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1. Introduction

The portfolio theory developed in [20] provides a simple and intuitive methodology for wealth allocation. In the next dec-
ades numerous generalizations were proposed, extending the classical theory to dynamic portfolio theory, considering pre-
dictive factors for asset returns, taking the estimation and model uncertainty into account (see [7] for a review). An
alternative approach to the theory of Markowitz is based on the expected utility maximization. As shown in [13], the Mako-
witz’s method is equivalent to maximizing the expected quadratic utility, assuming k-variate Gaussian asset returns with the
mean l and covariance matrix R. More formally let w denote the k-dimensional vector of optimal portfolio weights. We con-
sider a portfolio problem without a risk-free asset, however, the short-sales are allowed. Then the optimal portfolio compo-
sition is determined by solving the maximization problem
max
w

w0l� c
2

w0Rw s:t:; w01 ¼ 1: ð1Þ
The solution to this problem is given by
wEU ¼
R�11

10R�11
þ c�1Rl; with R ¼ R�1 � R�1110R�1

10R�11
: ð2Þ
The factor c denotes the risk aversion coefficient and it measures the marginal reward for bearing an additional amount of
risk. The choice or determining of the value of c in practice is unclear. There are a few paper dealing with the estimation of
the risk aversion coefficient from market data. [14] derives the implied absolute risk-aversion coefficient by estimating the
risk-neutral and historical probabilities from option prices. Estimators relying on realized volatility were suggested by
Bollerslev et al. [5]. It is important to note, that the corresponding risk aversion characterizes the aggregate and not an
individual investor. The usual values of c considered in empirical applications lie between 1 and 50. If c tends to infinity
the optimal portfolio weights tend to the weights of the GMV portfolio
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wGMV ¼
R�11

10R�11
: ð3Þ
The GMV portfolio appears to be extremely important and usually used as benchmark for measuring the performance of
other portfolio strategies (see [8,9]).

In this paper we contribute to the existing literature by deriving the boundaries of the risk aversion coefficient. The port-
folios on the efficient frontier, i.e., the solutions of (1), with higher risk aversions are statistically indistinguishable from the
GMV portfolio. We consider the weights, the portfolio return and the variance of the portfolio return as characterizing quan-
tities of the portfolios on the efficient frontier (EF). For each of them we provide a methodology for determining the set of risk
aversion coefficients that lead to portfolios that are indistinguishable from the GMV portfolio. In other words, for each char-
acteristic we provide such value of c�, that all portfolios on the EF with c P c� are not significantly different from the GMV
portfolio. We show in the empirical study that the boundaries are relatively small, i.e., a large fractions of the efficient port-
folios are statistically equivalent to the GMV portfolio. Thus under some circumstances, particularly under high estimation
risk, it is redundant to know the risk aversion precisely.

The main drawback of the portfolio selection problem and the driving force of the paper are the unknown parameters l
and R. The portfolio weights in (2) are nor plausible as long as we have no reliable values for the moments of asset returns. In
practice we estimate them from a sample of size n of historical returns. This leads to a substantial estimation risk recognized
since [17]. Assuming independent Gaussian returns, [12] obtained the distribution of the estimated variance of the mean-
variance portfolio, while [22] derived the distributional properties of the estimated optimal portfolio weights and, thus,
quantified the estimation risk. Kan and Zhou [16] analyze analytically the economic loss which arises due the estimation risk,
while [6] introduce the estimation uncertainty into the optimization problem. To reduce the estimation risk, several papers
suggested shrinkage estimation for the parameters. Particularly, [15] suggest a shrinkage estimator for mean vector and Boy-
le et al. [18] consider shrinkage estimators for the covariance matrix. Shrinkage of the portfolio weights was elaborated in
[11,10,19]. Alternatively, Bayesian methods can be used to account for estimation uncertainty as in [23]. Note, however, that
such refinements do not allow for explicit finite sample or even asymptotic statements. This stresses the need for improved
estimators of portfolio weights [15,11]. The next section contains a detailed description of the methodology, while Section 3
provides an empirical illustration of the results.

