converse of this property holds 
as well, as the following result shows. 

5.5. Theorem. Suppose that (5.1) satisfies Hypothesis (H).  Then 
every chain control set Ej contains a main control set; in particular, 
1 <<.l<~k<<.d and int E j v a ~ f o r  a l l j =  1 ..... L 

Proof. By Theorem 4.9, for every u ~ og one has the decomposition 

~"= g~(u)| . . .  |  

with ~ ( u ) =  { x e R d : x r  Take U=Ug with ge in tSf<, ,  for 
some t > 0 .  Then one has a corresponding decomposition of Nd into 
generalized eigenspaces of g and the sums of generalized eigenspaces 
corresponding to eigenvalues of equal absolute value lie in some main 
control set. By the remarks above, every main control set lies in some chain 
control set. Hence, by a dimension argument, every ~(ug) must have 
nonvoid intersection with some main control set. Thus every Ej has 
nonvoid intersection with some main control set, which by maximality 
implies that it contains some main control set. [] 

The following result gives a very precise description of the relation 
between the main control sets and the chain control sets, i.e., for the 
control flow on q /x  P, between the maximal topologically transitive sets 
whose projection on P has nonvoid interior and the components of the 
chain recurrent set. Recall the definition of Di(ug) in (3.7), 

Di(ug ) := { x e P :  ~o(t, x, Ug)~Cl D i for all t e N }  

and the definition of gj in (4.7). 

5.6. Theorem. Suppose that (5.1) satisfies Hypothesis (H).  Then for 
j = l , . . . , l  

~. = cl {(Ug, X): 
g ~ int 5Q< t for some t > 0 and ] 

P x ~ @ Di(ug) where the sum is taken 
i 

over all i with D i ~ E i 

(5.3) 
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In particular, for  every u ~ ~ and every j = 1 ..... l, there are x 1,..., x is ~ N u such 
that 

~(u)  = span{x1 ..... xis} 

and every Px~ lies in the closure o f  some main control set. 

Proof. Theorem 3.13 implies that for all g e i n t  5~ t > 0 ,  the sets 
Di(ug) are projected linear subspaces and coincide with P ( G  ~ E(~,)), where 
the sum is taken over all 2 e spec g with P E ( 2 ) t i n t  Di or, equivalently, 
with P E ( 2 ) c c l D ; .  Clearly, with gj(u) as defined in the proof of 
Theorem 5.5, 

gj(Ug) = @ (E(2): PE(2) c Ej} 

and each PE(2) is contained in some Di. Hence ~(Ug)= 
O i  {E(2): PE(2)cD~},  where the sum is taken over all i with D i c E  s. 
Now observe that 

{Ug: g e i n t  5p~,, for some t > 0 }  

is dense in ~//. Furthermore, gj is closed. Hence gj. contains the set on the 
right-hand side of (5.3) and every ue~  appears as a limit. Now the 
assertion follows since dim ~.(u) is constant over u e q/.  9 

5.7. Remark. In Remark 3.16 we defined the multiplicity m(Di) of a 
main control set D i c  P. According to Theorem 5.6, one can define the 
multiplicity of chain control sets as 

m(Es) := dim ~(u)  

and this number is independent of u e q/. Recall that m(Di) was indepen- 
dent of g E int 5P~ t for all t > 0. In particular, we obtain from the proof of 
Theorem 5.6, 

m(Es) = ~ m(Di) 
i 

where the sum is taken over all i with D i c  Ej. Again, we obtain: System 
(1.2) has exactly one chain control set ( -  P) iff there exists g e 5 p such that 
all generalized eigenspaces of g are contained in one chain control set E, 
i.e., iff re(E) = d. 

The following simple two-dimensional example illustrates the relation 
between control sets and chain control sets in the situation, where the 
eigenspace structure of g s  ~5 ~, the boundary of the systems semigroup, 
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is different from that for g ~ int 5 ~. This system possesses a single chain 
control set but two main control sets, which are connected by a continuum 
of equilibria each of them forming a control set. 

5.8. Example. Consider the system 

9(t)J ul(t) u2(t)J\y(t)J' t z  ~ (5.4) 

with u =  (ul, Uz)E ~ := {u: ~ ~ U measurable} 

where U =  [0, 1/2] x [1, 2]. First note that for constant controls 

the eigenvalues 21,2 of 

are given by 

hence 

R l ~ - ~  ~ U 2 ~  fl 

( 1 -  2)(/~- 2 ) -  ~ = 2~(1 +/~) 2 + / ~ -  ~ = 0 

2 1 2 -  1 -4-fl + / c t2 - ]3 -4 - (1  -4- fl)_.___~ 2 
' 2 - V  4 

For fl = 1, one has 21,2 = 1 + ~ with generalized eigenspaces given 
b y  

2. For  fl = 2, one has 

= O: @2 

~ > 0 :  y =  +x  

2,,2 = ~ + , /~2  +  88 

The corresponding eigenspaces are given by 

e = 0 :  y = 0 and x =0 ,  with 21,2 = 1, 2 
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3. F o r / ~  [1, 2] and ~ =   89 one always has 2 real eigenvalues /]'1 ~>~2, 
and the corresponding eigenspaces are of the form 

El={C.(y)" C~, with y=?xforsome?> l} 

E2={c.(Xy)'C~,withy=-fix for some 6 < 1} 

In order to determine the main control sets of system (5.4) projected 
onto P, we can use now Theorem 4.8 in Ref. 1 and obtain (compare Fig. 1) 
the following. 

Parametrize the projective space P via the angle as P =  
{0:-r t /2<0~<Tr/2};  then DI=(- rc /4 ,0  ) is the open main control 
set, and D2 = [n/4, rc/2] is the closed main control set. Note that 

y = z  

D i +1 2 

,, 

~ 9  - x  

m 

Fig. 1. Main control sets for Example 5.8. 
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/ ) 1 c ~ D 2 = ~ ,  but by considering the case ~ = 0 ,  f l= 1, one sees that 
there exists a unique chain control set E1 = P. The main control sets 
are connected by a continuum of control sets (with void interior), 
which are rest points on P of the diffeomorphism corresponding to 
g ( t ) '=  exp t-(o ~ o)= (~ o)~35p. 
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