Statistics & Risk Modeling 30, 21-53 (2013) / DOI 10.1524/strm.2013.1071
© Oldenbourg Wissenschaftsverlag, Miinchen 2013

Properties of hierarchical Archimedean copulas

Ostap Okhrin, Yarema Okhrin*, Wolfgang Schmid

Received: June 8, 2010; Accepted: August 21, 2012

Summary: In this paper we analyse the properties of hierarchical Archimedean copulas. This
class is a generalisation of the Archimedean copulas and allows for general non-exchangeable
dependency structures. We show that the structure of the copula can be uniquely recovered from
all bivariate margins. We derive the distribution of the copula values, which is particularly useful
for tests and constructing confidence intervals. Furthermore, we analyse dependence orderings,
multivariate dependence measures, and extreme value copulas. We pay special attention to the
tail dependencies and derive several tail dependence indices for general hierarchical Archimedean
copulas.

1 Introduction

Copulas play an increasingly important role in econometrics. For an arbitrary multivariate
distribution, they allow of separating the marginal distributions and the dependency
model. As a result we obtain a convenient tool to analyse complex relationships between
variables. In particular, all common measures of dependence can be given in terms of
the copula function. Modeling using copulas offers wide flexibility in terms of the form
of dependence and is often encountered in applications from financial econometrics,
hydrology, medicine, etc.

Copulas were first introduced in the seminal paper of [22]. Here we restate Sklar’s
theorem.

Theorem 1.1 Let F be a k-dimensional distribution function with marginal distributions
F\...., Fy. Then there exist a copula C : [0,11¥ — [0, 1] which satisfies the equality

F(x1,...,x) = C{F1(x1),..., Fx (x)}, x1,...,xx €R. (1.1)
Ifall Fy,..., Fy are continuous, then C is unique; otherwise C is uniquely determined
on Ran Fy x --- x Ran Fy. Conversely, if C is a copula and F1,..., Fy are distribution

functions, then the function F defined as in (1.1) is a k-dimensional distribution function
with margins Fy, ..., F.
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22 Okhrin — Okhrin — Schmid

As follows from the theorem, the copula function captures the dependency between
variables, with the impact of the marginal distributions being eliminated. Sklar’s Theorem
allows expressing the copula function directly by

C(uy,...,ux) = F{Fl_l(ul),...,Fk_l(uk)}, Uy,...,ug €1[0,1],

where F;~ 1),....F, P 1(.) are the corresponding quantile functions.

If the cdf F belongs to the class of elliptical distributions, then this results in an
elliptical copula. Note, however, that this copula cannot be given explicitly, because
F and the inverse marginal distributions F; have only integral representations. One
of the alternatives is the important class of Archimedean copulas. The k-dimensional
Archimedean copula function C : [0, 1]¥ — [0, 1] is defined by

Cur,... ux) = p{p )+ +¢ L)), ur.....ux €0,1], (1.2)

where ¢ with ¢(0) = 1 and ¢ (co) = 0 is called the generator of the copula. [15] provide
necessary and sufficient conditions for ¢ to generate a feasible Archimedean copula.
The generator ¢ is required to be k-monotone, i.e., differentiable up to the order k — 2,
with (=1)!¢¥(x) > 0,i =0,...,k —2 for any x € [0,00) and with (—1)¥"2¢*—2)(x)
being nondecreasing and convex on [0, 00). We consider a stronger assumption that ¢ is
a completely monotone function, i.e., (—1)!¢® (x) > 0 for all i > 0. The class of feasible
generator functions is defined by (see [12, Theorems 1 and 2])

L=1{¢:[0;00) = [0,1]| (0) = 1, p(c0) = 0; (=1)'pP > 0;i = 1,...,00}.

A detailed review of the properties of Archimedean copulas can be found in [15]. Table 4.1
of [18] contains a list of common one-parameter generator functions. Throughout the
paper we consider only generator functions with a single parameter, however, most of the
theory can be easily extended to the case of several parameters.

From Bernstein’s Theorem ([2]) it follows that each ¢ € L is the Laplace transform
of some distribution function. This allows us to relate Archimedean copulas to Laplace
transforms (see [10]). Let M be the cdf of a positive random variable and ¢ denotes
its Laplace transform, i.e., ¢ (¢) = fooo e "W dM(w). For an arbitrary cdf F there exists
a unique cdf G such that

F(x)= /:0 G*(x)dM(x) = p{—1InG(x)}.

Now consider the class of k-variate cumulative distribution functions with margins Fj,
..., Fy.. Then assuming that G; = exp{—¢ ! (F})}, the following cdf also belong to that
class.

0o k k
/0 Gy (x1)---GF(xp)dM(a) = ¢ {_Z]nGi (xi)} =¢ |:Z¢1{Fi (Xi)}] :

i=1 i=1

This implies that the copula obtained from taking the cdf U[0; 1] for Fi,..., F, is given
by (1.2). The representation of the copula in terms of Laplace transforms is very useful
for simulation purposes (see [24], [14], [9], [13]).
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Hierarchical Archimedean copulas 23

We define the family of simple k-dimensional Archimedean copulas by

Fir = {Cr :[0:1]F = [0:1]: ey = @[~ (1) + ...+~ (u)],
$(-.0) € L,0 € O,uy,...,ux €[0:1]},

where © is the set of allowable parameters 6 of the generator ¢. The elements of ® could
be of any dimension, but in general they are scalars.

Note that the Archimedean copula is symmetric with respect to the permutation of
variables, i.e., the distribution is exchangeable. Furthermore, the multivariate dependency
structure depends on a single parameter of the generator function ¢. This is very restrictive
and we can use Laplace transforms to derive flexible extensions. First, note that G{ --- G
can be seen as a product copula of the cumulative distribution functions G¥Y,...,Gy.
Second, note that the whole model depends on a single cumulative distribution func-
tion M. Replacing the product copula G --- G} with an arbitrary multivariate copula
C*(GY,...,Gp) and replacing M () with some k-variate distribution we obtain a more
general type of dependency (see [11]). To avoid to much generality we concentrate on
the copulas which arise from the following construction. In three dimensions consider
the copula

C(ul,uz,u3) = / / Ga‘(ul)Ga‘(uz)dMl(al,az)xGaz(u3)dM2(a2)
(1.3)

where G1 = G = exp{—¢7 '}, G3 = exp{—¢, '}, and ¢1,¢> € L. M has the Laplace
transform ¢, while M5 (-; ) being the distribution with the inverse Laplace transform
[¢2 0 2] 1 (—a5 Hlog z). Integration results in

C(ur,uz,u3) =i ooldy, (1) + &5 (u2)} + 5 ' (u3)}.

Other orders of integration and combinations of G; functions lead to different dependen-

cies. For example, the fully nested (1.3) copula C(u1,...,ux) can be rewritten in terms of
the generator functions arising from the cumulative distribution functions My,..., My_;
as

C(ul,...,uk)

= ¢ilpr " ool By o Pr—1id ) (1) +
+ it 2+ bty ua)] 4 95 (1)} + 7 (up)]
= ¢p1{p; 0 Colur,... . uk—1) + ¢y (ug)} = Cr{Co(uy.... ug—1). ug}.

Unfortunately there is no simple and straightforward way to define this type of copula
in higher dimensions using Laplace transforms. For this reason we concentrate on the
formal set theoretic definition based on elements of graph theory.

Sufficient conditions on the generator functions which guarantee that C is a copula
are given in Theorem 4.4 of [14]. Let £* denote the class of functions with a completely
monotone first derivative

L* = {w:[0;00) = [0,00) |w(0) = 0, w(c0) =
)i 'oD >0:i=1,.
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24 Okhrin — Okhrin — Schmid

If¢; e Lfori =1,...,k—1and ¢, 1o ¢; 1 € L£* has a completely monotone derivative
fori =1,...,k—2, then C is a copula. As noted by Lemma 4.1 in [14], the fact that
¢ odiyr € L fori =1,... .k —2alsoimplies that p; ' oy € L* fori =1,....k—2.

Note that generators ¢; within a single copula can come either from a single generator
family or from different generator families. If the ¢;s belong to the same family, then
the complete monotonicity of ¢;” 1o ¢;+1 imposes some constraints on the parameters
01,...,0k—_1. Table 4.1 of [18] provides these constrains for different generators. For the
majority of copulas, the parameters should decrease from the lowest to the highest level,
to guarantee a feasible distribution function. However, if we consider generators from
different families within a single copula, the condition of complete monotonicity is not
always fulfilled and each particular case should be analysed separately.

