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1. Introduction

Testing for equal predictive ability (EPA) is of great importance for evaluating the performance of competing forecasting
models. The existing tests (cf. Diebold and Mariano, 1995; West, 1996; Giacomini and White, 2006) are statistical tools
which provide decisions as to whether the EPA hypothesis holds, based on a fixed sample of historical observations.
However, it is also of practical interest to decide about EPA validity on the current edge by using innovations from the
considered forecasting models. This paper introduces a novel sequential approach for EPA online monitoring, which relies
on two nonparametric control procedures. We suggest statistical tools suitable for early signalling about violations of the
EPA hypothesis given a large number of alternative forecasting rules or forecasters. A signal from our monitoring scheme
indicates that the initially assumed EPA hypothesis may not hold any more.

In order to formalize the sequential monitoring problem, consider K competing forecasting rules or forecasters initially
assumed to have the same predictive ability. Let dt ¼ ðd1,t , . . . ,dK ,tÞ

0 be the K-dimensional orthogonal vector of losses from
these forecasting rules. The losses are assumed to be independent in time and distributed as dt �FK ðlt ,IÞ, where the
K-variate distribution function FK has continuous support. The corresponding moments are the expectation EðdtÞ ¼ lt and
the identity covariance matrix CovðdtÞ ¼ I. Moreover, the function F ð�Þ is assumed to have finite and positive Fisher
information and absolutely continuous derivatives (Hajek et al., 1999, Section 6.1.7). These assumptions would guarantee
the applicability of the central limit theorem to the rank-based statistics suggested below. Such mild requirements cover a
rather broad family of distribution functions. The EPA hypothesis implies the same expected loss mk,t ¼ mt for all K models,
i.e., lt ¼ mt1. Assuming mt ¼ 0 without loss of generality, the distribution of losses under the EPA is

dt �FK ð0,IÞ: ð1Þ
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Then, under the validity of EPA at t¼0, a sequential monitoring procedure should provide a decision at every tZ1, t 2 N as
to whether the EPA hypothesis H0,t still holds:

H0,t : EðdtÞ ¼ 0, Ha,t : EðdtÞa0: ð2Þ

The EPA hypothesis remains valid until an unknown change point tZ1, t 2 N. The no-change case is characterized by
t¼1. The ultimate goal is to get a signal, which is interpreted as a failure of the EPA hypothesis, as soon as a change
occurs. Additionally, it is desired to have no (false) signals for a long time if no change has really happened, i.e., for all tot.

Nonparametric sequential procedures for differentiating between the null and alternative hypothesis in (2) are required
in situations where the distribution function F ð�Þ remains unknown. Such methods should be favoured, because they are
robust with respect to misspecifications of the distribution functions. Moreover, nonparametric approaches, contrary to
parametric ones, benefit from a larger number K of alternative forecasting models or competing forecasters. The stated
problem arises in the application, where many models or many experts make point forecasts of some publicly available
measure. The possible examples are forecasts of exchange rates, stock market indices, basic macroeconomic indicators etc.
Moreover, it is presumed that the forecasted variable is observable. Thus we do not confront measurement error problems.

This paper introduces nonparametric sequential tools suitable for online monitoring of the EPA validity for a large
number K of alternative forecasting rules. Since the distribution of the innovations dk,t is the same for all k under the EPA,
their realizations can be seen as K realizations of the i.i.d. univariate random variable dt . The corresponding EPA
distribution of dt is dt �F 1ð0,1Þ. It is symmetric around zero with the moments EðdtÞ ¼ 0 and VðdtÞ ¼ 1. Relying on these
properties of the dt distribution, we elaborate two nonparametric sequential procedures (control charts) for monitoring
the EPA validity.

First, we suggest a chart using the ordinary sign test statistic for detecting location changes. Such a chart is suitable for
detecting any deviations from the EPA hypothesis. However, this chart cannot be the best possibility for detecting some
types of shifts because the underlying ordinary sign test exhibits a low statistical power. Shifts affecting the symmetry of
the dt distribution around zero can also be detected by a procedure relying on the Wilcoxon signed rank test. The Wilcoxon
test exhibits a better power compared to the ordinary sign test in such situations. For this reason we exploit the second
chart, based on the Wilcoxon test statistic, for detecting shifts violating the EPA by destroying the symmetry of the dt

distribution. The statistics for both tests are asymptotically normally distributed under the EPA. Note that any other
nonparametric test for symmetry or location can also be used in our methodology if its statistic could be sufficiently well
approximated by the Gaussian distribution under the EPA.