2. Methodology

We consider the portfolio problem from the perspective of an individual investor. The aim is to maximize the quadratic
utility given by (1) with respect to the optimal portfolio weights w. Besides the weights, the resulting portfolio is character-
ized by the expected portfolio return lp and the variance of portfolio return Vp. For the given weights wEU the latter two
quantities we define as
lEU ¼ w0EUl ¼
l0R�11
10R�11

þ c�1l0Rl; ð4Þ

VEU ¼ w0EURwEU ¼
1

10R�11
þ c�2l0Rl: ð5Þ
Letting the risk aversion coefficient go to infinity we obtain the mean and variance of the return on the GMV portfolio and
denote them by lGMV and VGMV . The equation for the efficient frontier is given by
ðlp � lGMV Þ
2 ¼ l0RlðVp � VGMV Þ:
We observe that the whole efficient frontier can be uniquely characterized by its vertex with the coordinates lGMV and VGMV

and with the slope of the parabola given by l0Rl. The latter quantity is particularly important. If l0Rl is small then the effi-
cient frontier is very flat and collapses to a straight line if l0Rl tends to zero. In this case, the only efficient portfolio is the
GMV portfolio.

Practical implementation of the above solution requires feasible values for l and R and the risk aversion coefficient which
uniquely characterizes the risk preferences of the investor. We estimate the moments of the Gaussian asset returns using a
historical sample X1; . . . ;Xn by1
l̂ ¼ 1
n

Xn

j¼1
Xj and R̂ ¼ 1

n� 1

Xn

j¼1
ðXj � l̂ÞðXj � l̂Þ0: ð6Þ
We obtain the estimated portfolio weights and portfolio characteristics by replacing the unknown parameters l and R with
l̂ and R̂ respectively and mark them with hats.

Setting a reasonable risk aversion coefficient is, however, not straightforward. One possible solution is to rewrite the port-
folio problem as a variance minimization problem with a given required return. Unfortunately, this framework does not re-
flect the risk attitude of the investor and stresses the interest in the portfolio return. We argue, however, that under some
rnatively, we can consider improved estimators for l and R as in [15,18]. In this case, however, it is not possible to derive the required exact finite
results.
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circumstances due to the estimation risk in l̂ and R̂, there is no need to provide the exact value for the risk aversion coef-
ficient. The aim is to find such bound for the risk aversion coefficient, that all portfolios with higher risk aversion can be seen
as equivalent to the GMV portfolio. To construct such bounds we need tests for equality of two portfolios on the efficient
frontier. It is a difficult task in general. We consider four different approaches: (a) is the variance of the GMV portfolio dif-
ferent from the variance of the investor’s portfolio? (b) is the expected return on the GMV portfolio different from the return
of the investor’s portfolio? (c) are both the portfolio return and the variance of the GMV portfolio different from the return
and variance of the investor’s portfolio? (d) are the weights of GMV portfolio different to the weights of the investor’s
portfolio?

To formalize it let ‘i 2 Rk; i ¼ 1; . . . ; p; 1 6 p 6 k� 1 and let L0 ¼ ð‘1; . . . ; ‘pÞ. Let wL;p ¼ LwGMV and ŵL;p ¼ LŵGMV corre-
spondingly. We consider the tests
H0 : VGMV ¼ V0 vs: H1 : VGMV – V0; ð7aÞ
H0 : lGMV ¼ l0 vs: H1 : lGMV – l0; ð7bÞ
H0 : lGMV ¼ l0; VGMV ¼ V0 vs: H1 : lGMV – l0 _ VGMV – V0; ð7cÞ
H0 : LwGMV ¼ r0 vs: H1 : LwGMV – r0: ð7dÞ
For each of the tests we can establish the corresponding confidence intervals for the characteristics of the GMV portfolio. The
value of c which corresponds to the portfolio on the boundary of the confidence interval we denote by c�. Thus, it is the
smallest value of the risk aversion coefficient, such that the corresponding EU portfolio (a solution of (1)) is still equivalent
to the GMV portfolio in terms of the measure in H0. Only for risk aversion coefficients lower than c� we can speak about sig-
nificant difference between EU and GMV portfolios. The distributions of the considered test statistics are derived in [1,3].
Note that we can also consider the one-sided variants of the tests in (7b 7c). This requires a minor modification of the meth-
ods discussed below.