Putting these ideas together, we define the class of hierarchical Archimedean copulas
(HAC) with r nodes, a generalisation of multivariate Archimedean copulas, by

Fir = {Crr : [0:11F > [0:1] :
Cir = C{Cyr (g, Uy )se s Chpptery 1 rm Uk 1415+ s Ukepy) )

m
C € Fir. Ciymyrrs € Figmtoyr- Vi = Looom. 3 ri =r =1},

i=1

where kg = 1, k,,, = k, and r; denotes the number of nodes in the i th subcopula and the
variables are reordered without loss of generality. The generators at different nodes satisfy
gbi_l opirp€ L fori =1,...,k—2.1fk; —k;j—; = 1 thenr; =0 and Cy; (u;) = u;. For
example, C = C1{Cz(u1,u2),us} € F3 2, where C1,Cy € F,,; are nodes, which are also
copulas.

The aim of this paper is to provide the distributional properties of HACs. First we
show that if the true distribution is based on an HAC then we can completely recover the
true structure of the HAC from all bivariate marginal distributions. This property is helpful
in applications, when we estimate the HAC from data. For the normal distribution, for
example, the form of the dependency is fixed and only the correlation coefficients must be
estimated. For HACs both the structure and the parameters of the generators function are
unknown. The established result implies that we can first estimate all bivariate copulas and
then recover the tree of the HAC. Alternatively, we are forced to enumerate all possible
trees, estimate the corresponding multivariate copulas, and apply goodness-of-fit tests
to determine the HAC with the best fit. This approach is computationally much more
demanding compared to the aggregation of bivariate copulas.

Furthermore, we derive the distribution of the values of an HAC. This generalises
the results of [7] to HACs. We take explicitly into account the hierarchical structure of
HAC s and provide recursive formulas for the cdf by different types of aggregation. The
results given in Section 3 can be used to develop confidence intervals and goodness-of-fit
tests. Section 4 summarises the multivariate dependence measures used in the multivariate
setup and determines which of them are most convenient for use with an HAC. Section
5 contains results on the dependence orderings of HAC-based distributions. It is shown
under which conditions on the generator functions is one HAC more concordant than
another one. Finally Section 5 discusses the properties of HACs from the perspective of

extreme value theory and provides a detailed analysis of tail dependence. In this section
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Hierarchical Archimedean copulas 25

we establish the form of the extreme value copula and provide explicit formulas for two
upper and lower tail dependence measures. All proofs are given in the Appendix.

2 Determining the structure

In contrast to other distributional models, in an HAC both the structure and the pa-
rameters of the copula must be specified or estimated. [19] consider empirical methods
for determining and estimating the structure. If the structure is fixed, we can apply the
maximum-likelihood approach to estimate the parameters. However, the choice of the
structure itself is not obvious. One possible approach is to enumerate all structures, es-
timate the parameters, and apply a goodness-of-fit test to determine the best one. This
method is, however, unrealistic in higher dimensions. The results established in this sec-
tion help to overcome this problem. In particular we show that if the true distribution is
based on an HAC, then we can completely recover the true distribution from all bivariate
margins. This implies that instead of estimating all multivariate structures it suffices to
estimate all bivariate copulas and use then to recover the full distribution. This makes the
estimation of an HAC particularly attractive in terms of computational effort. The next
proposition summarises the result.

Proposition 2.1 Let F be an arbitrary multivariate distribution function based on an
HAC. Then F can be uniquely recovered from the marginal distribution functions and all
bivariate copula functions.

Assuming that the marginal distributions are continuous, from Sklar’s Theorem we know
that the multivariate distribution function F can be split into margins and the copula
function. Therefore, to recover the distribution we need to recover the structure of the
HAC. The proof of the proposition has three parts. First, we show that any bivariate margin
is a copula with the generator function which is equal to one of the generators of the full
structure. Second, we show that for any bivariate copula with a generator function from
the full structure, there exists a pair of variables with the same joint bivariate distribution.
Third, we suggest an aggregation procedure and show that the recovered HAC is unique.

Let also €, denote the operator which returns a k-dimensional copula given generator
functions

o). oup) = fAF 7 )+ + 7 (ur))

Based on this notation, €,{N'(C)} C F,; is the set of all bivariate Archimedean copulas
used in the structure of C € Fp,.

Let A/(C) denote the set of generator functions used in the HAC C. Suppose now
a k-dimensional HAC C € Fg, is fixed. The next remark shows that for any pair of
variables there exists a bivariate copula with a generator from A (C) which is the copula
of the pair.

Remark 2.2 Vi,j =1,....,k, i 75 j, E”Cij € @z{N(C)} C ]:2’1 : (Ul',Uj) ~ Cij.
As an example we consider the following four dimensional case with

C(ui,...,us) = C1{Ca(uy,u2),Cs(u3,uq)}
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26 Okhrin — Okhrin — Schmid

with C2{N(C)} = {C1,C2,C3}. For an arbitrary pair of variables u; and u; from
Ui,...,us, there exists a copula C;; from {Cy,C;,Cs} such that (U;,U;) ~ C;;. For
example (Uy,Us) ~ C1{Cz2(u1,1),C3(uz,1)} = C1(u1,u3). This implies that the bivari-
ate margins use the same generators as the generators in the nodes of the HAC.

The second step of the proof shows the inverse relationship between the bivariate
margins and the set of all bivariate copulas with generator function from N(C). In
particular it shows that for any bivariate copula with a generator from A (C) there exists
a pair of variables with the same bivariate distribution.

Remark 2.3 VC; ; € CL{N(C)} CFpa, di*,j*=1,....k: (Upx,Ujx) ~Cjj.

Next we describe the algorithm which recovers the structure from the bivariate mar-
gins. Let C; denote a bivariate copula such that each variable belongs to at least one
bivariate margin given by Cj. This copula is the top-level copula. From Remark 2.2 if the
copula

C = Cl{Cz(ul,...,ukl),...,Cm(ukm71+1,...,uk)},

then (Ui,Uj) ~ Cl, where i € [il,iz] ﬁN,j € ([1,](]\[11,12]) ﬁN, (il,iz) S {(1,k1),
v kmo1 + 1,k)}

At the next step we drop all bivariate margins given by C; and identify the sets of
pairs of variables with the bivariate distributions given by C, to Cy,. For the subtrees
we proceed in the same way as for C;. To show that the structure that we recovered is
equal to the true one, one needs to explore all bivariate margins. A difference at one of
the nodes would imply a change in one or several bivariate margins. But the bivariate
marginal distributions coincide by construction.

For simplicity let us consider an example:

C(ui,...,ug) = C1[Ca(u1,uz), C3{us, Ca(ug,us), ug}l.
The bivariate marginal distributions are then given by

U1,U2) ~ Ca(-,),  (U2,U3) ~ C1(-,0), (U3, Us) ~ C3(-,),
(U1.U3) ~ C1(,),  (U2,Us) ~ C1(-,4), (U3, Us) ~ C3(-,),
(U1.Us) ~ C1(,),  (U2,Us) ~C1(-,7),  (Us,Us) ~ Cy(-,),
(U1,Us) ~ C1(-,),  (U2,Us) ~ C1(-,+),  (Us,Us) ~ C3(,),
(U1,Us) ~ C1(-,), (U3, Us) ~ C5(-,+),  (Us,Us) ~ C3(:,").

In line with Remarks 2.2 and 2.3, the set of bivariate margins is equal to
G2{'/\/'((?)} = {Cl ('7 ')’ CZ(" ')7 C3 ('7 ')’ C4('7 ')}

We observe that each variable belongs to at least one bivariate margin given by C;. This
implies that the distribution of u,...,ue has C; at the top level. Next we drop all margins
given by C;. We proceed similarly with the rest of the margins, in particular with C3

since it covers the largest set of variables u3,u4,us,u¢. This implies that Cs is at the top
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Hierarchical Archimedean copulas 27

level of the subcopula containing u3,u4,us,ue. Having information only for the copulas
C; and C3 we obtain

Ui,....,Us ~ Ci{u1,uz2,C3(u3, us,us,ue)}.

The remaining copula functions are C;, and C4 and they join 11,15 and u4, u5 respectively.
Summarising, we obtain

(Ur,....Us) ~ C1[Ca(u1,u2),C3{u3,Ca(us, us),ue})

This results in the correct structure. Similarly we can apply inverse procedure by joining
variables into pseudo-random variables, using low-level copulas. This problem is related
to the multidimensional scaling problem, where having all paired distances between the
cities, one has to recover the complete map, see [8].