The exponentially weighted moving average (EWMA) control charts (Montgomery, 2005, p. 405ff) are suitable for the
EPA monitoring. Two EWMA schemes, based on the ordinary sign and the Wilcoxon rank test statistics, are started
simultaneously. The design of this simultaneous chart is determined in accordance with the approach of Woodall and
Ncube (1985). A signal would occur if any of control statistics crossed the corresponding critical limits for the first time.
This would imply that the EPA hypothesis might not hold any more. The asymptotic critical limits for K-1 are calculated
for practically important parameter values of the simultaneous chart. The use of the asymptotic limits simplifies the
application of our procedure to empirical problems.

The ability of our sequential procedure to detect deviations from the EPA is evaluated in an extensive Monte Carlo
simulation study. We find that changes affecting the symmetry of the dt distribution (e.g., one strategy gets better or worse
than all other alternatives) can on average be detected much quicker than changes of comparable size which do not affect
distribution symmetry (e.g., one forecasting strategy gets better, but another one gets worse to the same extent). Shifts
affecting symmetry are primarily detected by the Wilcoxon chart, while other shifts are predominantly signalled by the
ordinary sign chart. Practical recommendations for control chart design are given based on a certain cost function for
delays in shift detection. Moreover, we investigate the robustness of our procedure against suboptimal choices of the
control chart parameters.

The rest of this paper is organized as follows. Section 2 discusses the nonparametric statistical tests required for EPA
monitoring. Section 3 introduces the parsimonious sequential control procedure for online checking of EPA validity.
Section 4 evaluates the performance of the suggested procedure in a Monte Carlo simulation study. Section 5 provides
recommendations about optimal control chart design and investigates robustness issues. The concluding Section 6
presents a summary of the paper.

2. Testing validity of EPA

2.1. Ordinary sign test for location

Consider the distributional properties of the absolute innovations jdk,tj for detecting any change in the expectation
vector EðdtÞ ¼ 0 which would violate the EPA hypothesis. Since E(dk,t)¼0, any violation of the EPA such that Eðdk,tÞa0 for
some k would increase the average quantity of jdk,tjs which are larger than some location measure. The idea of taking
absolute values is crucial for our analysis. It can be illustrated with the example where Eðd1,tÞ ¼ �EðdK ,tÞ ¼ a40 whereas
E(dk,t)¼0 holds for k¼2,y,K�1. Such a shift can be detected with the ordinary sign test for the absolute values, because
realizations of jd1,tj and jdK ,tj would tend to be larger than realizations of jdk,t js for all other k s. We exploit the median as a
popular robust location measure. The median of absolute innovations would divide the set with K realizations jdk,tjs into
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two approximately equal parts under the EPA. Evidence that the number of elements in each part appear to be strongly
unequal would indicate that the EPA hypothesis could be violated. Next, we formalize this idea by adapting the ordinary
sign test for decisions concerning the EPA validity.

Consider the absolute values of the realizations jdk,t j, k¼1,y,K, which can be seen as K draws of the random variable
jdtj. The median of the random variable jdtj under the EPA is denoted by medðjdtjÞ40. Recall that for the standard normal
distribution medðjdtjÞ ¼F�1

ð3=4Þ � 0:6745, where F�1
ð�Þ is the inverse of the standard normal cumulated distribution

function, while, for the standard Cauchy distribution with undefined variance, medðjdtjÞ ¼ 1. This suggests that the
measure medðjdtjÞ should refer to the interval ½23 ,1�, which accounts for possible heavy tails of the distribution F ð�Þ. In this
study we use medðjdtjÞ ¼F�1

ð34Þ, but in practice it should be estimated from the historical sample under the EPA validity.
Next, define the vector /t ¼ ðf1,t , . . . ,fK ,tÞ

0 with the elements

fk,t ¼ jdk,tj�medðjdtjÞ, k¼ 1, . . . ,K : ð3Þ

If the measure medðjdtjÞ is correctly specified, 50% of the observations in /t should on average be smaller than zero and
50% greater than zero under the EPA hypothesis. Note that any EPA violation would increase the expected proportion of
positive fks, so that a change would only happen in one direction. In practice, however, it is reasonable to consider the
problem as two-sided, because the median medðjdtjÞ could be misspecified in situations where the true distribution
function F ð�Þ is unknown. Robustness of the median as a location measure makes this approach resistent against situations
where the tails of F ð�Þ are heavier than that of the normal distribution.