(a) Method based on the portfolio variance.
The test of the hypothesis (7a) relies on the test statistic
TV ¼ ðn� 1Þ V̂GMV

V0
: ð8Þ
Under the H0 hypothesis the test statistic TV is v2-distributed with n� k degrees of freedom. Substituting V0 ¼ VEU we get
that the null hypothesis is rejected if TV R ½v2

n�k;a=2;v2
n�k;1�a=2�. This implies the following confidence interval for the portfolio

variance
ðn� 1ÞV̂GMV

v2
n�k;1�a=2

;
ðn� 1ÞV̂GMV

v2
n�k;a=2

" #
: ð9Þ
Thus every portfolio with the variance from this interval is statistically indistinguishable from the GMV portfolio.
Taking the nature of our hypothesis into account, we observe that the variance of the EU portfolio can be only higher than the
variance of the GMV portfolio. Thus, in our case only the lower bound of the rejection region is of relevance. This implies that
c�2V ¼
l̂0Rl̂v2

n�k;a=2

V̂GMVðn� 1� v2
n�k;a=2Þ

: ð10Þ
Thus for every investor with the risk aversion coefficient larger than c�, the expected utility portfolio is statistically indistin-
guishable from the GMV portfolio, if we take the portfolio variance as a proximity measure between portfolios.

(b) Method based on the expected portfolio return.
To test the null hypothesis that the expected return on the GMV portfolio lGMV equals the expected return on the EU port-
folio l0 ¼ lEU we use the test statistic
Tl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n10R̂�11

p ffiffiffiffiffiffiffiffiffiffiffiffi
n� k
p
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p l̂GMV � l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n
n�1 l̂0R̂l̂

q : ð11Þ
The test statistic follows t-distribution with n� k degrees of freedom. Thus, the null hypothesis is rejected if jTlj > tn�k;1�a=2.
The corresponding confidence interval for the portfolio return is given by
l̂GMV �
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p
ffiffiffiffiffiffiffiffiffiffiffiffi
n� k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

n� 1
ŝ

r
tn�k;1�a=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n10R̂�11
p ; l̂GMV þ

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p
ffiffiffiffiffiffiffiffiffiffiffiffi
n� k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

n� 1
ŝ

r
tn�k;1�a=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n10R̂�11
p

" #
:

Taking the upper part we obtain the boundary for the risk aversion coefficient
c�l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n10R̂�11

p
tn�k;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffi
n� k
p
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1
p l̂0R̂l̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n
n�1 l̂0R̂l̂

q : ð12Þ
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As above, this implies that an arbitrary EU portfolio with the risk-aversion coefficient c > c�l is statistically indistinguishable
in terms of the expected portfolio return from the GMV portfolio.

(c) Method based both on the portfolio return and on the portfolio variance.
Next we consider the joint test for the expected return and the variance of the GMV portfolio. The test is based on the
bivariate test statistic TRV ¼ ðTV ; T

�
RÞ
0 with TV given in (8) and
T�R ¼
ffiffiffi
n
p l̂GMV � R0ffiffiffiffiffiffi

V0
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n
n�1 l̂0R̂l̂

q : ð13Þ
It is easier to work with the statistics TV and T�R, since they are independent, in contrary to TV and TR, which are dependent.
This is the reason why we use T�R instead of TR. It holds that T�R is standard normally distributed under H0 hypothesis.
Let za be the a quantile of the standard normal distribution. The joint two-sided confidence interval for the expected return
and the variance of the GMV portfolio with the boundaries is defined by (cf. [3])
ðlp � l̂GMV Þ2 6 z2
1�a�=2

1
n
þ l̂0R̂l̂

n� 1

!
Vp; ð14Þ

Vp 2
ðn� 1ÞV̂GMV

v2
n�k;1�a�=2

;
ðn� 1ÞV̂GMV

v2
n�k;a�=2

" #
¼ ½V̂ l; V̂u�; ð15Þ
where 1� a ¼ ð1� a�Þ2.
The computation of the investor’s coefficient of risk aversion is based on the following idea. First, we find the coordinates of
the intersection point between the confidence set (14, 15) and the sample efficient frontier
ðlp � l̂GMV Þ2 ¼ l̂0R̂l̂ðVp � V̂GMV Þ: ð16Þ
This is given by
V̂� ¼ V̂GMV