To be more formal, for each bivariate copula C* € C,{N(C)}, let I(C) be the set
of indices i € {1,...,k} such that (U;,U;) ~ C* for at least one j € {1,...,k}\{i}. For
instance, for the example presented above we get

I(C) ={l.....6}: I(C2) ={1.2}; I(C3)={3.4,5,6}; I(Cs)=1{4.5}

The family of sets I(C*), as C * ranges over C,{N (C)}, is partially ordered by inclusion;
in the above example we get

1C).
ew= { 1(C9) > 1(C).

Then the structure of the hierarchical Archimedean copula is completely given by
the structure this partial ordering induces on the family of sets /(C*). For instance, the
copula of (U;,U;) is C* if and only if /(C*) is the minimal set containing {7, j }.

A similar procedure has been used in practice in the paper [19], where the determi-
nation of the structure from the given dataset was discussed. Below we briefly discuss in
an example, the procedure of determining the structure.

Example 2.4 Let us consider a four dimensional sample {x1;,...,X4; }T fori=1,....,n
and the estimated HAC with binary structure and generators from the same family in the
form .

C(ur,...,us) = C(C(C(u1,uz;01),u3;62),uq;03)

If 6, = 0,, the structure may be aggregated to

C(ui,...,us) = C(Clur,uz,u3;61),14;063).

3 Kendall function of an HAC

For testing purposes and the construction of confidence intervals we are interested in
the distributions of the empirical and the true copula. Let V = C{F1(X1),..., Fx(Xx)}
and let K(¢) denote the distribution function (K -distribution) of the random variable

V. [7] introduced a nonparametric estimator of K in the case k = 2. It is based on
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the concept of Kendall’s process. Suppose given an independent random sample x; =
(X115 s X1k) Ty ooy X = (Xn1, ..., Xnk) | of the vector X = (X1,..., Xg) . Let

n

1

Vin=1""79 ‘ Z 'I{Xj < Xi}
J=1j#i

and let K, denote the empirical distribution function of the V; . Here the inequalitya <b

means that all components of the vector a are less than or equal to those of the vector b.

Then the Kendall process is given by

an (1) = V/n{Kn(t) = K(1)}.

[1] examine the limiting behaviour of the empirical process «,(¢) for k > 2 and de-
rive explicit formulas for its density «(¢) and its distribution function K(¢) for general
multivariate copulas. The authors provide explicit results for product and multivariate ex-
changeable Archimedean copulas. The paper of [23] used Kendall’s process to determine
the copula for failure data. In this section we adopt and extend the results of [1] to find
the K-distribution of an HAC.

As the first step, we exploit the hierarchical structure of the HAC. We consider an HAC
of the form C1{u1,Cr(uz,...,ux)}.Let U; ~ U[0,1] and let V, = C,(Us,..., Ur) ~ K>.
In the next theorem we propose a recursive procedure for calculating the distribution
function of V7 = C1(Uy, V,) which is based on the knowledge of the distribution function
of V. This approach is particularly useful when applied to fully nested HACs.

Theorem 3.1 Let Uy ~ U[O, 1], Vo ~ K5 and let P(U1 <x,Vh < y) = Cl{x,Kz(y)}
with C1(a,b) = ¢ {¢~"(a) + ¢~ (b)} for a.b € [0,1]. Assume that ¢ : [0,00) — [0, 1] is
strictly decreasing with ¢(0) = 1 and ¢(00) = 0 and that ¢’ is strictly increasing and
continuous. Moreover, suppose that K, is continuous. Suppose that the random variable
Va takes values in [0,1]. Then the distribution function K of the random variable
Vi = C1 (U1, V2) is given fort € [0,1] by

)
Ki(t) = z—/o ¢’ (071 (1) + ¢~ o Kz o (u) —u)du, (3.1)

where “o” is composition of functions, i.e., fog(x) = f{g(x)}.
In Theorem 3.1, V5 is an arbitrary random variable on [0, 1] and not necessarily a copula.
In the special case that V; is uniformly distributed on [0, 1], (3.1) reduces to Theorem 4.3.4
of [18] or to the result of [7].

Next we consider a copula of the type V3 = C3(Vy, Vs) with V4 = C4(Uy,...,Uy)
and Vs = C5(Ug41, ..., Uy). Making use of the distribution functions of V4 and Vs,
a representation of the distribution function of V3 is given in the next theorem.

Theorem 3.2 Let Vi ~ K4 and Vs ~ Ks and P(Vy < x,Vs <y) = C3{K4(x),K5(y)}
with C3(a,b) = ¢ {¢~"(a) + ¢~ (b)} for a.b € [0,1]. Assume that ¢ : [0,00) — [0, 1] is
strictly decreasing with ¢(0) = 1 and ¢(00) = 0 and that ¢’ is strictly increasing and
continuous. Moreover, suppose that K4 and Ks are continuous and that ¢ ' o K40 ¢ and

¢~ o K5o0¢ are of bounded variation on [0,¢~1(t)]. Suppose that the random variables
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Hierarchical Archimedean copulas 29

Va4 and Vs take values in [0,1]. Then the distribution function K3 of the random variable
Vs = C3(Vy,Vs) is given by

K3(1) = Ka(t) (3.2)
)
- [o ¢'{¢ 7 [Ks{p )]+ ¢~ (Kalple™ (1) —u}])} dp™" [Kald (u)}]
= Ks(1) (3.3)
o=@
[T e Kat s+ 97 (Kslple™ (0 -]} d [Kstp )]
fort €[0,1].
If 71 [K4{¢ (x)}] has a continuous derivative, then (3.2) can be written as
K3(1) = Ka(t)

_ / 27O ¢/ {p~! [Ks{p )} + ¢! (Kalp{p ™' (1) —u}])}
A $'{(p 0 Kaod) ()}

Similarly, if ¢ ![K4{¢(x)}] has a continuous derivative, then (3.3) is equivalent to

Kil¢()}o' (u)du.

K3(t) = K5(1)

_ / SO PP [Kald )] + ¢ (Ks[ptg ™ (1) —uy]))
0 ${@ o Ksop) " ()

Theorem 3.2 reduces to Theorem 3.1 if V4 or V5 are uniformly distributed on [0, 1].
Moreover, by taking the derivative of the generator function, it can be shown that the
expression in (3.2) is symmetric with respect to K4 and K.

Note that using these two results we can determine the distribution function for an
arbitrary grouping of the variables at the top level. For example, consider the copula
Ci{ui,uz,Cz(us,...,ux)}. From the properties of Archimedean copulas, this copula is
equivalent to

Ks{p ()}’ (w)du.

Cilu1, Cr{uz, Ca(us, ..., ug)}l,

and thus Theorem 3.1 can be applied.
Theorems 3.1 and 3.2 provide recursive presentations for certain copula structures.
In the next step we give a corollary with a direct formula for the distribution function of
a copula of the form
Clur, Ce—1(uz, ..., ug)}.

It is an extension of the result of [1]. Here we assume that uj lies on the top level of the
copula. Other cases could be derived for every single form of the copula, but it is difficult
to present a general result.

Corollary 3.3 Consider an HAC of the form

Cuy,....ur) = Cr{uy, Ca(uz,... . ur)}

-1 —1
= ¢1|¢; (u1) + ¢ {CZ_(uZ_v"'vu_k)_};lh'
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Ks(x)
Ks(x)

Figure 3.1 K-distribution for fully nested 3-dimensional hierarchical Archimedean copula
with Gumbel generator functions.

Assume that ¢1 : [0,00) — [0, 1] is strictly decreasing and continuously differentiable
with ¢1(0) = 1. Then the distribution function K1 of C(Uy,...,Uy) is equal for t € [0,1]
to

t t
Kq(t) :/ k(x)dx :/ // hi{x,uz,...,ux}dus...dug dx,
0 0 (0,1)k—1

where

PP 1) — 7 o Coluz,... . up)}

i (1))
c[prior' () — 1" 0 Calua.... i) }hua. . g ]
HCo(uz,... ug) >t} for (ua,... ux) € [0,11F71

hk(t,uz,...,uk) =

X

X

Here, c(u1,...,ux) denotes the copula density of C.

The practical calculation of K using Theorem 3.3 seems to be quite difficult because
of multivariate integration. As an example we consider the Gumbel family.

Example 3.4 Here we consider the simplest three-dimensional fully nested Archimedean
copula with Gumbel generator functions and apply Theorem 3.1. Below, you find the
generator function, the inverse of the generator, and the first derivative.

