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Directional dichroism in the paramagnetic state of multiferroics: A case study of infrared light
absorption in Sr2CoSi2O7 at high temperatures
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The coexisting magnetic and ferroelectric orders in multiferroic materials give rise to a handful of novel mag-
netoelectric phenomena, such as the absorption difference for the opposite propagation directions of light called
the nonreciprocal directional dichroism (NDD). Usually, these effects are restricted to low temperature, where
the multiferroic phase develops. In this paper, we report the observation of NDD in the paramagnetic phase of
Sr2CoSi2O7 up to temperatures more than 10 times higher than its Néel temperature (7 K) and in fields up to 30 T.
The magnetically induced polarization and NDD in the disordered paramagnetic phase is readily explained by
the single-ion spin-dependent hybridization mechanism, which does not necessitate correlation effects between
magnetic ions. The Sr2CoSi2O7 provides an ideal system for a theoretical case study, demonstrating the concept
of magnetoelectric spin excitations in a paramagnet via analytical as well as numerical approaches. We applied
exact diagonalization of a spin cluster to map out the temperature and field dependence of the spin excitations,
as well as symmetry arguments of the single ion and lattice problem to get the spectrum and selection rules.

DOI: 10.1103/PhysRevB.99.014410

I. INTRODUCTION

Nonreciprocal directional dichroism (NDD) is the property
of a material to have different absorption coefficients for
light propagation directions ±k along and opposite to a given
direction in the crystal [1]. Although NDD was observed a
long time ago for the exciton transitions of the polar semi-
conductor CdS [2], it was recognized as a general magneto-
optical phenomenon of noncentrosymmetric materials only by
the seminal works of Rikken and his co-workers [3,4]. The
two basic cases of NDD were identified as the magnetochiral
dichroism [3] (MChD) and the toroidal dichroism. In the
case of MChD the absorption coefficient is different for light
propagation along and opposite the magnetization of a chiral
magnet k ‖ M [4]. In the case of toroidal dichroism NDD
appears for propagation along and opposite k ‖ P × M, where
P is the ferroelectric polarization of the material. In general,
NDD can be finite only when both the spatial inversion
and time-reversal symmetries are broken, as these symmetry
operations interconnect the light beams propagating in oppo-
site directions. Following the same principle, a recent study
rigorously classified the magnetic point groups compatible

with NDD [5]. It predicted that beside magnetochiral and
toroidal dichroism NDD can arise in previously unclassified
cases, which cannot be classified by a static vector quantity,
such as the magnetization or the toroidal moment.

Magnetoelectric (ME) multiferroics with coexisting ferro-
electric and magnetic orders naturally have the low-symmetry
ground states exhibiting magnetochiral or toroidal dichroism,
and indeed gigantic NDD was found in their collective exci-
tations, typically in the GHz-THz range [6–12]. At these low
frequencies, where the electromagnetic radiation is uniform
on the scale of the magnetic unit cell, NDD can solely
originate from the coupled dynamics of the magnetization
and the electric polarization, the dynamic ME effect. When
light beams travel in a ME material, for a beam propagating
in one direction the oscillating magnetization generated by
the electric field of the light can enhance the conventional
magnetization component, induced by the magnetic field of
light, whereas these two terms interfere destructively for
the counterpropagating beam since the relative phase of the
electric and magnetic fields of light changes by π when
reversing the propagation direction. The direct connection
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FIG. 1. Schematic illustration of the Sr2CoSi2O7 crystal struc-
ture, space group P 421m, and the coordinate axes x ‖ [110] and y ‖
[1̄10]. Purple circles denote the S = 3

2 Co2+ ions in the centers of the
O2− tetrahedra (shown in blue). The compound is built up by layers
of CoO4 tetrahedra and Si2O7 units (gray), which are separated by Sr
ions. For clarity, only a single layer is shown. ±κ is the rotation angle
of tetrahedra about the [001] axis away from [110]. A and B denote
the two types of tetrahedra with +κ and −κ tilt. In the experiment,
the THz light propagates along the direction of the magnetic field
k‖B‖ [100]. The magnetic field breaks the time-reversal symmetry
and for this field direction the remaining unitary symmetry operation
is the 21 screw axis (black half-arrow). The antiunitary operations
including the time reversal are the 2′ twofold rotation about the [001]
axis (red ellipse) and the 2′

1 screw axis (red half arrow).

between the NDD and the ME effect allows the calculation of
the direct current (dc) ME coefficient from the NDD spectrum
using the sum rule [13]. Thus, the spectroscopic information
about the ME resonances can promote the synthesis of new
multiferroics with large ME coefficient.

One-way transparency is an extreme case of gigantic NDD
when the light is absorbed only in one direction but not for
the opposite propagation direction. Since no physical law
prohibits the one-way transparency, an efficient one-way light
guide can be realized. Furthermore, the transparent direction
can be switched with applied magnetic [6] and possibly
with electric field [14,15]. Some of the multiferroics, e.g.,
melilites Ba2CoGe2O7, Ca2CoSi2O7, and Sr2CoSi2O7, are
not far from the ideal realization of one-way transparency
[10]. In principle, these materials can find applications in
photonics as diodes for THz radiation or directional light
switches [12]. However, the multiferroic order possessing
large NDD usually develops well below room temperature
in the known materials, with the exception of the room-
temperature multiferroic BiFeO3 [12], rendering their use in
device applications impractical.

Here, we suggest an alternative way of achieving NDD by
demonstrating that the spin excitations in Sr2CoSi2O7 show
NDD well above the antiferromagnetic ordering temperature
TN = 7 K. The crystal structure of melilites (see Fig. 1)
lacks the inversion symmetry. Applying magnetic field, the
time-reversal symmetry will be broken in the paramagnetic
phase and the necessary conditions for NDD are then fulfilled.
Akaki et al. [16,17] demonstrated that in Sr2CoSi2O7 the
dc ME effect persists in the paramagnetic regime, where
the field-induced polarization scales with the square of the
magnetization. Since the dc ME susceptibility is related to
NDD by the ME sum rule [13], we expect that NDD appears
also in the paramagnetic phase of Sr2CoSi2O7.

In this paper, motivated by the discovery of the high-
temperature dc ME effect in Sr2CoSi2O7, we study the NDD
in the paramagnetic phase. We measured the THz absorption
spectra in magnetic fields up to 30 T over a broad range
of temperatures below and well above TN. The magnetic
field was applied along the [100] direction, which induces
magnetization parallel to the field. The point group of the
Sr2CoSi2O7, 42m1′ in the paramagnetic state, is then reduced
to the magnetic point group 22′2′ [7]. In this chiral symmetry,
MChD is expected to emerge for light propagation along
the magnetic field, i.e., in the Faraday geometry. Indeed, our
experiments show that the spectra are markedly different in
positive and negative magnetic field, which is the hallmark
of MChD. Using exact diagonalization we reproduced the
magnetic field and temperature dependence of the MChD
signal. To interpret the numerical results, a single-site analytic
model was developed which shows that the finite NDD arises
if all three are present: magnetic field, spin anisotropy, and
ME coupling.

Recently, Yu et al. studied spin excitations of a polar
ferrimagnet FeZnMo3O8 in Ref. [18]. They demonstrated that
the toroidal dichroism can be realized in the paramagnetic
phase when the light propagates along the cross product of the
built-in polarization and the external magnetic-field-induced
magnetization k ‖ P × M. In contrast, here we study MChD,
a different form of NDD, and develop microscopic spin mod-
els to understand NDD in the paramagnetic phase.

The paper is organized as follows. After description of the
experimental methods in Sec. II, the experimental results are
presented in Sec. III. To understand the observed spin exci-
tations and NDD, first, a spin Hamiltonian and spin-induced
polarization of Sr2CoSi2O7 are introduced in Sec. IV. The
Hamiltonian is numerically diagonalized for a small cluster
and the eigenstates are used to calculate magnetic and ME
susceptibilities in Sec. V. Second, using a single-ion model in
Sec. VI the results of the exact diagonalization are interpreted.
Third, the selection rules found for the single-ion case are
generalized for the lattice model in Sec. VII. In addition,
in this section the effects of the exchange interaction in
leading order of perturbation theory are analyzed. Finally, the
main experimental and theoretical results are summarized in
Sec. VIII.