1� z2
1�a�=2

1
nl̂0R̂l̂

þ 1
n�1

� � ð17Þ
provided that V̂� > V̂GMV . If the last inequality does not hold then the upper bound of (15), i.e., V̂u, has to be used. Further, the
risk aversion coefficient should satisfy the inequality minfV̂�; V̂ug < V̂GMV þ c�2l̂0R̂l̂ if V̂� > V̂GMV and the inequality
V̂u < V̂GMV þ c�2l̂0R̂l̂ otherwise. This leads to the following boundary value
c�R;V ¼

ffiffiffiffiffiffiffiffi
l̂0R̂l̂
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

minfV̂� ;V̂ug�V̂GMV

p if V̂� > V̂GMV ;ffiffiffiffiffiffiffiffi
l̂0R̂l̂
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂u�V̂GMV

p if V̂� 6 V̂GMV :

8>><
>>: ð18Þ
(d) Method based on the weights
To test (7d) the following test statistic can be applied
Tw ¼
n� k

p
10R̂�11
� �

ŵL;p � r0
� �0 LR̂L0

� ��1
ŵL;p � r0
� �

: ð19Þ
Under H0 it follows the F-distribution with p and n� k degrees of freedom. To obtain a joint test that the first k� 1 weights of
the GMV portfolio are equal to the first k� 1 weights of the EU portfolio we set Lk�1 ¼ ðIk�10Þ and r0 ¼ Lk�1wEU . Let Fp;q;a de-
note the a-quantile of the Fp;q-distribution. Then the hypothesis (7d) is rejected if and only if Tw > Fp;n�k;1�a.
Estimating the unknown quantities and substituting into rejection criterion we obtain the following boundary value for the
risk aversion coefficient.
c�w ¼
ffiffiffi
p
pffiffiffiffiffiffiffiffiffiffiffiffi
n� k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fp;n�k;1�a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10R̂�11
� �

l̂0R̂L0k�1 Lk�1R̂L0k�1

� ��1
Lk�1R̂l̂

� �s : ð20Þ
This implies that an arbitrary EU portfolio with the risk-aversion coefficient c > c�w is statistically indistinguishable in terms
of the portfolio weights from the GMV portfolio with c ¼ 1. We can also test each weight individually, however, in this case
we obtain an individual lower bound c� for each asset. Such results would be, however, difficult to summarize. Moreover, it is
difficult to monitor the overall type I error, especially, in the case of large portfolios.
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The obtained results allow us to make rather general conclusions about the behavior of the boundaries. We verify these
statements in the subsequent empirical example. Note that increasing boundary c� implies that a smaller fraction of the effi-
cient frontier is statistically indistinguishable from the GMV portfolio. Therefore, it is important for the investor in this case
to know his individual risk aversion coefficient precisely. A small bound implies that the majority of investors shall invest in
the GMV portfolio without determining the precise individual risk aversion.

In all cases the boundary depends on the estimated slope l̂0R̂l̂ of the efficient frontier. The smaller this parameter is, the
flatter is the efficient frontier and the smaller is the boundary c�. Thus the slope l̂0R̂l̂ can be seen as a generalized measure of
estimation error in portfolio theory. Furthermore, it is a known fact in the literature that l̂0R̂l̂ increases with the number of
assets k. Thus increasing the universe of the assets will increase the boundary for the risk aversion coefficient. This appears to
be counterintuitive, but reflects the diversification effects arising in large portfolios. Similarly, the sample size n decreases
the estimation error and therefore, leads to an increase in the boundary c�.

The results obtained in this section are subject to the assumption of independent and identically distributed Gaussian
returns. This assumptions are frequently not fulfilled. For example, the asset returns have heavy tails and exhibit weak,
but sometimes significant autocorrelation. Similarly, the structural breaks in the parameters over time and poor data quality
can deteriorate the results. We argue, however, that all such misspecifications increase the overall estimation error and thus
may lead only to a decrease in the boundary c�. This implies that model misspecifications will only stress the results of the
paper, which provides an optimistic framework for an investor.