(1) = exp(~1'/?),
$g' (1) = {~log()}’.
1
¢é(t) — ——exp(—tl/e)t_l+l/0.
Bereitg@stellt von | Universitaetsbibliothek Augsburg

Angemeldet
Heruntergeladen am | 22.02.19 10:19



Hierarchical Archimedean copulas 31

Following [7], the K-distribution for the simple 2-dimensional Archimedean copula
with generator ¢ is given by K(t) =t —¢~1(t)¢'{¢p~1(¢)}. Thus, the K»(t,6) for the
2-dimensional Gumbel copula is

Ko(1.6) =1 — %log(t).
In Figure 3.1, we represent the K3 distribution with respect to different parameters. In
the left panel we fix the highest level parameter t; = 0.5, and modify the parameter 7, =
{0.5,0.6,0.7,0.8,0.9,1.0}, where the case for 7, = 0.5 represents the simple Archimedean
copula. On the right panel the lower-level parameter is kept fixed 72 = 0.5 and we do the
changes in the higher-level parameter t; = {0.0,0.1,0.2,0.3,0.4,0.5}. This can be used
in the goodness-of-fit tests, discussed in [1].

4 Dependence orderings

Dependence orderings allow us to compare the strength of the dependence imposed by
different copula functions. In this section we give some necessary conditions under which
one HAC is more concordant than other. By definition ([11], p. 37), C’ is more concordant
than C if

C <. C' & C(x) < C'(x) and C (x) < C(x) Vx € [0; 1]F,

where C is the survival copula defined as C (u,v) = u +v—1+C(1 —u, 1 —v). This type
of ordering is also called positive quadrant ordering or upper orthant ordering (see [16]).
The case of two multivariate normal distributions gives us interesting insights into this
ordering. Let X ~ Ng(p.X) and X' ~ Ng(p', 2"). If u; = p}, 01; = of, fori =1,... .k,
and oy 501-’_1 forl1 <i <j <k,then X <. X'.

In the bivariate case the most concordant is the Fréchet upper bound and the most
discordant copula is the Fréchet lower bound. Another peculiarity of the bivariate case
is the relationship between the concordance ordering of the dependence measures. It
appears that if C; and C, are two copulas with Kendall’s taus t;, 7o, Spearman rhos
01, P2, tail dependence parameters A1, A, Blomqvist’s betas 81, B> respectively, then
Cy <¢ Cy implies that 71 < 12, p1 < p2, A1 < A2 ([11]) and B1 < B2 ([21]).

Several interesting results can be derived if C is an Archimedean copula. First note
that there is no sharp lower bound for the general class of copulas, however [15] construct
a sharp lower bound for the class of Archimedean copulas. Thus there is an Archimedean
copula C L such that CL <, C forany Archimedean copula C.. [11] considers in Theorems
4.8,4.9, and 4.10, three and four dimensional HACs with different fixed structures. The
theorems provide conditions on the top level generator functions which guarantee the
concordance of the HACs, assuming that the generators at the lower levels are the same.
In [11], the author also states that these theorems could be easily extended to any messy
structure of the copula. Next we provide a general result for an arbitrary tree. The proof
uses explicitly the hierarchical structure of the copula.

Theorem 4.1 Iftwo hierarchical Archimedean copulas

Cc!'= cdl, (U1,....ug) and C?*=C2 (uy,...,ug)
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differ by only the generator functions at level r as

¢1 ::(¢17“'v¢r—1’¢v¢r+17“'v¢@)
and

¢2 ::(¢1s~-,¢r—17¢*,¢r+1,n~7¢@)
with ¢~ ogp* € L*, then C! <. C2.

Note that the condition we impose on the generator function is a sufficient condition to
construct an HAC (see Theorem 4.4 of [14]).

5 Extreme value theory and tail dependency

5.1 Extreme value copula

The maximum domain of attraction of the multivariate extreme value distribution can be
characterised by the following theorem.

Theorem 5.1 ([S]) Let {X1i,..., Xki}i=1,...n be a sequence of random vectors with

distribution function F, marginal distributions Fy,..., Fy, and copula C. Let also M j(")
=maXi<j<p Xji, j = L,...,k be the componentwise maxima. Then

n—>o0

lim P {Ml(n)_alﬂ <x MrEln)_akn

=< <xx¢ = F*(x1,...,x¢),
bln bkn } (1 )

V(x1.....x;) € RF

withb;, >0, j =1,...,k, n > 1 ifand only if

1. forall j =1,...,k there exist some constants a;, and b;, and a non-degenerating
limit distribution F* such that
M~(n) —djn
Jim P {’T < x,-} = F/(xj). VxjeR;

2. there exists a copula C* such that

1/n 1/n
™).

C*(uy,....ux) = lim C"(u
n—00

In this case we say that C* is the extreme valued copula and C belongs to the maximum
domain of attraction of C* (written C € MDA(C™)). This implies that a multivariate
distribution with all margins being extreme value distributions and with an extreme value
copula is a multivariate extreme value distribution. [6] show that the only Archimedean
extreme value copula is the Gumbel copula. Thus, most bivariate Archimedean copulas
under minor conditions belong to the domain of attraction of the Gumbel copula. Using

Proposition 2.1 and the result of [6], we obtain the next theorem.
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Theorem 5.2 IfC € Fpy,, C* € Fury, Voog € N(C), 3]0, (1) /(0 (1)]/01 |, _, exists
and is equal to 1/60 and C € MDA(C*), then ry = ra, Vg € N(C*), ¢pg = exp{—x1/%}
and the structure of C is equal to one of the possible structures of C*.

Note that an HAC can be attracted by the independence copula. This case is also covered
by the theorem, if we recall that the independence copula is a special case of the Gumbel
copula.

5.2 Tail dependency

In this section we consider the tail dependence of an HAC. The tail behaviour characterises
the tendency of random variables to take extreme values simultaneously. [4] provide
a detailed analysis of this aspect for simple Archimedean copulas. Here we extend their
results to an HAC. For illustration purposes, consider the upper and lower tail indices of
a bivariate vector (X7, X5). In the case of a simple Archimedean copula with generator
¢, the tail indices are defined and given by (see Corollary 5.4.3 of [17])

Au = lim P{X,>F;'(w) | X1 > Fy ()}
u—>1-

. C(—u,1—u) 1—¢(2w)
= lim ————M~2=2—1 — =7
u—>1- u w—0t+ 1—¢(w)
A= lim P{Xp<Fy Yu) | Xy < F{ ' w))
. C(u,u) . 9Qw)
= lim ———~ = lim
u—>0t U w00 p(w)

The definitions are feasible if the corresponding limits exist. However, this is the case for
most parametric generator families. The formulas imply that the lower tail index of the
Archimedean copula is linked to the index of regular variation at infinity of the generator
functions. Recall that a function ¢ : (0,00) — (0,00) is said to be regularly varying at
infinity with index A € R (written RV (00)) if limy o0 ";((’ w)) = t*forallt > 0. A function
¢ : (0,00) — (0,00) is regularly varying at infinity with index —oo (written RV_q,(00))
if

(tw) oont<1
Lifr=1.
v p@) | o ifro1

If ¢ is absolutely continuous with density ¢’, then a sufficient condition for ¢ to
be RV, (co) with A € R is that limy e (Z’( W) — ). This condition is necessary as
well if ¢ is monotone (cf. [20, Proposition 2. 5]) Moreover, it holds for A > 0 that if

¢ € RV_;(c0), then ¢! € RV_1/;(0), i.e., that lim,_, o+ ¢,‘1<(f:)> t~1/4_ This is an
immediate consequence of Proposition 2.6 of [20]: the result is obtained if in part (v) of
the Proposition the function U is set equal to ¢~ 1.

To deal with the upper tail index of an HAC we extend the concept of regular variation
to a special case where the function does not converge to zero or infinity. In particular, the
o~ (—tw) _ Y

function ¢! is regularly varying at zero with tail index y if limw%0+ T(
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34 Okhrin — Okhrin — Schmid

For the direct function, the tail index equals 1/y, i.e., lim,,_, o+ 11:%((’;”)) =¢1/7. By the
convexity of the generator function, it follows that y € [1;00].

In this section we consider a straightforward extension of the tail dependency measures
to the multivariate setup also followed by [4]. In particular we consider the probability
that each component of the random vector exceeds or falls below some predetermined
threshold conditionally on the fact that a subset of the variables exceeded it.

lim_ P{X; < F7 ' uu) for i ¢SCK={1,....k}
u—0

| X; < F ' (uju) for j €S}

lim  P{X; > F'(1—uu) for i ¢SCK={1,....k}
u—0

| X; > F; ' (1—uju) for j €S}

The above limits can be established via the limits

1
Ar(up,...,up) = lim —C(uiu,...,ugu) and 5.1
u—0t+t U
1 —
Au(uy,...,ux) = lim —C(—uqu,...,1 —ugu)
u—0t U
= lim DI — ¢, (1 —uju, j €s1)). 5.2
Jim S D=y <) 62)

Suppose X1, ..., Xg ~ C satisfy

C(uy,...,ug)
= Co{Cr(u1,... . uk))s oo s Con (U 415 Uk )s Uiyt 15+ -+ Uk )
where Cy is an Archimedean copula with the generator ¢ € £ and C; fori = 1,...,m are

Archimedean or hierarchical Archimedean copulas. First we extend Theorem 3.1 of [4].
The case of an HAC is more complex due to the fact that the tail dependency indices of an
HAC depend on the interrelation of the generators at different levels. On the other hand,
for Archimedean copulas the tail dependency is completely determined by the index of
regular variation of the single generator.