II. EXPERIMENTAL METHODS

The Sr2CoSi2O7 crystals were grown by the floating-zone
method. First, SrCO3, Co3O4, and dehydrated SiO2 were
mixed in stoichiometric amount and sintered for 120 h at
1200◦C in air with one intermediate regrinding. The re-
sulting product was pressed into a rod shape and resin-
tered for 60 h under the same conditions as before. The
polycrystalline rod was melted into a single-crystal ingot in
a halogen-incandescent lamp floating-zone apparatus (SC-
N35HD, NEC).

Samples for THz spectroscopy were disk-shaped single
crystals with a diameter of 4 mm and thicknesses of d = 0.2
and 0.5 mm in the [100] direction. The external magnetic
field B and the light propagation k were both in the [100]
direction k‖B‖ [100]. The THz radiation was polarized by
a wire-grid polarizer deposited on a dielectric film placed
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a few millimeters away from the sample in the incident
light beam. The transmitted intensity was measured with
a Martin-Puplett–type interferometer (SPS200, Sciencetech,
Inc., Ontario, Canada) and 0.3 K composite silicon bolometer
(Infrared Laboratories) in magnetic fields up to 17 T for both
positive and negative fields in the temperature range between
3 and 100 K. Measurements above 17 T were performed
with a Genzel-type interferometer (Bruker 113v) and a 1.6 K
composite Si bolometer (Infrared Laboratories).

The absorption coefficient α± for magnetic fields ±B was
calculated as

α± = − 1

d
ln

I (±B, T )

I (0 T, Tref )
, (1)

where I (±B, T ) is the transmitted intensity in magnetic field
B at temperature T and I (0 T, Tref ) is the transmitted intensity
in zero magnetic field at temperature Tref . For the magnetic
field ratios T = Tref , and the relative absorption spectra are
noted as α±

B . If B is constant and T is varied, the ratio is
denoted by α±

T . α± was determined for two polarizations of
THz radiation Eω ‖ [010] and Eω ‖ [001].

The NDD was detected by changing the direction of the
magnetic field from +B to −B, i.e., from B ↑↑ k to B ↓↑ k.

Due to the twofold rotation symmetry along the [001] axis,
the reversal of B is equivalent to the reversal of k.

III. EXPERIMENTAL RESULTS

Figures 2(a) and 2(b) show the temperature dependence
of α±

T between 3 and 100 K in two polarizations of the
THz radiation in magnetic field ±14 T. Below 7 K, in the
magnetically ordered phase, the spectrum is dominated by
three resonances as 18, 28, and 32 cm−1. Since the resonance
frequencies of the spin-wave modes are located at almost the
same position [10] in Sr2CoSi2O7 and Ba2CoGe2O7, and
the magnetic field dependence of M and P is also similar in
the two compounds [16,19], we use the same assignment of
spin waves as for Ba2CoGe2O7 [20]. The 18-cm−1 mode is the
Goldstone mode of the easy-plane antiferromagnet gapped by
the in-plane magnetic field whereas the latter two resonances
correspond to the spin-stretching modes. When the field is
parallel or antiparallel to the light propagation direction, the
spectra are markedly different. The absorption difference is
due to the MChD [7,10].

As the temperature increases, the spin-stretching modes
at 28 and 32 cm−1 merge and eventually disappear above
30 K. However, the lowest-energy mode, the Goldstone mode
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FIG. 2. Temperature dependence of measured THz absorption spectra (a), (b) and calculated susceptibilities (c)–(f) of Sr2CoSi2O7 in 14 T.
The THz absorption spectra for magnetic field B ↑↑ k ‖ [100] (red) and B ↑↓ k (blue) are measured using linearly polarized radiation where
in (a) Eω ‖ [010] and Bω ‖ [001], and in (b) the polarization is rotated by π/2, so that Eω ‖ [001] and Bω ‖ [010]. The spectra measured at
each temperature are shifted by a constant baseline. (c) and (e) are the magnetic susceptibility Imχmm(ω) and the ME susceptibility Imχme(ω)
for the polarizations Eω ‖ [010] and Bω ‖ [001]. (d) and (f) are Imχmm(ω) and Imχme(ω) for the polarization Eω ‖ [001] and Bω ‖ [010]. Red
(positive) and blue (negative) colors indicate the sign of the susceptibility. The saturation of the color corresponds to the magnitude of the
corresponding susceptibility matrix elements, Imχmm(ω) [Eq. (11)] and Imχme(ω) [Eq. (12)]. The susceptibilities were calculated by the exact
diagonalization of a four-site cluster.
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FIG. 3. Magnetic field dependence of absorption spectra of
Sr2CoSi2O7 in the paramagnetic state at 10 K, B ↑↑ k ‖ [100] (red)
and B ↑↓ k (blue). The spectra are shifted in proportion to the
absolute value of the magnetic field.

in the ordered phase, is visible even at 100 K. The MChD
has pronounced polarization dependence in the paramagnetic
phase. A strong MChD is observed for all resonances in
polarization Eω ‖ [010]: the absorption coefficient is nearly
zero for positive fields whereas finite absorption is detected
for negative fields. In the orthogonal polarization Eω ‖ [001],
the lowest-energy resonance has weak MChD and changes
sign between 10 and 15 K.

In 14 T the MChD is the strongest at 10 K, close to the
Néel temperature but already in the paramagnetic phase [see
Figs. 2(a) and 2(b)]. The magnetic field dependence of
the absorption spectra at 10 K is shown in Figs. 3(a) and
3(b). The Goldstone-type mode suddenly appears above 12
T and it only shows MChD for Eω ‖ [010]. The remnant
spin-stretching mode arises from the broad absorption feature
in low magnetic field and has a strong MChD with opposite
signs in the two polarizations.

The magnetic field dependence of the absorption spectra at
30 K is shown in Figs. 4(a) and 4(b). The average intensity
of the single resonance line (α+ + α−)/2 observed at this
temperature is nearly the same for both polarizations and it
grows gradually as the field is increased. For polarization
Eω ‖ [010] a strong MChD is observed while only a small
absorption difference is detected in Eω ‖ [001].

IV. SPIN HAMILTONIAN AND
MAGNETOELECTRIC COUPLING

We consider the following spin Hamiltonian for S =
3
2 Co2+ spins coupled within a single layer (Fig. 1) of

Sr2CoSi2O7:

H = J
∑
(i,j )

(
Sx

i Sx
j + S

y

i S
y

j

) + Jz

∑
(i,j )

Sz
i S

z
j + �

∑
i

(
Sz

i

)2

+ Dz

∑
(i,j )

(
Sx

i S
y

j − S
y

i Sx
j

) − gμBB
∑

i

Si, (2)

where J and Jz are the anisotropic exchange parameters, � is
the onsite anisotropy parameter, Dz is the z component of the
Dzyaloshinskii-Moriya vector, and the last term is the Zee-
man interaction. (i, j ) denotes pairs of nearest-neighbor sites
with i ∈ A and j ∈ B (Fig. 1). The spin-nematic interactions
responsible for the weak in-plane anisotropy are neglected
[21,22].

From the symmetry point of view, the absence of inversion
at the Co site allows the ME coupling. A suitable microscopic
mechanism is provided by the spin-dependent p-d hybridiza-
tion [23]. In the case of a tetrahedrally coordinated magnetic
moment (the Co2+ ion in our case), the electric polarization is
quadratic in spin components given by [19,24,25]

P ∝
4∑

o=1

(S · eo)2eo, (3)

where eo is the unit vector pointing from the center of the
(distorted) tetrahedron toward the four o = 1, . . . , 4 ligands
(the oxygen ions) at the vertices of the tetrahedron.