The ordinary sign test (Gibbons, 1971, p. 100) tests EPA validity by counting the number of positive elements Nt 2 ½0,K�
of the vector /t . Under the EPA the statistic S�t ¼ ð2Nt�1�KÞ=

ffiffiffiffi
K
p

is asymptotically distributed as S�t -
L N ð0,1Þ for K-1. This

result is motivated by the normal approximation to the binomial distribution with continuity correction (cf. Gibbons,
1971). Then, relying on the central limit theorem, the distribution of Sn

t converges to the limiting standard normal
distribution at the rate K�1/2. Further, we exploit the statistic St suggested by Borges (1970):

St ¼ 41=6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþ1=3

p Z q

1=2
½sð1�sÞ��1=3 ds, q¼

Ntþ1=6

Kþ1=3
, St-

L N ð0,1Þ, ð4Þ

because its distribution converges to normality more quickly at the rate K�1.

2.2. Wilcoxon signed rank test for symmetry

The EPA hypothesis implies that the distribution of dt is symmetric around zero. Changes affecting the symmetry of the
distribution of dt constitute an important class of shifts for timely detection. For example, such a shift occurs when a single
forecasting model gets better (or worse) than others. The Wilcoxon signed rank test is an established nonparametric
method for testing distribution symmetry (Gibbons, 1971, p. 106ff). It is more powerful than the ordinary sign test for
this task.

Let Rk,t be the ascending rank of the absolute innovations jdk,tj at time point t. The products 1ðdk,t 40ÞRk,t , where 1ð�Þ is an
indicator function, form the Wilcoxon signed rank statistic Tn

t , which is defined by

T�t ¼
XK

k ¼ 1

1ðdk,t 40ÞRk,t : ð5Þ

The moments of Tn
t are given under the EPA hypothesis as

EðT�t Þ ¼
KðKþ1Þ

4
, VðT�t Þ ¼

KðKþ1Þð2Kþ1Þ

24
: ð6Þ

The standardized statistic Tt ¼ ðT�t �EðT�t ÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
VðT�t Þ

p
is distributed as Tt-

L N ð0,1Þ for K-1. The exact distribution of the
Wilcoxon test statistic could be obtained numerically for each given value of K.

3. Sequential procedure

The validity of the EPA hypothesis is checked by sequential monitoring for changes in the expectations of the processes
{St} and {Tt}. A pair of univariate exponentially weighted moving average (EWMA) control charts is used for this purpose.
Their control statistics are given for tZ1 by

Z1,t ¼ ð1�lÞZ1,t�1þlSt , ð7Þ

Z2,t ¼ ð1�lÞZ2,t�1þlTt , ð8Þ

where the memory parameter l 2 ð0,1�. The starting values are selected to be Z1,0¼Z2,0¼0. Both charts have the same
parameter l, because St and Tt follow the same asymptotic distribution for K-1 under the EPA. Since both Z1,t and Z2,t

have the same EPA asymptotic distribution, so a unique asymptotic critical limit c¼c1¼c2 can be applied. The
simultaneous use of these two charts is appropriate for timely detection of various EPA violations. The Wilcoxon-based
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scheme is more suitable for quick detection of symmetry destroying shifts, while the ordinary sign scheme captures
symmetry preserving changes as well.

A signal is given at time t¼ LZ1 if jZ1,tj4c or jZ2,tj4c occurs for the first time, whereby the time of the signal is further
denoted as the run length L. The EPA distribution of the run length for the joint chart L¼min{L1, L2} is required in order to
select the critical limit c. Here L1 and L2 denote the run lengths for the schemes based on the ordinary sign and Wilcoxon
statistics, respectively.