Theorem 5.3  Assume that the limits lim, o+ u™ ' Ci(Uttk, | 41.... ulg,) =
ALk, +1,-.-Uk;) exist for all 0 < g, 41,...,ug;, <1, i =1,...,m. Suppose
that m +k —km > 2. If ¢ ! is regularly varying at infinity with index —\y € [—00,0],
thenforall0 <u; <1,i=1,...,m,

. Cuuq,...,uu
fim S0 U (5.3)
u—0+ u
min{ Az 1 (U1, Uy )s e AL Uk 10 Uy ) s Uy 15 -+ - Uk )
lf AOZOO,

_ - k —a0\ V%0
if 0<Ap<oo0,
0 if Ao=0o0rAr,; =0forsomeis.
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Note that 0 < Az ; (uk,_,+1....,Uk;) < 1 since for any copula, C(uy,...,ug) <
min{uyq,...,ug}.

The results of the theorem can be directly applied to determine more complex de-
pendency indices as in 5.1. This follows from the fact that any multivariate marginal
distribution of an HAC is also an HAC. This implies that C(u, u, ..., u; q u) is an HAC

N—

IS
and so Theorem 5.3 can be applied.

Note that for most of the popular generator functions, the index of tail variation is
oo (see [4]). Theorem 5.3 implies in this case that Co(uqu,...,uru) = o(u) and the
benchmark obtained this way is too weak for the assessment of the tail behaviour. To
overcome this problem, we rely on the de Haan theory.

In the following let

C]*(u) = Cj(ukj_1+1u,...,ukj M) |ukj,1+l=“'=ukj=1’
C*(u) = C(uru,... . ugu) |y ==ug=1.
AL g, 1seuk,) = CiQug 41ty ug u) /CF (u).

Note that 0 < )Lz,j (U, ug;_;+1,---,Uk;) < 1. Moreover, if
: -1
lim u Cj(uukj71+1,...,uukj) = AL’j(ukj71+1,...,ukj) >0
u—>0t

forallO<uk/._l+1,...,ukj,§ 1, then

Cj(uk,;—1+1%, ..., ug; u) /u

* _ .
AL (i, g1see o Ugy) = u1—1>r(1)]+ G
J
_ AL,j(uk_,-_l+1,...,ukj)
Arj(1,....1)

Theorem 5.4 Assume that the limits

lim Cj(uuk’._l+1,... ,uuki)

= A7 (ug, Ve U
u—0+ Cl*(u) L’l( kizi+1 k')

exist for all 0 <y, ,41.....uk; <1,i =1,....m. Let ¢5' € RV,(0) and let Y (v) =
—po(v)/ Py (v) be regularly varying at infinity with finite tail index «. Then k < 1 and for
allO0<u; <1,i=1,...,m,

C(uul,...,uuk)

m
lim = AT (g, oy, )| k)T
Jim, =5 ,Hl[ L0y 41
k —K
x l_[ u](m-i—k—km) .
j=km+1

Next we turn to the upper tail of the HAC. The next theorem establishes the results
necessary for analysing the limiting behaviour of the expression in 5.2.
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Theorem 5.5 Assume that the limits

hm u [l -C(1— Uk 415005 L —uug,)] = Ay (Ui, 41,5 Uk;)
u—>0+t

exist for all 0 < uy, ,11,....ux; <1, i =1,...,m. Suppose that m +k —k,, > 2. If
gbal (1 —w) is regularly varying at zero with index —yy € [—00,—1], then it holds for all
O<u;j<l1,i=1,...,mthat

1-C(1—uug,...,1—uuy)

lim (5.4)
u—>0t u
min{Ay, 1 (U1, U)o AU Wy 15+ s Uk ) s Uiy 15 -+ Ui E I Yo =00
= 1/vo
k .
(sl Gty g1 )V0 + XK u??) if 1=y <o0,

From this it follows that under the hypotheses of Theorem 5.4,

s e (DI = (1—uju. j € 51)}

C(—uuy,...,1—uuy) _

lim lim
u—0t u u—0+ u
min{Ay, 1 (U1, Uk AU Uk 415+ s Uk Ul 415 - Uk} 1f Yo = 00
m /yo .
e (CDFTH (S i (3 € SO0 + Tjeg g 1}®) T if 1<y0 <ox,
0 it yo=1,

where s1 is an arbitrary nonempty subset of K and s{ C s{ contains the indices of the
variables joined by copulas at lower levels. Since yg € [1, +00], this implies that any
values of Ay,; € [0,1] do not destroy the behaviour of the last limit. This implies that
Theorems 4.3 and 4.6 of [4] can be directly extended to the case of HACs by replacing
the u; s with the corresponding upper limits Ay, ;.

A Appendix

Proof of Remark 2.2: We consider here two cases. First let u; and u; be on different
subnodes of the first level of the copula

Cur,.... Ui, ... . Uj, ..., UE)
= Cirdeo s Chpkpr_ gy Mg 415 Uiy Uy, )
-’Ckl//fke//_l,rl//(uke//_l+l’-”,u_iw”,uke//)v"‘}’
where r is the total number of nodes, Cx, », € Fk,,r, ""’Ckm*kmflsrkm € Fipn,rm are the

subcopulas on the first level and the root C, € F,,1. From the properties of multivariate
distributions, the bivariate margin of u; and u; is given by

(ui,uj) ~ C(,. .. ui,...,uj,..., 1)
= Ckr{""Ckl/fkl/ lsrl/(l ui,-u,l)’

//—k //( u 1) }
BereltgesteII{ von | {Jnlversnaetsblbllothek Augsburg
Angemeldet
Heruntergeladen am | 22.02.19 10:19



Hierarchical Archimedean copulas 37

Since C(1,...,1,u,1,...,1) =u and C(1,...,1) = 1, it follows that

Wi uj) ~ C(,.. o ui,euj, 1) =Crr (1, ug, o ug, .0 1)
=¢lp "' (D+...+¢ W) +...+¢ ) +...+ o7 (1)}
= ¢loy ' (i) + &7 ()} = Cu2(ui uy),
where Ciy € Fa,1 and Ciy € C{N(C)} by construction. Thus we showed that if two
variables lie in different subcopulas of the top level, their bivariate distribution is given

by the top level copula. In the second case, when u; and u; are on different subnodes of
the second level in the copula, then

CUr,... Ui, ..., Uj, ..., ug)
= Ckr{"'?Cke/*ke/_l,rl/(uke/_l+la""uia"'auja"'aukl/)v
”-’Ckl//fkl//_l,re// (ukl//_1+1’-”a”-aukl//)""}'

Proceeding with the copula Cg,,—k,,_, r,, With generator ¢ in the same way as with
the original copula C in the first part of the remark, we obtain (u;,u;) ~ ¢2{d5 " (u;) +
¢, 1(u;)}. Continuing recursively we complete the proof. O

Proof of Remark 2.3: The proof is similar to the proof of Remark 2.2. Let us fix a bivariate
copula C; € €2{N(C)}. We may assume, without loss of generality, that the generator
¢ = N(C;) is used to construct the subcopula at the second level of the original copula
C. After reordering the variables, if necessary, we have then

Clup,....ux) = Cr{eo o, Cl(Ur, .o Um*),...}
= Cirlspr{p ™ 0C1(),....07 0 C ()}, ].
Now we proceed as in Remark 2.2 by taking two variables from different subcopulas of
the second level of C'. We may assume, without loss of generality, that we may take one

variable u from C and another v from C p- This shows that there exists a pair of random
variables (u,v) with joint bivariate distribution function CJ (1, v). (i

Proof of Theorem 3.1: Fix ¢ € [0, 1].
a) Then {V; <t} A{U; <t} ={U; <t},since U; <t is a subset of V; <¢. Moreover,
N =t} AU >t} ={V2 = g (U} A{UL > 1}

with g;(x) = ¢(¢p~1(t) — ¢~ (x)) for x € [t,1]. The function g;(.) : [0,1] = [0,1]
with g;(x) = 1 for x < ¢ is strictly decreasing with g;(¢) = 1.
Consequently,

PV <t)y = PV <tAU; <t)+ P(V1 <tAU; >1) (A.1)
=t+P{Va<g/(U) AUy > t}, (A.2)
since P(U; <t) =t.
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b) In order to calculate the second summand of the right hand side of (A.2) we consider
a partitiont =ty <t; <--- <ty = 1 of the interval [¢, 1]. Then

N
P{Vo<gi(U) AU >t} = Y P{Va < ge(Un) Atimy < Uy <1i}
i=1
N
Y P(Va<gilti-)) Atin <Up <1)

i=1

N
Y P(Va<gti) Atioi <Ui <1)

i=1

IA

%

since g¢(;) < g¢(U1) < g (ti—1) if ti-1 < Uy < 1;.
c¢) First we consider the upper bound.