Since the Sr2CoSi2O7 is composed of alternating tetrahe-
dra, the polarization components are

P x
j ∝ − cos 2κj

(
Sx

j Sz
j + Sz

jS
x
j

) − sin 2κj

(
S

y

j Sz
j + Sz

jS
y

j

)
,

P
y

j ∝ cos 2κj

(
S

y

j Sz
j + Sz

jS
y

j

) − sin 2κj

(
Sx

j Sz
j + Sz

jS
x
j

)
, (4)

P z
j ∝ cos 2κj

[(
S

y

j

)2 − (
Sx

j

)2] − sin 2κj

(
Sx

j S
y

j + S
y

j Sx
j

)
,

where j belongs to either sublattice A, with a tilt angle κj =
κ , or to sublattice B, where κj = −κ [24].

The oscillating magnetic field of the light interacts with the
total magnetization

M = MA + MB, (5)

while the electric field interacts with the total polarization

P = PA + PB, (6)

where the sublattice (l = A or B) magnetization and polariza-
tion are

Ml = gμB

∑
j∈l

Sj and Pl =
∑
j∈l

Pj . (7)

We define the magnetic susceptibility as

χmm
μμ (ω) =

∑
i,f

|〈f |Mμ|i〉|2
h̄ω − Ef + Ei + iδ

e−βEf − e−βEi

Z
, (8)

and the ME susceptibility as

χme
μν (ω) =

∑
i,f

〈i|Mμ|f 〉〈f |P ν |i〉
h̄ω − Ef + Ei + iδ

e−βEf − e−βEi

Z
, (9)

where Z = ∑
i e

−βEi is the partition sum, β = 1/kBT is the
inverse temperature, the δ parameter gives a finite broadening
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FIG. 4. Magnetic field dependence of measured THz absorption spectra (a), (b) and calculated susceptibilities (c)–(f) of Sr2CoSi2O7 at
30 K. The THz absorption spectra for magnetic field B ↑↑ k ‖ [100] (red) and B ↑↓ k (blue) are shown for two polarizations of the THz light.
The spectra are shifted in proportion to the absolute value of the magnetic field. (c) and (e) are the magnetic susceptibility Imχmm(ω) and the
ME susceptibility Imχme(ω) for the polarizations Eω ‖ [010] and Bω ‖ [001]. (d) and (f) are Imχmm(ω) and Imχme(ω) for the polarizations
Eω ‖ [001] and Bω ‖ [010]. Red (positive) and blue (negative) colors indicate the sign of susceptibility. The saturation of the color corresponds
to the magnitude of the corresponding susceptibility matrix elements Imχmm(ω) [Eq. (11)] and Imχme(ω) [Eq. (12)]. The susceptibilities were
calculated by the exact diagonalization of a four-site cluster.

to the absorption peaks, and Ei and Ef are the energies of the
initial and final spin states, respectively.

The experimentally measured NDD is related to the imag-
inary and time-reversal odd part of ME susceptibility [13,26]
as

α+(ω) − α−(ω) = 4ω

c0
Imχme

μν (ω), (10)

where c0 is the speed of light in vacuum and frequency is in
units of rad/s.

For a given transition |i〉 → |f 〉 the imaginary (dissipative)
parts of the magnetic and magnetoelectric susceptibilities are
[13]

Imχmm
μμ (ω) ∝ |〈i|Mμ|f 〉|2δ(ω − ωif ), (11)

Imχme
μν (ω) ∝ Re{〈i|Mμ|f 〉〈f |P ν |i〉}δ(ω − ωif ), (12)

where ωif = (Ef − Ei )/h̄ is the transition frequency and ω

is the frequency of a photon. Only the real part of the matrix
element products is time-reversal odd in Eq. (12).

V. EXACT DIAGONALIZATION

To get a first insight into the nature of excitations, we
performed an exact diagonalization study of a small cluster
containing four Co2+ ions, i.e., two unit cells, at finite tem-

peratures [27]. We note that exact diagonalization was also
used to study the ME excitations of Ba2CoGe2O7 at zero
temperature in Ref. [24].

Since the magnetization curves closely follow those of
Ba2CoGe2O7 [16,19], we assume the same set of parameters
describes both Ba2CoGe2O7 and Sr2CoSi2O7. We use the
parameters obtained from absorption spectra of Ba2CoGe2O7

in Ref. [20], i.e., � = 13.4 K, J = 2.3 K, Jzz = 1.8 K, Dz =
−0.1 K, κ = 22.4◦, and g = 2.3. This set of parameters pro-
vided a remarkable good agreement with the experimentally
measured absorptions. The results of these calculations are
presented in Figs. 2(c)–2(f) and Figs. 4(c)–4(f).

The exact diagonalization results show, in accordance with
the experiment, that a single absorption line is present in high
magnetic fields at high temperatures and a second resonance
appears as the temperature is lowered below 20 K. Calculation
predicts a finite ME effect responsible for the observed NDD.
Moreover, the sign change of NDD observed for Eω ‖ [001]
between 10 and 15 K is reproduced by the numerical calcula-
tions [Figs. 2(b) and 2(f)].

VI. SINGLE-ION PROBLEM

In order to get a deeper understanding of the THz ab-
sorption spectra and NDD in the paramagnetic phase of
Sr2CoSi2O7, we consider a model of a single Co2+ spin in
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FIG. 5. The tetrahedron-fixed coordinate system {X, Y, Z} and
the rotated magnetic-field-fixed coordinate system {‖, ⊥1, ⊥2}. Pur-
ple ball is the Co2+ and the blue tetrahedron is the cage with the
oxygen ions at the vertices. The quantization axis (spin component
S‖) is parallel to the direction of the static external magnetic field h

(shown in green), while one perpendicular axis (the spin component
S⊥2) is parallel to Z.

the center of a tetrahedron. This unit is the building block
of the crystal lattice of Sr2CoSi2O7, and, at the same time,
its symmetry is representative of the field-induced reduction
of the point symmetry in the real material. More precisely,
in the next two sections we will show that the magnetic
space group at the � point is isomorphic to the magnetic
point group of the tetrahedron. Furthermore, such a simple
single-ion model describes the essence of the experiments in
the disordered paramagnetic state where the strong thermal
fluctuations smear out the coupling to the neighboring spins.

A. Hamiltonian and the symmetries

1. Spin Hamiltonian and the electric polarization

We will consider magnetic field in the XY plane of a
single tetrahedron with a coordinate system defined in Fig. 5.
It is convenient to use the coordinate system where the ‖
axis points in the direction of the field h = gμBB, the ⊥2
axis is parallel to the Z direction, and the ⊥1 direction is
chosen so that the three axes form an orthogonal right-handed
system. The spin components in the coordinate system of the
tetrahedron are related to the spin components in the field-
fixed system as

SX = cos ϕ S‖ − sin ϕ S⊥1,

SY = sin ϕ S‖ + cos ϕ S⊥1, (13)

SZ = S⊥2.

Following Eq. (2) the Hamiltonian for a single spin in the
field-fixed coordinates is

H = �(S⊥2)2 − hS‖. (14)

The quantization axis is chosen along the magnetic
field with eigenvalues and eigenvectors of S‖ being
{+3/2,+1/2,−1/2,−3/2} and {⇑,↑,↓,⇓}, respectively.

The magnetic field and the anisotropy lower the O(3)
spatial symmetry to the group generated by inversion and a
twofold rotation C

‖
2 about the magnetic field. Time-reversal

symmetry alone is broken, but time reversal followed by a

TABLE I. Character table of the double group corresponding to
the group C2, including the transformation properties of the operators
and states. The group element 1̄ is the 2π rotation with the property
1̄2 = 1.