It should be noted that the EU portfolio used in the above tests is assumed to be a known vector. This means that the
investor compares her current (fixed) EU-optimal portfolio composition with the estimated GMV portfolio. A test with esti-
mated EU portfolio weights is discussed in [2,4].

In the next section we apply the developed methodology to the real market data.

3. Empirical study

For the study we use weekly data on the 29 assets listed in the DJIA (Dow Jones Industrial Average) index and traded dur-
ing the whole period from 22.02.1990 to 21.06.2012.2 The number of assets we consider reflects the common setting in port-
folio problems. Asset allocation problems with much larger number of assets usually rely on factor models (see [7]).

The estimation risk in the portfolio problem is visualized in Fig. 1. The figures show the simulated finite sample densities
for the first two portfolio weights (first row), portfolio return and the standard deviation of the portfolio return. The asset
returns are simulated from the multivariate normal distribution with the parameters set equal to the sample moments com-
puted on the basis of the full sample. The sample size is set to n ¼ 100 and the number of replications is 105. We observe that
the standard errors of estimators are large, implying that the investor should be uncertain about the obtained characteristics
of the portfolio. The standard errors in the portfolio weights are particularly high. This results in severe difficulties of using
the portfolio weights for determining the boundaries for risk aversion. The estimation risk in the portfolio return is lower,
followed by relatively precise estimators for the portfolio variance.

The results on the boundaries for the risk aversion coefficient based on full sample are summarized in Table 1 and visu-
alized in Fig. 2. To assess the impact of the sample size we estimate l and R using the whole sample and use these values to
compute the boundaries c� with different sample sizes n by using (10) for the method based on the portfolio variance, (12)
for the method based on the expected portfolio return, (18) for the method based both on the expected portfolio return and
on the portfolio variance. For each value of the risk aversion coefficient we compute the corresponding value of the required
return l�EU and of the portfolio variance V�EU as given in (4) and (5) by replacing the population values of l and R with their
full sample estimators. This results are summarized in Table 1. Note that the boundaries are low. For example, for n ¼ 60
any investor with the risk aversion coefficient higher than 3.8955 can invest in the GMV portfolio, since the GMV portfolio is
statistically indistinguishable from the corresponding EU portfolio if the variance is taken as a measure of proximity. In the
portfolio return is taken as a measure of proximity between portfolios, then the boundary c�l is much higher due to higher
estimation risk (see Merton [21]). Fig. 2 illustrates the parts of the efficient frontier which contain the portfolios which are
indistinguishable from the GMV portfolio. Evidently, these portfolios constitute a large part of the frontier.

Next we analyse the impact of the number of assets k on the boundaries c� and the dynamics of the boundaries in time.
We consider portfolios consisting of k = 2,5,10 and 20 risky assets. Since the choice of the assets is not unique, we sample
randomly k assets out of 29 and generate 104 different portfolios. Note that we recompute the efficient frontier for each port-
folio of size k and do not test the k-assets portfolio against the portfolios on the efficient frontier with 29 assets. This is a fair
approach to assess the impact of k on the boundaries c�.

To shorten the presentation we restrict the discussion only to the method based on the variance of the portfolio (Para-
graph (a)). For other methods the results are very similar. For each moment of time we estimate the mean returns and
the covariance matrix using the last 100 observations. For every portfolio we compute the corresponding c�V and their
2 The distribution of monthly returns is closer to the Gaussian compared to the shorter term returns. But taking monthly data over longer periods of time
may lead to biased results due to non-constant parameters. The daily data causes opposite problems. For this reason we opt for the weekly frequency, which is a
trade-off between the two extremes.
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Fig. 1. Simulated finite sample densities for the first two portfolio weights (first row), portfolio return and the standard deviation of the portfolio return
(second row) for the EU portfolio with given risk aversion coefficients. The sample size is set to n ¼ 100 and the number of replications is 105.