P{Va < gi(tic1) Ati—1 <Uy < 1;}
= PlUr =ti AV2 < gi(tic)} — P{UL S tica A V2 < ge (1))}
Cilti, Ka{ge (ti—1)}] = Cilti—1, Ka{g: (ti—1)}]
= (¢ () + ¢ [Kadg: (im1)}]) — ¢ (o7 (tim1) + 7 [Ko{g: (ti-1)}]).
Now we determine the partition by choosing ty—; = ¢(iw/N) fori =0,..., N with
w = ¢~ 1(¢). This choice fulfills the requirement that t = ¢y <t; <--- <ty < 1.

Moreover, g;(t;) = tny—;. Putting ¢ (x) = ¢~ [K2{¢(x)}] — x, there exists a £y; such
that

P{Vy <g:i(tici) Ati— < Uy <t}

o) oo (T
— g o {ore(re) o

with 0 < éxn; <w/N.Now let § > 0. Since ¢ is strictly decreasing,

Il
<
e
S
|
|
+
o
|
g

w i—1
PVa<g(tic)Nticg <Up <ti} < —— ¢ qw—86+¢( ——w
N N
for N > Njy. Since

N

jim - o b= e () == " gt s oo,

N —o00 4
i=1
it follows that

PV <tnAUp >t) < liminf[—[w¢’{w—8+§(x)}dxi|
0

§—0

— [ #tw s
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Hierarchical Archimedean copulas 39

d) Next we consider the lower bound. We obtain by analogy to c) and with £y ; as above
that

P{Voa<giti)ntici<Up <t} = —% ¢’ {w +Z(;V¥w) —%‘N,i}

. W o' lwe i
- w —w ;.

- N N
Consequently,

w
P(Vlfl‘/\U1>[)Z—/ ¢’{w+§(x)}dx.
0

Because the upper and the lower bound are the same, this completes the proof. (]

Proof of Theorem 3.2: The proof is based on a similar argument as the proof of Theo-
rem 3.1. L.e., we have

P(V3<1)=K4(t)+ P(V3<tAVi>1)

and

IA

N
Y PVs =gt Aty < Va <t}

PVz<tAVa>1)y H!

D P{Vs < gi(t) Aty < Va <13}

i=1

v

a) Moreover,
P{Vs < gi(ti-1) Atic1 < Vi <1}
= P{Va<t; ANVs <gi(tim1)} = P{Va<ti 1 AVs < g/(tiz1)}
= C3[Ka(ti), K5{g: (ti—1)}] — C3[Ka(ti-1), K5{g: (ti-1)}]
= ¢(¢p™{Ka(t)} + ¢ [Ks{g: (ti-1)}])
— (¢~ H{Kalti—1)} + 7 [Ks{g (ti-1)}])

e
o (=) e ()]
with $a(x) = ¢! [Ka{p(x)}] and {s(x) = ¢ [K5{¢(x)}]. Then
P{Vs < gi(ti—1) ANtic1 < Va <t}

o) )

x¢' {Cs (%w) + 4 (w —§N,iw)
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with (i —1)/N < &n,; <i/N. Since ¢s{w(i —1)/N} < &s(wén;), it follows that

N
ZP{VS <gtic)) Nt < Va4 <t}

i=1

IA
H/—M
o
>
N
S
|
2|~
s
N—
|
VS
S
N
S
|
z‘l
S
N—
—

x ¢ {es(wén) + a(w—wén,)|
1
- [0 ¢ A5 () + La(w — 1)} da(w — 1w)
- /0 $'125(0) + La(w —u)) dLau),

b) For the lower bound we get

P{Vs <g:ti)Ati-1 < V4 <14}

ol )
= e (w0 ) = (w=w) b o () s o)

with (i —1)/N < §5; <i/N.Since {5(w§"y) < {5(wi/N) we obtain that

N
ZP{VS <g(tic) Nt < Vi <t}

i=1

A R ]
x ¢’ {Ls(wER ) + Calw —wEx )}

and thus the result follows as in a). O

Proof of Corollary 3.3: we follow the idea of the proof of Theorem 2 of [1]. The copula
is given by

C(uy,...,ux) = ¢1{¢];1(uk)+¢flOCkfl(uz,...,uk)}
= P{F1(X1) Zup,.... Fp (Xg) < ug}.

Since ¢7 (1) = 0, we have C(1,uz,...,ux) = Ca(us,...,ux). Differentiating C with
respect to 1, we get

AC(ur,... . up) @iy (ur) + ¢y {Ca(uz,... . up)}] 20
ou B T (u '
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Hierarchical Archimedean copulas

Next consider the conditional copula

P{Fi(X1) ui|F2(X2) Sua,..., Fr(Xg) < ug),

which we denote by C(uq|ua, ..., ux) = % We

have

P{C(uy,...,ux) <t} = P{C(uy|uz,...,ug) -Ca(uz,...,ux) <t}

P {C(u 1 |u2 5
Let us consider the following function

Q(t) =inf{u; €[0,1] : C(uq|

Uo,..., UE)

Tt
B UR) S /¢ .
k Cz(uz,...,uk)

>t}

for ¢ € [0, 1]. It follows, as in the proof of Theorem 2 of [1], that

0

Ki(t) =/ —
O 1k 1:Co (un, ..y ) >t Ol

.....

t
Q {Cz(uz,...

,uk)}

t
X Cl [Q{m},uz,...,uk}duz...duk.

.....

t
¢ [Q{m},uz,...,uk} =t

Differentiation with respect to ¢ leads to

aC(uq,...,ug)

] =
31/[1

u={ 5w )

0

0

8u1

t
3tQ{C2(u2,-~,”k)}

_ |:8C(u1,...,uk)

_ [¢;{¢llocz(uz,...,uk>+¢1l(ul)}

Py (u1)}
P b (1)}

t

.....

#, [¢>1—1 0Q {m} +¢1! oC2(u2,...,uk)]

¢i{gr ' (1)}

¢io¢f10C[Q{Wi

_1(u .
K Blerelltges e

7”23 e 7uk
n | Universita

1tsbib|iothek Augsburg
Angemeldet

Heruntergeladen am | 22.02.19 10:19

41


mailto:@C.u1
mailto:"@C.u1

42 Okhrin — Okhrin — Schmid

Using the following algebraic and probabilistic transformations

t
Quz ,,,,, Uk {m}

t
— inf 0,1]: C yeees Z S
in {ule[ 1:Cluyfuz, ... up) C(l,uz,..-,uk)}

= inf{u; €[0,1]: P{F1(X1) <uy| F2(X2) <uz;...; F(Xg) <ug)
X P{F>(X2) <uz;...; Fx(Xi) <ugp} >t}

= inf{uy € [0,1]: P{F1(X1) <u1;...; Fx(Xk) Sug} >t}

= inf{u; €[0,1]: C(uy,...,ux) >t}

= inf{u; €[0.1]: p1{g7 ' (1) +¢7 " 0 Ca(ua,... . ug)} >t}

= inf{u; €[0,1]:u1 > ¢1{p; (1) — ¢y ' 0 Caua.....ux)}}

$1{dr () —¢1 ' 0 Calua, ... up))

we get the final form of /,:
_ AT O =7 0 Coliuz, . up)
P{o~1 (1)}
xc[q&l(qbfl(t)—qﬁflOCz(uz,...,uk)),uz,...,uk]
xH{Ca(uz.... . uy) >t} for (uy,...,ux) €0, 17%.

hk(t,uz,...,uk)

Further simplification of the previous formula is unfortunately too difficult because of the
lack of knowledge of a recursive formula for the HAC density, which is difficult to derive
in a general form. O

Proof of Theorem 4.1: Here we prove one special case, from which by analogical
thinking follows the statement of the Theorem4.1. Let us consider the case of two
feasible hierarchical Archimedean copulas C! and C? which differ only by the generator
functions on the top level, and which satisfy the condition ¢; ! o € L*, then C! <. C2.
Let X ~ C! and X’ ~ C2. To show the concordance property, it is necessary to prove
that
P{X,‘ <Xxj,i = 1,...,k} < P{Xi/ <Xxj,i = 1,...,k} (A.3)
and
P{X,‘ > Xj,l = 1,...,k} < P{Xi/ > Xj,l = 1,...,k} (A4)
for all x € (0, 1)k. The first inequality is the same as saying C!(x) < C2(x) for all
x € (0,1)*, while the second one is equivalent to c' (x) < c’ (x) for all x € (0, 1), where
C is the survival copula of C.