Irrep 1 C
‖
2 1̄ C̄

‖
2 Operators

A 1 1 1 1 S‖, P ‖

B 1 −1 1 −1 S⊥1, S⊥2, P ⊥1, P ⊥2

E1 1 i −1 −i |⇓〉, |↑〉, 〈⇑|, 〈↓|
E2 1 −i −1 i |⇑〉, |↓〉, 〈⇓|, 〈↑|

rotation perpendicular to the field, denoted by �C⊥2
2 , remains

a symmetry element.
From Eq. (3) we get for the electric polarization

P X = ηXY (SZSY + SY SZ ),

P Y = ηXY (SZSX + SXSZ ), (15)

P Z = ηZ (SXSY + SY SX ),

where for the regular tetrahedron ηXY = ηZ . The relation to
the components in the field-fixed coordinates is

P X = cos ϕ P ‖ − sin ϕ P ⊥1,

P Y = sin ϕ P ‖ + cos ϕ P ⊥1, (16)

P Z = P ⊥2.

2. Solution of the Hamiltonian

The matrix representation of the Hamiltonian (14) in the
spin basis {⇑,↑,↓,⇓} is

Ĥ =

⎛
⎜⎜⎜⎜⎜⎝

3
4�− 3

2h 0 −
√

3
2 � 0

0 7
4�− 1

2h 0 −
√

3
2 �

−
√

3
2 � 0 7

4�+ 1
2h 0

0 −
√

3
2 � 0 3

4�+ 3
2h

⎞
⎟⎟⎟⎟⎟⎠

. (17)

The eigenvalues ±i of the rotation operator Ĉ
‖
2 ,

Ĉ
‖
2 = eiπŜ‖ =

⎛
⎜⎜⎜⎝

−i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 i

⎞
⎟⎟⎟⎠, (18)

are good quantum numbers as the operator commutes with
the Hamiltonian [Ĥ, Ĉ

‖
2 ] = 0. Therefore, only the states with

the same eigenvalue of Ĉ
‖
2 are mixed. We use ±i to label the

eigenstates |ψ (±i)
j 〉 and corresponding energies ε

(±i)
j . For

the detailed form of the energies and eigenvectors, we refer
the reader to Appendix B 1.

3. Transition matrix elements

Based on the transformation properties under the rotation
C

‖
2 , as summarized in Table I, we can construct selection

rules for the matrix elements of the spin and polarization
components. A matrix element for an operator O between
states |ψα〉 and |ψβ〉 can only be nonvanishing if it transforms
according to the totally symmetric A irrep of the group
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FIG. 6. (a) Transition energies ω and (b) energy levels ε of the
single-ion model with easy-plane anisotropy � in a magnetic field
h = gμBB within the easy plane as a function of h/�, with � =
13.4 K and g = 2.3 from Ref. [20]. States 1 and 3 (red curves) are
multiplied by −i after a π rotation about the field (C‖

2 ), while states
2 and 4 (blue) get an i. Magenta arrows represent transitions between
the states of the same symmetry, induced by operator A, even under
the C

‖
2 , such as S‖, P ‖ (see Table I). Cyan arrows connect states with

different symmetries induced by operator B, odd under C
‖
2 , such as

the perpendicular components of spin and polarization operator. The
color of the curves corresponds to the color of the arrows in (b). The
filled circles show the experimental results.

A ⊆ �β ⊗ �(O) ⊗ �α . In order to describe the transforma-
tion properties of the states of a half-integer spin, we need to
consider the double group corresponding to the group C2. If
an operator A transforms as A and an operator B as B, and the
spin states as E1 and E2 of the double group of C2 (Table I),
the nonvanishing matrix elements are

〈
ψ (±i)

α

∣∣A∣∣ψ (±i)
β

〉
and

〈
ψ (∓i)

α

∣∣B∣∣ψ (±i)
β

〉
. (19)

Allowed transitions between states of the same symmetry are
of type A and allowed transitions between states of different
symmetry are of type B. The corresponding transition ener-
gies are shown in Fig. 6(a) and the energy levels involved in
Fig. 6(b).

In what follows, we take into account the effects of an-
tiunitary symmetries containing the time-reversal operation
� on the matrix elements. We show in the Appendix A that
any linear operator Ô, if the symmetry operation �C⊥2

2 is
present (as in the case of a magnetic field applied in the XY

plane), must satisfy Ô = ±Ô∗. Thus, the matrix elements of
any linear operator even (odd) under the symmetry operation
�C⊥2

2 are real (imaginary).
In conclusion, the unitary symmetries of the single-ion

model determine the selection rules, i.e., the nonvanishing

TABLE II. Matrix elements of the spin and polarization oper-
ators, first in small field h, then for small anisotropy �, in the
single-ion model. The first nonvanishing order in either h or � is
shown. c stands for a real constant.

Transition S‖ S⊥1 S⊥2 P
‖
chiral, P

⊥1
polar P ⊥1

chiral, P
‖
polar P ⊥2

chiral P ⊥2
polar

1 → 2 c, c ic, ic ih, ic h, c

2 → 3 c, c ih, ic ic, i� c, �

3 → 4 h2, c ic, ic ih, ic h, c

1 → 3 c, � ic, ic c, c

2 → 4 c, � ic, ic c, c

1 → 4 c, �2 ih, i�2 ic, i� c, �

matrix elements, whereas the antiunitary symmetry constrains
the matrix element to a real or to an imaginary value.

B. Directional dichroism in the single-ion model

Imaginary part of the ME susceptibility Imχme
μν (ω) causes

NDD [6,7,28] [Eq. (10)]. For a given transition |i〉 → |f 〉 the
dissipative and time-reversal odd part of the ME susceptibility
is proportional to the real part of the matrix element product
Re{〈f |Mμ|i〉〈f |P ν |i〉} [Eq. (12)]. Thus, NDD is nonzero if
both matrix elements are nonzero for the same pair of states |i〉
and |f 〉. This is allowed by symmetry if Mμ and P ν transform
according to the same irreducible representation of the group
of unitary symmetries.

Furthermore, the product of the Mμ and P ν matrix ele-
ments has a finite real part only if both matrix elements are
real or both are imaginary. Thus, both operators must be even
(A type) or both odd (B type) under antiunitary symmetry
operation, as was shown in the previous section. The summary
of all spin and polarization operator amplitudes for S = 3

2 in
the single-ion model is presented in Table II. They are either
real, imaginary, or symmetry forbidden.

Below we examine the symmetry properties of the opera-
tors for different directions of the external field with respect
to the cobalt-oxygen tetrahedron in the easy plane to find out
the details of the existence of NDD.

1. Magnetochiral dichroism (chiral case): ϕ = 0

When the external field is parallel to one of the twofold
rotation axes ϕ = 0 (see Fig. 5), the system has chiral sym-
metry D2(C2) in Schoenflies notation [see Fig. 7(a)], and the
polarization operators in the local coordinate system are

P
‖
chiral = ηXY

2i
[(S+)2 − (S−)2], (20a)

P ⊥1
chiral = ηXY

2i
[S‖(S+ − S−) + (S+ − S−)S‖], (20b)

P ⊥2
chiral = ηZ

2
[S‖(S+ + S−) + (S+ + S−)S‖], (20c)

where S± = S⊥1 ± iS⊥2. This is also the case (up to a sign)
when ϕ is an integer multiple of π/2 due to the S4 symmetry
of the distorted oxygen tetrahedron. It is worth noting that
the perpendicular components P ⊥1 and P ⊥2 change the S‖
quantum number by ±1, creating dipolar spin excitation, but
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FIG. 7. The tetrahedron in the (a) chiral (ϕ = 0), (b) low-
symmetry, and (c) polar (ϕ = π/4) cases as seen from the direction
of the magnetic field B. The magenta sphere represents the magnetic
ion at the center of tetrahedral cage. The stereograms represent the
magnetic point group for each case, black refers to the unitary sub-
group, and red the antiunitary part combined with the time reversal.