Table 1
The boundaries for the risk aversion coefficient with the return and variance of the corresponding portfolios for different sample sizes n. The boundaries for the
risk aversion coefficient in each panel are determined using the methods suggested in subsections 2a;2b and 2c by formulaes (10), (12) and (18), respectively.
The targeted values of l�EU and V�EU are computed as in (4) and (5). For the GMV portfolio it holds l̂GMV ¼ 0:001781 and V̂GMV ¼ 0:0003265.

n 60 120 250

c�V 3.8955 6.7410 9.8435
l�EU 0.004787 0.003518 0.002971
V�EU 0.001117 0.0005892 0.0004492

c�l 1.7740 3.1078 4.8711

l�EU 0.008383 0.005550 0.004185
V�EU 0.004787 0.003518 0.002971

c�l;V 3.6698 6.4096 9.3608

l�EU 0.003518 0.002154 0.001878
V�EU 0.001196 0.0006116 0.0004602
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median over all 104 portfolios. This procedure is repeated in each period of time and for each size k. The estimated medians
are plotted in Fig. 3.

First, note that the bounds on the risk aversion coefficient are not constant over time. Starting in 1990 we observe a per-
manent downward trend which ends in 2001. The medians of the risk aversion coefficients lost around a half of their initial
values. This implies that in 2000 a much larger part of the efficient frontier was indistinguishable from the GMV portfolio
compared to 1993. A similar situation is observed in 2010 with a clear upward trend in the resent time. The periods of
low boundaries closely coincide with periods of volatility bursts due to crises. In these periods the high market volatility
leads to an increased estimation error, which pushes the boundary risk aversion downwards.

The impact of the portfolio size k on the value of c�V is very strong. Large portfolios are much better diversified and, there-
fore, allow to construct a GMV portfolio with much lower variance as small portfolios. This implies that the bound on c
which separates significant and not significant EU portfolios should be higher for large portfolios. This intuition is also sup-
ported by the empirical results. For portfolios with two assets the average historical median is c�V is 3.729. This value is lower
than the usual values for the risk aversion coefficient considered in the literature. This implies that for small k’s we cannot
distinguish between the GMV portfolio and almost any EU portfolio. For k ¼ 5 the situation is still unsatisfactory (the average
median is 12.145). Only for larger portfolios with k = 10 and 20 we obtain the average medians equal to 20.606 and 31.598,
respectively. This implies that only in the case of very large k the commonly taken values of the risk aversion coefficients
would lead to portfolios, that are significantly different from the GMV portfolio in terms of the portfolio variance. By small
portfolios minor diversification effects have stronger impact than the small estimation risk.

In Fig. 4 we provide the histograms of the medians for the last estimation period. For k ¼ 2 we observe that a very large
part of the portfolios possesses an extremely small bound c�V . This causes the EU portfolios with small k to be very unreliable.
With increasing portfolio size the distribution of c�V shifts to the right, however, the difference in the location is obviously
significant. The spread of the histograms is high. This implies that in general it is not possible to provide a unique value
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Fig. 4. Histograms of c�V for 104 portfolios with k = 2, 5, 10 and 20 assets randomly chosen from the assets listed in DJIA.
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of c�V which can be used for arbitrary portfolio of given size. This stresses the importance of the methods discussed in the
previous section. Nevertheless, there is wide range of the risk aversion coefficients which lead to EU portfolios that are equiv-
alent to the GMV portfolios. This implies that investors with sufficiently large risk aversion can invest directly into the GMV
portfolio. This eliminates the need for estimating expected returns and determining the individual risk aversion coefficient.

4. Summary

In this paper we analyze the impact of estimation risk on the portfolio decisions. Particularly, we provide such boundaries
c�, that all EU portfolios with the risk aversion coefficient c > c� are statistically equivalent to the GMV portfolio in terms of
(a) the expected portfolio return; (b) the portfolio variance; (c) both the portfolio return and variance; (d) the portfolio
weights. The empirical study shows that the bounds c� increase with the number of assets in the portfolio and uncovers clear
historical trends. In general, we conclude that investing in the GMV portfolio is statistically justified for investors with a very
wide range of the risk aversion coefficients.
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