As mentioned in Chapter 1, Archimedean copulas, from which C! and C? are com-
posed, arise from the Laplace transform

o k
p7 )+ g b = [ [] 65 M@
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Hierarchical Archimedean copulas 43

where the generator function ¢ (s) = f0°° e dMyg(w), s > 0 is the Laplace transform
of some univariate cumulative distribution function My (-) of a positive random variable
and G4—1(u) = exp{—¢~" (u)}. By hypothesis C' and C? are proper HACs and differ
only by a generator function on the highest level such as ¢f1 oy € L*. If we denote the
second level copulas by z;, i = 1,...,m, then

Cl(u) = CHCryry WUt stie)) s Chipmteyy g v Uk 415+ s Uk =k )}
$1[67 {Chyr (s g )} -

+ &7 Chi et Uk 15 Uy =)

or{pr 1)+ + 97 (Zm))

C2() = CHCryry WUt Uk s Chip—teyy gt Uk 415+ s Uk =k )}
$2[h3 {Chyry (a1 g )} -
+ 05 N Chim—tem—1 i Uy 415+ Uy =1)}]

= oy ' (z1) + -+ b5 (Zm)}

Let v = ¢! o¢, € L*. Then from Theorem A.2 of [11], xq(u) = exp{—av(u)} is the
Laplace transform of some M, (-; ). This means that

oo

Kat) = explagdi™ o pa(u)) = /0 M, (E.00).

Similarly to the case of Archimedean copulas, C 1 and C? can be then transformed as
follows

C' = ¢i{gy ')+ +¢7 ' Cm)} =d1{vods ' (z1) ++vods  (zm)}

:/(; efazlr'n:w{%_l(z,')}dM(m(a):/(; 1_[[87°’V{¢2_1(Z")}]dM¢1((X)
i=1
[T [xa(d5 G} dMg, (@)

i=1

_ [)mﬁ[[)mey¢2l(2i)dM”(y’a):| dMy, (@)

i=1

- /0°° [ Uooo Gy (i) My (V’“)} dMg, (o)
i=1

1 WS
= ¢ {—&logi]:[l/o Gqﬁz_l(zi)dMu(%a)}
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2= oly )+ 05 Em) = drovidy  (z) o+ 05 (Zm))
B /0 expl—av{gy ' (zi) + -+ @5 (zm) d My, (@)

- /0 Yo i7" ) o b7 () s A Mg, ()

o0 o0 m _
:/ / eV Xi=193 (Zi)de(%a)de(a)

oo poo M 1

= [T T e amr.arams, @
0 JO
oo poo M

= [ [ TI6n amparams @
o Jo ;o 7

1 oo
$ |:—&10g/0 HG(Z; (Zi)de(%O‘)]'

i=1

Note that ¢;{—alog(-)} is decreasing since it is the composition of continuous monotone
decreasing functions. Since the concordance order is invariant under monotone transfor-
mations, to prove (A.3) it suffices to show that

/ Gyor (2 dM, (7,0) </ ]_[GV_ (zi)dM, (y, ).
i=1

i=1

For simplicity and to emphasise the argument with respect to which we integrate, we

write
I / & () dMy () < / [T dMu (.o,

i=1 i=1
where g;(y) = ;71 (z;) are bounded and decreasing functions in y > 0 because of

the properties of exp{-}, while Gy,1 (zi) = exp{—y¢5 ' (zi)}. To prove the inequalities

we can use the same approach as in [11]: each bounded decreasing function can be
represented as the limit of an infinite sum of piecewise constant functions Y _; ¢; I{0,5,]
for positive constants ¢; and bj. As both sides of the inequality are linear in each
gi(y), it suffices to prove the inequality for g;(y) = Ijo,y;1(y), j = 1,....k. Suppose
Bi,...,By ~ M, (-,a) are iid for some fixed «. By the Fréchet upper bound inequality,
P{Bj <yj, j=1,...,n} < P{By <min; y;} = min; P{B; < y;}, which proves (A.3).
This means that C ! is less positively lower orphant dependent than C 2. To show the whole
concordance order, we have to prove that C! is less positively upper orphant dependent
than C2. I.e., we need to prove the same inequality, but for the survival functions.
The usual representation of the survival copula is given by

C) =14 (~DFICs(u;: j €5).
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Hierarchical Archimedean copulas 45

In terms of the Laplace transforms the survival copula differs from the copula by taking
Hy—1(u) = 1=Gy1(u) = 1 —exp{—¢~'(u)} instead of the function Gy—1(u). Let
us denote Hy-1 (1) = 1—G;;,1 (u). Moreover, all z;, i = 1,...,m are replaced by
Z;, i = 1,...,m which correspond to the respective components of the survival copula.
For example if

1 = v HCa(ur,uz,u3)}
= ¥ ' [C31{Ca1(u1.u2), u3}]
=y loplp T o ELET (ur) +E  (u2)} + ¢ (u3)]

o o0
Ghae) = [ [ 6L 6L ) dMyrce v HIGS () dMy g (B,
and then the corresponding z is

Hy1 ,(Z1) = 1- G;,l (z1)

[ [ u-6r -6z

dMy106 (7. {1 = G, (u3)}d My 104 (B, )

— [ [ty e )
0 0
dquflog(%,B)qul,ﬁ(“3)}dM1/rlo¢(,3J7)~

Using similar transformation as in the case of positive lower orphant concordances, we
have to prove the following inequality.

I [ LG AM, () < / Hyr GhdM, () (AS)
i=1 i=1
or
m
1‘[/ hi () My (,) </ [T )M, (),
i=1 i=1
where h; (y) = ,Zi)=1— ,(Zi) are bounded increasing functions of y > 0.

Similarly to the case presented above any increasing and bounded function can be approx-
imated by a series Z ¢jIp; 00)- Itis sufficient to consider only one component of the sum.
Similarly, taking Bl, eoes By ~ M, (-, ) for some fixed «, the Fréchet upper bound in-
equality implies that P{B; > y;, j =1,...,m} < P{B; > max; yj} = min; P{B; > y;}.
This proves (A.4) and completes the proof of C! < C?2. O

Proof of Theorem 5.2: Consider X | = (X11,.... X1x) "o, X = (Xn1s..., Xnk) | as
arandom sample from C (u1,...,ux ), and then the M1 = max{X;1},..., My = max{X;},
follow the distribution

P{M; <x1,..., Mg <xi} = Cp(x1,...,Xk),
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46 Okhrin — Okhrin — Schmid

where the copulae C, have the same structure as C but are based on the generator
functions ¢g, = [¢¢(¢)]", £ = 1,...,r, and inverse generator functions qbe_nl = ¢e_1 (t'm,
£ =1,...,r. For example, in a three dimensional example with the copula function

C(ui,uz,uz) = C1{Ca(ur,uz),us}
P1lpr " o dalds M (ur) + 5 (u2)} + ¢y (3],

the extreme value copula is given by
P{M; < xq, My <x2, M3 < x3}
= (¢1161 " 0 galds (x1) + 5" (x2)} + ¢y ' (x)])"
= Gia{din (192467 (1) + 65" ()N") + 91, (<)}
= Gunldi 0 banida (57) + 2, (¥5)} + 1, (¥5)] = Cu (31,32, x3).

For the next step, we have to prove the existence of the limit of Cy,(xy,...,x;) when n
tends to infinity. By mimicking [6], this limit exists if and only if there exists

gy (1)/ (¢ D' ()]
ot

, where l =1,...,k.

t=1

Taking into account that the extreme-value distribution belong to its own domain of
attraction, we have

Cu(x1,...,xx) = C(x1,...,x5), for0 < x1,...,x¢ < 1. (A.6)
Let us fix some numbers 1 < j; < j» <k. Then for x; =1, j € {1,....k}\{j1, )2},
the copula C(1,...,1,x;,,1,...,1,x;,,1,...,1) is a simple bivariate Archimedean copula
with some generator function ¢, where {12 € {1,...,k}

C(1,....1,xj,,1,...,1,xj,,1,...,1) = C1(x};,%},)
= ¢y ABe, () + By (x7)}
such that
Co(1,....1,x,,1,...,1,xj,,1,...,1)
=C(,....1,x;,1,....1,x5,,1,..,1).