P
‖
chiral changes by ±2, creating quadrupolar spin excitation

[29].
None of the components of P transform according to the

fully symmetric irreducible representation A+ (Table III).
Therefore, the expectation value for the static polarization is
zero in the ground state. Although the chiral case is apolar,
the dynamic ME susceptibility is allowed. The operators S⊥2

and P ⊥1 belong to the same irreducible representation B− of
D2(C2), thus, the dynamic ME susceptibility is allowed. As
the oscillating magnetization S⊥2 and polarization P ⊥1 are
perpendicular to each other and to the external magnetic field,
we expect NDD in the Faraday geometry, when the light is
propagating parallel to the field. This effect is nothing else

TABLE III. Character table for the magnetic point groups and
symmetry-allowed operators for three orientations of the applied
magnetic field in the easy plane (see Fig. 5), creating chiral (ϕ = 0),
polar (ϕ = π/4), and low-symmetry cases.

ϕ = 0: chiral case, the group is D2(C2)
Irrep. 1 C

‖
2 �C⊥2

2 �C⊥1
2 Operator(s) NDD

A+ 1 1 1 1 S‖

A− 1 1 −1 −1 P ‖

B+ 1 −1 1 −1 S⊥1, P ⊥2 Faraday
B− 1 −1 −1 1 S⊥2, P ⊥1 Faraday

ϕ = π/4 : polar case, the group is C2v (C1h)
1 σ ‖ �C⊥2

2 �σ⊥1

A+ 1 1 1 1 S‖, P ⊥2 Voigt
A− 1 1 −1 −1 P ⊥1

B+ 1 −1 1 −1 S⊥1

B− 1 −1 −1 1 S⊥2, P ‖ Voigt

ϕ �= 0 nor π/4 : the group is D1(C1)
1 �C⊥2

2

Γ+ 1 1 S‖, S⊥1, P ⊥2 Both
Γ− 1 −1 S⊥2, P ‖, P ⊥1 Both

but the MChD. The operators S⊥1 and P ⊥2, corresponding
to the perpendicular polarization of radiation as compared
to S⊥2 and P ⊥1, belong to the same irreducible represen-
tation B+ and therefore the NDD will appear irrespective
of polarizations of the incident light in Faraday geometry.
The symmetry argument presented above is supported by the
direct evaluation of the matrix elements (see Appendix B and
Table II) using the eigenstates given in Eqs. (B2a)–(B2d).

From Table III we can also infer the selection rules with
regard to the quantum numbers ±i, the eigenvalues of the
rotation operator C

‖
2 . The S‖ and P ‖ are invariant under C

‖
2 ,

thus, they excite only type-A transitions between states that
have the same quantum number [see Fig. 6(b)], i.e., between
states 1 and 3 and between states 2 and 4. However, there is no
NDD for the A-type transitions as P ‖ and S‖ do not transform
according to the same irrep.

The perpendicular components of P and S have matrix
elements between states with different C

‖
2 quantum numbers,

which corresponds to type-B transitions, i.e., transitions 1 →
2, 1 → 4, 2 → 3, and 3 → 4 [see Fig. 6(b)]. We also see
in Table III that S⊥2 and P ⊥1 are both odd under �C⊥2

2 ,
with imaginary matrix elements, and their product is real in
Eq. (12), providing a finite imaginary χme

⊥2,⊥1(ω) and a finite
MChD. Similarly, the S⊥1 and P ⊥2 are both even, with real
matrix elements, providing a finite imaginary χme

⊥1,⊥2(ω). In
any other configuration the Im{χme

μν (ω)} = 0. Therefore, the
NDD is present only in the Faraday configuration, k ‖ B.

2. Toroidal dichroism (polar case): ϕ = π
4

If the field direction is parallel to the upper edge of the
tetrahedron, ϕ = π

4 in Fig. 5, and the polarization operators
are

P
‖
polar = ηXY

2i
[S‖(S+ − S−) + (S+ − S−)S‖], (21a)

P ⊥1
polar = ηXY

2i
[(S−)2 − (S+)2], (21b)

P ⊥2
polar = ηZ

4
[4(S‖)2 − (S−)2 − (S+)2 − S−S+ − S+S−].

(21c)

Here, the perpendicular operators are changing the S‖ quan-
tum number by 0 and ±2, and the P ‖ parallel operator by ±1.
We note that P

‖
polar = P ⊥1

chiral and P ⊥1
polar = −P

‖
chiral, reflecting

the spin-quadrupolar nature of the polarization operators.
As shown in Fig. 7(c), the symmetry group of the spin

Hamiltonian is now C2v (C1h) = 2′m′m with elements

C2v (C1h) = 2′m′m = {
1, σ ‖,�C⊥2

2 ,�σ⊥1
}
. (22)

The character table and the transformations of physical quan-
tities under this group are given in Table III.

If we compare to the chiral case, first, we observe that
the P ⊥2 transforms as identity, therefore electric polarization
along ⊥ 2 axis is now allowed by the symmetry, hence we
refer to this case as the polar case. Second, because of the
σ ‖ symmetry element the S⊥1 and P ⊥2 do not belong to
the same irreducible representation anymore, and similarly
S⊥2 and P ⊥1. As a consequence, the NDD in the Faraday
geometry vanishes. Indeed, in Faraday geometry k ‖ B, the
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THz field transforms under σ ‖ as Bω → −Bω, Eω → Eω, and
k → −k. The two directions of the radiation propagation are
connected by the symmetry element and NDD is forbidden
[5,13].

Instead, the S⊥2 and P ‖ transform according to the same
irreducible representation B−. As a consequence, a finite ME
susceptibility χme

⊥2,‖ will appear in the Voigt geometry when
the k is parallel to the ⊥1 and Eω ‖ B. Similarly, the S‖ and
P ⊥2 both belong to A+, providing a finite χme

‖,⊥2. Since the
operators belonging to the same irreducible representation
in Table III have the same parity under �C⊥2

2 transforma-
tion, their matrix elements are either both real (for S⊥2 and
P ‖), or are both pure imaginary (for S‖ and P ⊥2), allowing
NDD in the Voigt configuration in both polarizations of THz
radiation.

As the σ ‖ and C
‖
2 are given by the same matrix in Eq. (18)

[30], we can repeat the arguments we used in the chiral case to
determine the selection rules. The S‖ and P ⊥2 operators have
finite matrix elements between states with the same Ĉ

‖
2 ≡ σ̂ ‖

quantum number, i.e., the A-type transitions 1 → 3 and 2 →
4 are allowed. The S⊥2 and P ‖ change the quantum number
±i → ∓i and the B-type transitions 1 → 2, 1 → 4, 2 → 3,
and 3 → 4 are allowed.

3. Low-symmetry case: ϕ �= 0 nor π
4

For arbitrary direction of the external magnetic field within
the XY plane, the polarization operators can be written as a
linear combination of the chiral and polar cases considered
above:

P = cos 2ϕ Pchiral + sin 2ϕ Ppolar. (23)

Here, only the �C⊥2
2 symmetry remains and the magnetic

point group is reduced to the D1(C1) = 2′ [see Table III and
Fig. 7(b)]. Since neither C

‖
2 nor σ ‖ is a symmetry element

of the full problem, the P may have finite matrix elements
between any of the (±i) states, and the selection rules we
established for the chiral (ϕ = 0) and the polar (ϕ = π/4)
case are not valid. However, as the spin state still respects
the quantum number set by the C

‖
2 , the associated selection

rules [Eq. (19)] hold for S‖, S⊥1, and S⊥2. Furthermore, since
the ME susceptibility is composed from a product of matrix
elements of S and P, it inherits the selection rules of the
matrix element of S. Putting all this together, the single-ion
system shows NDD in the Faraday geometry for the 1 →
2, 2 → 3, 1 → 4, and 3 → 4 transitions with χme ∝ cos 2ϕ

coming from the chiral part, and NDD in the Voigt geometry
according to the selection rules set by the polar case with
χme ∝ sin 2ϕ.

VII. LATTICE PROBLEM

This section describes the selection rules when the tetrahe-
dra form a lattice. Furthermore, we give the analytical form
of the transition energies by taking into account the exchange
coupling between the spins in the lowest order in perturbation
theory.

A. Magnetochiral dichroism and selection
rules in the lattice problem

In the material the oxygen tetrahedra are rotated alternat-
ingly, there is no direction of the external field which would
show purely either the chiral or the polar case discussed in
the section above. However, the situation is not hopeless: if
the external field is along the [100] direction (as in the actual
experiment), there is a {C‖

2 |[ 1
2 00]} screw axis (shown in Fig. 1

as 21) which is a symmetry operation. The screw axis per-
forms a π rotation about the [100] axis and a half-translation
along the same axis to move the A tetrahedra into B and vice
versa (see Fig. 1). The screw axis is a symmetry element
of the lattice spin Hamiltonian symmetry group, so we can
use its irreducible representations to label the eigenstates and
the operators. In addition, the {�C⊥2

2 |[000]} (the rotation by
π about the [001] axes through the center of a tetrahedron
followed by a time-reversal operation) is a symmetry element
irrespectively from the direction of the in-plane magnetic
field. In fact, this nonsymmorphic magnetic point group is
isomorphic to the D2(C2) = 22′2′ magnetic point group of a
single tetrahedron in the chiral case:

{
1,

{
C

‖
2

∣∣[ 1
2 00

]}
,
{
�C⊥2

2

∣∣[000]
}
,
{
�C⊥1

2

∣∣[0 1
2 0

]}

∼= {
1, C

‖
2 ,�C⊥2

2 ,�C⊥1
2

}
. (24)

Let us examine the selection rules based on what we
learned for a single ion. We express the magnetization
[Eq. (5)] and the polarization [Eq. (6)] in the magnetic-field-
fixed coordinate system and decompose into the irreducible
representations of the unitary part of the point group, which
consists of the identity and the {C‖

2 |[ 1
2 00]} screw axis. The

screw axis acts on the magnetization as
⎛
⎜⎝

M
‖
A

M⊥1
A

M⊥2
A

⎞
⎟⎠ →

⎛
⎜⎝

M
‖
B

−M⊥1
B

−M⊥2
B

⎞
⎟⎠, (25a)

⎛
⎜⎝

M
‖
B

M⊥1
B

M⊥2
B

⎞
⎟⎠ →

⎛
⎝

M
‖
A

−M⊥1
A

−M⊥2
A

⎞
⎠. (25b)

Similar considerations hold for the polarization operators.
Since the unitary part of the point group has two irreducible

representations, the M operator can be decomposed into even
(M0) and odd (Mπ ) parts as M = M0 + Mπ .

1. Selection rules for the even (0) components

Using the transformation rules given by Eq. (25), the even
part of M is

M
‖
0 = M

‖
A + M

‖
B , (26a)

M⊥
0 = 0, (26b)

and for the polarizations we get

P
‖
0 = sin 2κ

∑
j

(−1)jP ‖
j,polar − cos 2κ

∑
j

P
‖
j,chiral , (27a)

P ⊥
0 = 0, (27b)
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where ⊥= ⊥1,⊥2 and the index j runs over all the sites,
being an even integer on A and odd integer on the B sublattice;
P

‖
j,chiral is defined by Eq. (20a) and P

‖
j,polar by Eq. (21a), with

the corresponding spin operators at site j . The light does not
interact with the system in the Faraday geometry in the even
channel because P ⊥

0 = M⊥
0 = 0.

2. Selection rules for the odd (π ) components

When we antisymmetrize, we get the odd quantities Mπ

and Pπ , and following the steps we used to obtain the even
components above, the corresponding magnetization and po-
larization components are

M‖
π = 0, (28a)

M⊥
π = M⊥

A + M⊥
B (28b)

and

P ‖
π = 0, (29a)

P ⊥
π = sin 2κ

∑
j

(−1)jP ⊥
j,polar − cos 2κ

∑
j

P ⊥
j,chiral . (29b)

The nonvanishing perpendicular components {M⊥1
π , P ⊥2

π } and
{M⊥2

π , P ⊥1
π } lead to a finite ME susceptibility and NDD in the

Faraday geometry for the odd channel.
We now examine the effect of the time reversal. The action

of the {�C⊥2
2 |[000]} is given by

⎛
⎜⎝

M
‖
A

M⊥1
A

M⊥2
A

⎞
⎟⎠ →

⎛
⎜⎝

M
‖
A

M⊥1
A

−M⊥2
A

⎞
⎟⎠, (30a)

⎛
⎜⎝

P
‖
A

P ⊥1
A

P ⊥2
A

⎞
⎟⎠ →

⎛
⎜⎝

−P
‖
A

−P ⊥1
A

P ⊥2
A

⎞
⎟⎠, (30b)

and the same equations on the B sublattice. Just like in the
single-ion problem, the M⊥1

π and P ⊥2
π belong to the same

irreducible representation, as well as the M⊥2
π and P ⊥1

π . The
matrix elements are therefore real or imaginary, and the
product of the magnetization and polarization matrix elements
in the ME susceptibility is real.

Although the symmetry classification obtained above did
not consider the DM interaction, it describes the selection
rules obtained from the exact diagonalization. This is because
the DM interaction is compatible with the D2(C2) magnetic
point group considered above.

B. Perturbative effects of the exchange coupling

So far, we have neglected the interactions between the Co
spins. To assess how much the single-ion picture is altered,
we take into account the effect of exchange couplings pertur-
batively: starting from the single-ion limit, J = Jz = Dz = 0
in Eq. (2), we derive a tight-binding-like approximation for
the exchange part. We denote the onsite and exchange parts as
H0 and H′.

For the noninteracting case, the ground state of H0 is
∣∣�0

1

〉 =
∏
j

∣∣ψ (−i)
1 (j )

〉
, (31)

where j runs over both the A and B sublattice sites. We define
the local single-ion excitation at site l as

∣∣�0
2 (l)

〉 = ∣∣ψ (+i)
2 (l)

〉∏
j �=l

∣∣ψ (−i)
1 (j )

〉
. (32)

The local wave functions |ψ (±i)
α (l)〉 are given by Eq. (B2).

If the number of (all) sites is N , the noninteracting ground-
state energy is E0

1 = Nε1 and the excited states |�0
2 (l)〉 have

energies E0
2 = (N − 1)ε1 + ε2 and are N -fold degenerate.

In order to calculate the degeneracy lifting in the first
order of the degenerate perturbation expansion, we need to
diagonalize the perturbing matrix H′ on the subspace spanned
by |�0

2 (l)〉,
〈
�0

2 (l′)
∣∣H′∣∣�0

2 (l)
〉
, (33)

describing a local excited state which hops with equal ampli-
tudes in different directions. Generally, the hopping problem
is diagonalized in the momentum space for a translationally
symmetric problem. In our case, the translational symmetry
holds for the unit cell containing two lattice sites, with transla-
tion vectors t′

1 = (1, 1, 0) and t′
2 = (1,−1, 0) in the (x, y, z)

coordinate system (see Fig. 1). However, the {C‖
2 |[ 1

2 00]} screw
axis and the t′

1 and/or t′
2 translation generate an Abelian group

isomorphic to the group constructed from the t1 = (1, 0, 0)
and t2 = (0, 1, 0), the translations of the lattice of the Co
ions, if we neglect the alternating tetrahedra. The irreducible
representations are all one dimensional, with

{
C

‖
2

∣∣[ 1
2 00

]}|�k〉 = eik·t1 |�k〉, (34)

where k plays the role of the momentum. As a result, the k =
(0, 0) = 0 and k = (π, π ) = π states (which, in fact, are both
at the � point of the Brillouin zone of the lattice defined by
the proper translations t′

1 and t′
2) are realized by the following

linear combinations:

∣∣�0
2,0

〉 = 1√
N

⎛
⎝∑

j∈A

∣∣�0
2 (l)

〉 + C
‖
2

∑
j∈B

∣∣�0
2 (l)

〉
⎞
⎠,

∣∣�0
2,π

〉 = 1√
N

⎛
⎝∑

j∈A

∣∣�0
2 (l)

〉 − C
‖
2

∑
j∈B

∣∣�0
2 (l)

〉
⎞
⎠. (35)

Then, the energies of the excitations are

ω1→2
k = E

(1)
k,2 − E(1)

= 〈
�0

2,k

∣∣H∣∣�0
2,k

〉 − 〈
�0

1

∣∣H∣∣�0
1

〉
. (36)

The evaluation of the expectation values using the single-ion
wave functions (B2) is straightforward but tedious.