With [6] we get that ¢; is the Gumbel generator. Similarly by taking all other possible
pairs 1 < j; < ja <k, it can be proved that the ¢¢, £ € {1,...,k} are Gumbel generators.
As given in the statement of the theorem that the extreme-value copula also belongs to
the family of HAC, then using Proposition 1 allows us to finish the proof, because all the

bivariate margins are uniquely determined by the previous steps of the proof. O
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Hierarchical Archimedean copulas 47

Proof of Theorem 5.3:

a) Let 0 <Ag <ooand 0 <Az ; <ooforalli =1,...,m. Using the form of the HAC
we obtain

ALo = 11m u- gbo[ZgbO C](uukj AT uuk) Z o (u,u)]

j=1 J=km+1
m k
) _ _ Ci(uug, _,41,....Uug;) B
D e R )|
Jj=1 J=km+1

We get that

ALo = hm u- ¢0[Z¢0 (Ar,ju)+ Z b0 (u]u)]

j=1 J=km+1

= hm u- ¢0[¢0 (M)Z% (AL,]M)/% (u)

j=1

k
65100 Y b5 /g )]

J=km+1

= 11m u- ¢0[¢0 (m(X:AL Z )]

J=km+1
= lim ¢°[U<Z;”‘M_AO+Z 1 )]
v—>00 $o(v)

(ZA—AO Z )71/’10’

j=1 J=km+1

where the last two equalities follow from the uniform convergence theorem.

b) LetAg =0,0<Ap; <1forieJ C{l,...,m},and A ; =0fori ¢ J.Since ¢ is non-
increasing, for a > 0 the function ¢ [d)o’ Y(au) + b] is nondecreasinginu € (0, 1). Fur-

thermore, forall 0 < & < 1 there exists au™ such that max; ¢ y C; (Wutg; _, 41,...,uug,;)/
u<egforall 0 <u <u*. Nowlet K =max{e,Ar,;.i € J,ug,,+1,...,ux}. Because
K < 1and ¢y (Ku) > ¢g ' (u), we get that

ho = lim w95 (Kuom +k—kn) |
u—0t
= lim o[ v0m +k —kn) | /o(v) =

since k —k;,,, +m > 2.
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c) Let A\p =ocoand 0 < Ay ; < 1. Then

max C; (Uug; _ 41,..., Ul ) /u <Ap;—¢
1

forallu < u* withmin; (A7 ; —€) > 0.Letm = min{ug,, +1,.... Uk, AL, 1 —& ..., ALm—
¢}. Then it follows that for u sufficiently small,

C(uuy,...,uug) - ¢o[¢0—1(um)(m —l—k—km)]

u u

> Am,

where 0 < A < 1 since ¢ € RVj(00). Moreover, we get with M = min{ug,,+1....,
U, A1+ & ..., ALm + €} and max; (A ; +¢) < 1 that for u sufficiently small,

C(uuy,...,uug)
u

bo X7y 85 O +8) + T, 1165 (40|

u

=

<M. (A7)

For A increasing to 1 and ¢ decreasing to O the result follows.

d) Let Ao = 00,0 <A, <1forieJ C{l,...,m},and Ay ; =0 fori ¢ J. Note that
(A.7) still holds for M < ¢ and thus the result follows.

e) LetO0<Adg<o00,0<Ar; <lforieJ C{l,....m},andA; ; =0fori ¢ J.Following

the proof in part (a) and using the fact that lim,_, o+ (@ VP +1)"P =0 for p > 0, we
obtain Az o = 0. O

Proof of Theorem 5.4: Relying on the structure of C, we perform the transformation

i Cluuy,... .uug) po[ Z(w) + y ()Y [Z(u)]]
im ———— % — [im
u—>0+ C*(u) u—07+ $olZ(u)]

with Z(u) = Y7 5 ' [CF )] + X5y, 1 b5 (u) and

) = i $6 ' [Cr (ury_y 11t w0 | = 651 [CF )] Y95 {C ()]

= Ylpy "{Cw))] V[Z ()]
k ) . .
b5 (50 45" @) Vigy' @)
L Tl viZa

Next we establish the limits needed to evaluate the above expression.
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a) Suppose that A7 ; (ug;_,41.....uk;) > 0foralli =1,...,m.

a;) First note that for any j,

96 Gk rve g w) ] = 5 [CF )]
I = lim ot
u=o¥ Vi {C ()]
lim ¢()_1 [Az,_,‘ (u, Uk; 14155 ukj)cj* (u)] _ ¢0_1 [C]*(u)]
u—0"+ l//[d)o_l{cj* )]

1 /\Z’j(uaukj,1+1,---,ukj )CF ()

lim a1 %l
u—0t l//[d)() {Cj ()] C_;‘(u)

[bo '] (s)ds.

Since, from the definition of ¥,

Ylge {Cr )] = —C;w)gg '1'(C} (w)),
it follows that

AL Wiy g 1eentth )EF ) [66 1 (s)
I = — lim . D
u—0tJC* () Cr(u) [¢g 1 (Cf (u))

_ AL Gyt rttk ) 1Yy (v ()]

— llm T ——

w0 J; v Yidy (CF )]

Since ¢ 1is slowly varying at zero and ¥ is slowly varying at infinity, the composition
Yoy Uis also slowly varying at zero (see [3, Proposition 1.3.6]). Thus the ratio
Vigy ' C; (u,e1))]

VT (C roi)] tends to one. Therefore the last integral converges to

. AL Gk 1oetti) | .
I =— lim —dv = —IOg{lL,j(ukj_1+1,...,uk/.)}_ (A.8)
u—0tJ1 ¥ |

ay) Moreover, we obtain for the second limit

. Ylpg {CF(w)}]
Il = lim - — " = —
u—0+ 1»”[X:j=1 b0 I{C_,‘ (W)} + Zj:km+1 $o ()]
. Vigg" o)
m — k -1
u—>0F \”[Zj:l b l{ukj} + Zj:km-i-l P ()]
= (m+ k),

since

lim ¢(;1 (uk])/qs(;l(u) _ 1 '
MO YT b9 M @)+ Y, 00 )} /g o) K=K

Bereitgestellt von | Universitaetsbibliothek Augsburg
Angemeldet
Heruntergeladen am | 22.02.19 10:19



50 Okhrin — Okhrin — Schmid

a3) Using a,) and the proof of Theorem 3.3 of [4], we obtain that

lim i ¢o ' (uju) — ¢y ' () Yy (W)

e Lo Tyl ] vIZ@)
k

= —(m+k—kn)™ Z log(u;).
J=km+1

a4) It follows, using (5.4) of [4], that

i Po{Z(w)+y(W)Y(Z(u))}  _,
im =e
u—0+ ¢0{Z(u)}

if limy, o+ y(u) = y. In the present case,

m k
k—kpm) ¥ +hk—km) ™
exp(—y) = [ [IA (k1o N TRTF™ T el ™,
j=1 J=km+1

b) Suppose that Az,i (Uk;_ +1+----Uk;) = 0. Because it holds for & > 0 that for all u
sufficiently small

1 eC;‘(u) .
I = lim ——— (9o 1 (s)ds.
u—ot Ylog HCr @] Jerwy 0
Following a;) we get that I > —loge. Thus I = oo and the result follows. (]
Proof of Theorem 5.5:
a) First assume that 1 <y < oo.
m
Avo = lim u71<1—¢0[ qbgl(Ci(l—uukj_l+1,...,1—uuk/.))
u—>0t ey ’
k
+ Y ¢51(1—u,~u)])
j=km+1
i l—C(l—uuk +1,...,1—MMk.)
i ([ (1 O e ),
lim $o ;fﬁo » u

i o' (1 —u,-u)]).

J=km+1 . . o
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We get that

Avo = lim u—1(1_¢0[i¢31(1—m,~u)+ i b5 wjw)))

u—>0 j=1 J=km+1

= 1im ™ (1—go[y" (103 95" (1~ Ao/ (1)
j=1
+5 " (1—u) f b5 (1—ujw) /95" (1-0)))
J=km+1
— i (1-wfie! (1—u>(Zk > )
j=km+1

g
_ (ik Z )1/1/0

j=1 J=km+1

where the last two equalities follow from the uniform convergence theorem.

b) The case yy9 = oo follows along the lines of the proof of Theorem 4.1 in [4]. O
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