Keeping only the first-order terms of the perturbation and
doing series expansion we get, in the strong magnetic field
limit h � � � J, Jz, and Dz = 0,

ω1→2
0 = h + � − 9J − 3Jz, (37a)

ω1→2
π = h + � − 3J + 3Jz. (37b)
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The perturbative approach works well for the experimen-
tally studied paramagnetic case in the high-field limit. In
Sec. VII A 2 we have seen that only the π modes absorb in
Faraday geometry. In the exact diagonalization, we observed
the strongest absorption is for the ω1→2

π mode. This is not
surprising, as this is the single-magnon mode in the weak
anisotropy limit � � J, Jz. In the single-ion model without
anisotropy J, Jz,� = 0, it is just the paramagnetic mode
with ω1→2

π = h, as it can be inferred from Eq. (37b). More
interestingly, the energy of this mode is very close to the
single-ion excitation energy ω1→2 = ε2 − ε1 [see Eq. (B6)].
The difference is just 3(J − Jz) and vanishes for J = Jz.
This explains why the single-ion model works remarkably
well for large magnetic fields h � �, J, Jz, as seen from
the comparison of the minimal theory and the experiments in
Fig. 6.

In the strong single-ion anisotropy limit � � h, J, Jz, the
energies of these modes are

ω1→2
0 = 2h − 12J − Jz, (38a)

ω1→2
π = 2h − 4J + Jz. (38b)

The deviation of ω1→2
π in the single-ion model becomes no-

ticeable compared to the strong field limit given by Eq. (37b),
−4J + Jz vs −3J + 3Jz, but still not too large as compared
to the deviations of other modes, say Eq. (38a).

VIII. SUMMARY

The coupling of the magnetic moments and electric polar-
ization in a material is responsible for many interesting optical
phenomena which happen at low temperatures, usually in the
ordered phases. Here, we studied the optical response of a
multiferroic material in the paramagnetic phase, at tempera-
tures much higher than the ordering temperature.

We observed MChD for the excitations of the S = 3
2 spin

of the Co2+ ion in Sr2CoSi2O7 at temperatures up to 100 K,
although the magnetic ordering temperature is only TN = 7 K.
The main experimental findings, the temperature dependence
of the spin-mode frequencies, their intensities, and the sign of
the MChD for the different spin modes, are captured well by
the exact diagonalization of a four-spin cluster.

The numerical results are interpreted in a simple analytical
model of a single spin with an easy-plane anisotropy in an
external magnetic field, and its coupling to the THz radiation
via magnetization M and via polarization P, expressed by
spin-quadrupolar terms. Finite ME susceptibility arises if the
components of the M and P transform according to the same
irreducible representation of the symmetry group compatible
with both, the oxygen tetrahedron around the magnetic ion
and the applied magnetic field. Figure 6 shows that in high
fields and low temperatures (ε2 − ε1 > kBT ) the NDD spec-
trum is dominated by the magnetic dipolar transition from the
ground state |1〉 → |2〉. By increasing T , another magnetic
dipolar transition from the thermally excited state |2〉 → |3〉
appears in the NDD spectrum. Our exact diagonalization
calculation showed that the |2〉 → |3〉 peak is very close to
the |1〉 → |2〉 in energy and due to the line-broadening effects
only a single broad peak is observed. This coincides with the

experimental finding at high temperatures, as exemplified in
Figs. 2(a) and 2(b).

By considering the real material where the the oxygen
tetrahedra are tilted, we showed how the selection rules of the
single-ion model are modified when the exchange coupling
is turned on, in agreement with the results of the exact
diagonalization. Finally, we demonstrated that the exchange
correlations are important to accurately describe the mode
frequencies in the paramagnetic state.

In conclusion, we demonstrated that MChD can arise in
the paramagnetic phase of a noncentrosymmetric material.
Furthermore, we presented a detailed theoretical analysis of
spin excitations in Sr2CoSi2O7 which helps to identify the key
parameters responsible for high-temperature NDD both in the
chiral and toroidal cases.

ACKNOWLEDGMENTS

This research was supported by the Estonian Ministry
of Education and Research with institutional research fund-
ing IUT23-3, by the European Regional Development Fund
Project No. TK134, by the bilateral program of the Esto-
nian and Hungarian Academies of Sciences under the Con-
tract No. SNK-64/2013, by the Hungarian NKFIH Grants
No. K 124176 and No. ANN 122879, by the BME-
Nanonotechnology and Materials Science FIKP grant of
EMMI (BME FIKP-NAT), by the FWF Austrian Science
Fund No. I 2816-N27, and by the Deutsche Forschungsge-
meinschaft (DFG) via the Transregional Research Collabora-
tion TRR 80: From Electronic Correlations to Functionality
(Augsburg-Munich-Stuttgart) We acknowledge the support
of the HFML-RU/FOM, member of the European Magnetic
Field Laboratory (EMFL). V.K. gratefully acknowledges sup-
port from RIKEN’s FY 2016 Incentive Research Projects.

V.K. and Y. Tokunaga grew the crystals, D.G.F., D.Sz.,
V.K., J.V. and U.N. conducted THz spectroscopy experiments
in Tallinn and analyzed the results, D.G.F., D.Sz., B.B. and
D.L.K. conducted high magnetic field measurement in Ni-
jmegen, P.B. and K.P. developed the theory, T.R., S.B., P.B.,
and K.P. wrote the manuscript, D.Sz. and K.P. conceived the
project. Every author contributed to the discussion of the
results.

APPENDIX A: REALITY OF THE MATRIX ELEMENTS
IN A MAGNETIC POINT GROUP

We analyze the case of ϕ = 0, which is relevant for the
experimental situation and is conceptually the simplest. The
symmetry group of this configuration considering both
the spin Hamiltonian (14) and the oxygen tetrahedron around
the Co2+ ion, manifested by the spin-polarization coupling
(15), is

D2(C2) = {
1, C

‖
2 ,�C⊥1

2 ,�C⊥2
2

}
, (A1)

with operators in the field-fixed coordinate frame (Fig. 5).
Since the inversion, the mirror plane, and the rotoreflection
symmetry are absent, the case is termed as chiral. The D2(C2)
group is generated by the symmetry elements C

‖
2 and �C⊥2

2 ,
and its character table together with the symmetry classifi-
cation of spin and polarization components is summarized
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in Table III. We note that our conclusions are equally valid
for the ϕ = π/4 case, where �C⊥2

2 is also present in the
corresponding polar symmetry group C2v (C1h).

The operator C⊥2
2 is represented on the S = 3

2 spin space
by the matrix

Ĉ⊥2
2 = eiπŜ⊥2 =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠. (A2)

The time-reversal operation � is conveniently represented by
the antiunitary operation

�̂ = Ĉ⊥2
2 K = eiπŜ⊥2K =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠K, (A3)

where K is the complex conjugation, conjugating every ma-
trix or vector component on the right, but leaving the basis
functions intact [31]. This is analogous to the S = 1

2 case
where � is expressed with the help of the Pauli matrix σ̂ y as
�̂ = iσ̂ yK. Collecting all this together, the operator for �C⊥2

2
in the Hilbert space reads as

�̂Ĉ⊥2
2 = Ĉ⊥2

2 KĈ⊥2
2 = ei2πŜ⊥2K = −1̂K. (A4)

When we consider the effect of this symmetry on the matrix
elements of physical observables, we find first all representa-
tions of �C⊥2

2 are +1 or −1 as given in Table III for the chiral
and polar cases, respectively. Therefore, any linear operator
O, such as the spin or polarization components, is either even
or odd, i.e., it transforms as

�C⊥2
2 (O) = ±O, (A5)

or in matrix representation

(
�̂Ĉ⊥2

2

)
Ô

(
�̂Ĉ⊥2

2

)−1 = ±Ô. (A6)

Next, following Eq. (A4), let us evaluate the left-hand side of
the equation above:

(
�̂Ĉ⊥2

2

)
Ô

(
�̂Ĉ⊥2

2

)−1 = KÔK = Ô∗, (A7)

where the last equality follows from the fact that acting on an
arbitrary vector v, KÔKv = KÔv∗ = Ô∗v. Equations (A6)
and (A7) together mean that

Ô∗ = ±Ô. (A8)

This restricts the matrix elements of the operators even under
�C⊥2

2 to be real, and the matrix elements of the odd operators
to be pure imaginary.

In conclusion, the unitary symmetries determine the se-
lection rules, i.e., the nonvanishing matrix elements, whereas
antiunitary elements give constraints on the reality of them.
These rules and the matrix elements given in Appendix B
(and calculated by using the explicit wave functions) are in
full agreement.

APPENDIX B: SOLUTION OF THE
SINGLE-ION PROBLEM

1. Energies and wave functions

The energies in increasing order are

ε
(−i)
1 = −h

2
+ 5�

4
−

√
h2 + h� + �2, (B1a)

ε
(+i)
2 = h

2
+ 5�

4
−

√
h2 − h� + �2, (B1b)

ε
(−i)
3 = −h

2
+ 5�

4
+

√
h2 + h� + �2, (B1c)

ε
(+i)
4 = h

2
+ 5�

4
+

√
h2 − gh� + �2, (B1d)

and the corresponding unnormalized eigenstates are

∣∣ψ (−i)
1

〉 ∝ (2h + � + 2
√

h2 + h� + �2)|⇑〉 +
√

3�|↓〉,
(B2a)

∣∣ψ (+i)
2

〉 ∝ (2h − � + 2
√

h2 − h� + �2)|↑〉 +
√

3�|⇓〉,
(B2b)

∣∣ψ (−i)
3

〉 ∝ (2h + � + 2
√

h2 + h� + �2)|↓〉 −
√

3�|⇑〉,
(B2c)

∣∣ψ (+i)
4

〉 ∝ (2h − � + 2
√

h2 − h� + �2)|⇓〉 −
√

3�|↑〉.
(B2d)

The phases for the eigenvectors above are chosen in such a
way that we recover the basis {|⇑〉, |↑〉, |↓〉, |⇓〉} for h � �,
e.g., |ψ (−i)

1 〉 → |⇑〉, and so on.

2. Large anisotropy and small field: � � h

From the series expansion of the single-spin energies (B1)
in h/�, we get

ε1 = �

4
− h − 3h2

8�
+ · · · , (B3a)

ε2 = �

4
+ h − 3h2

8�
+ · · · , (B3b)

ε3 = 9�

4
+ 3h2

8�
+ · · · , (B3c)

ε4 = 9�

4
+ 3h2

8�
+ · · · . (B3d)

The spin and polarization operators in leading order of h/�

are in the matrix representation

Ŝ‖ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 −
√

3
2 0

0 −1 0 −
√

3
2

−
√

3
2 0 9h2

16�2 0

0 −
√

3
2 0 − 9h2

16�2

⎞
⎟⎟⎟⎟⎟⎠

, (B4a)
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Ŝ⊥1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 −
√

3
2

1 0
√

3
2 0

0
√

3
2 0 9h2

16�2

−
√

3
2 0 9h2

16�2 0

⎞
⎟⎟⎟⎟⎟⎠

, (B4b)

Ŝ⊥2 = i

⎛
⎜⎜⎜⎜⎜⎝

0 − 1
2 0

√
3h

4�

1
2 0 −

√
3h

4�
0

0
√

3h
4�

0 − 3
2

−
√

3h
4�

0 3
2 0

⎞
⎟⎟⎟⎟⎟⎠

, (B4c)

P̂
‖
chiral = −P̂ ⊥1

polar = i

⎛
⎜⎜⎜⎜⎝

0 0 −√
3 0

0 0 0 −√
3√

3 0 0 0

0
√

3 0 0

⎞
⎟⎟⎟⎟⎠

, (B5a)

P̂
‖
polar = P̂ ⊥1

chiral = i

⎛
⎜⎜⎜⎜⎝

0 − 3h
2�

0
√

3
3h
2�

0 −√
3 0

0
√

3 0 3h
2�

−√
3 0 − 3h

2�
0

⎞
⎟⎟⎟⎟⎠

, (B5b)

P̂ ⊥2
chiral =

⎛
⎜⎜⎜⎜⎝

0 3h
2�

0 −√
3

3h
2�

0 −√
3 0

0 −√
3 0 − 3h

2�

−√
3 0 − 3h

2�
0

⎞
⎟⎟⎟⎟⎠

, (B5c)

P̂ ⊥2
polar =

⎛
⎜⎜⎜⎜⎝

3h
2�

0 −√
3 0

0 − 3h
2�

0
√

3

−√
3 0 − 3h

2�
0

0
√

3 0 3h
2�

⎞
⎟⎟⎟⎟⎠

. (B5d)

3. Large field and small anisotropy: h � �

The energies are

ε1 = −3h

2
+ 3�

4
− 3�2

8h
+ · · · , (B6a)

ε2 = −h

2
+ 7�

4
− 3�2

8h
+ · · · , (B6b)

ε3 = h

2
+ 7�

4
+ 3�2

8h
+ · · · , (B6c)

ε4 = 3h

2
+ 3�

4
+ 3�2

8h
+ · · · . (B6d)

The spin and polarization operators in the leading order of
�/h are in the matrix representation

Ŝ‖ =

⎛
⎜⎜⎜⎜⎜⎝

3
2 0 −

√
3�

2h
0

0 1
2 0 −

√
3�

2h

−
√

3�
2h

0 − 1
2 0

0 −
√

3�
2h

0 − 3
2

⎞
⎟⎟⎟⎟⎟⎠

, (B7a)

Ŝ⊥1 =

⎛
⎜⎜⎜⎜⎜⎝

0
√

3
2 0 − 9�2

16h2√
3

2 0 1 0

0 1 0
√

3
2

− 9�2

16h2 0
√

3
2 0

⎞
⎟⎟⎟⎟⎟⎠

, (B7b)

Ŝ⊥2 = i

⎛
⎜⎜⎜⎜⎜⎝

0 −
√

3
2 0 3�2

16h2√
3

2 0 −1 0

0 1 0 −
√

3
2

− 3�2

16h2 0
√

3
2 0

⎞
⎟⎟⎟⎟⎟⎠

, (B7c)

P̂
‖
chiral = −P̂ ⊥1

polar = i

⎛
⎜⎜⎜⎜⎝

0 0 −√
3 0

0 0 0 −√
3√

3 0 0 0

0
√

3 0 0

⎞
⎟⎟⎟⎟⎠

, (B8a)

P̂
‖
polar = P̂ ⊥1

chiral = i

⎛
⎜⎜⎜⎜⎝

0 −√
3 0 3�

2h√
3 0 − 3�

2h
0

0 3�
2h

0
√

3

− 3�
2h

0 −√
3 0

⎞
⎟⎟⎟⎟⎠

, (B8b)

P̂ ⊥2
chiral =

⎛
⎜⎜⎜⎜⎝

0
√

3 0 − 3�
2h√

3 0 − 3�
2h

0

0 − 3�
2h

0 −√
3

− 3�
2h

0 −√
3 0

⎞
⎟⎟⎟⎟⎠

, (B8c)

P̂ ⊥2
polar =

⎛
⎜⎜⎜⎜⎜⎝

3
2 0 −

√
3

2 0

0 − 3
2 0 −

√
3

2

−
√

3
2 0 − 3

2 0

0 −
√

3
2 0 3

2

⎞
⎟⎟⎟⎟⎟⎠

. (B8d)
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