The average run length (ARL), defined as the expectation EtðLÞ for a given change point t, is an important operational
characteristic of a control chart. The in-control ARL for t¼1, i.e., under the EPA, is further denoted by E(L), while the
out-of-control ARL for the given shift at t¼ 1 is hereafter denoted as E1(L). The critical limit c is usually determined by
setting the in-control ARL, related to the test size, to a large desired value. A well-performing chart provides small out-of-
control ARLs, which are related to the statistical power in the conventional test theory. In general, the out-of-control ARLs
should decrease with the increase of the shift size. Woodall and Ncube (1985) suggest to approximate the in-control ARL
E(L) of the joint bivariate scheme as a function of the ARL for a single scheme E(L1) by

EðLÞ � 1�
EðL1Þ�1

EðL1Þ

� �2
!�1

: ð9Þ

The approximation (9) requires mutual independence of Z1,t and Z2,t. The properties CorrðTt ,S�t Þ ¼ 0 and CorrðTt ,StÞ ¼ 0 hold
due to Eðdk,tjdk,tjÞ ¼ 0 for all symmetric continuous distributions. Consequently, CorrðZ1,t ,Z2,tÞ ¼ 0 under the EPA. Moreover,
Woodall and Ncube argue that the approximation in (9) is also suitable in the bivariate case for weakly dependent control
statistics.

Solving (9) immediately yields EðL1Þ � EðLÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðLÞ2�EðLÞ

q
. Thus, the critical limit c can be obtained for a given l value by

setting the in-control ARL EðLÞ ¼ x, where x is the desired average (large) number of periods without false signals, and

solving numerically EðL1jc,lÞ ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffi
x2
�x

q
for c with a given l value. The regula falsi numerical iteration method is used for

calculating c. It stops if both conditions j ^EðLÞ�xjo0:1 and jDcjo10�4 are satisfied, where Dc is a change in c at the final

iteration. These conditions guarantee that the calculated critical limits provide the desired in-control ARL x with a
maximal error of 0.5%, which is negligibly small in practical applications. The asymptotic critical limits c with K-1 for

different values of EðLÞ ¼ x and l are reported in Table 1.
The critical limits from Table 1 could be used starting from KZ20. Since the distributions of the statistics Tt and St are

only normal for K-1, the goodness of the approximated critical limits c should be evaluated depending on the memory
parameter l for finite values of K. The differences between the exact critical limits for finite K¼10, 20, 50 and for their
asymptotic counterparts are plotted in Fig. 1 for the in-control ARL x¼ 20 as a function of l 2 ½0:01,0:9�.

Fig. 1 shows that the differences between the asymptotic and finite K critical limits are negligible for lr0:7 and
increase starting from lZ0:8. The normality approximation fails for large ls (lt1) where the statistics Z1,t and Z2,t take
only a limited number of distinct values due to the construction of the Wilcoxon and ordinary sign tests. We illustrate
the impact of discreteness in the worst case situation, namely for the no-memory Shewhart chart with l¼ 1. The
out-of-control ARLs E1(L1) and E1(L2) of both St and Tt schemes are plotted as functions of the realizations Nt and Tn

t in Fig. 2
for a symmetry preserving shift with the size a, which is formally defined in Section 4.

Fig. 2 confirms that it is hardly reasonable to use the procedures for ls close to unity. The discreteness has an especially
dramatic impact on the performance of the St chart, based on the ordinary sign test, where the step function is clearly
observed. Consequently, the critical limits cannot be uniquely related to the desired ARLs because of the discrete control
statistic for l¼ 1. This phenomenon causes problems by controlling the statistical size of the procedure, which are most
Table 1

Asymptotic critical limits c for K-1, various in-control ARL x and smoothing parameters l, calculated with 106 replication with a precision x70:1.

l x¼ 20 x¼ 30 x¼ 40 x¼ 50 x¼ 60 x¼ 100

0.01 0.04971 0.06091 0.06976 0.07710 0.08342 0.10210

0.03 0.13781 0.16371 0.18274 0.19762 0.20982 0.24336

0.05 0.21505 0.25017 0.27523 0.29438 0.30962 0.35073

0.10 0.37857 0.42781 0.46166 0.48689 0.50687 0.55970

0.15 0.51667 0.57526 0.61468 0.64384 0.66702 0.72833

0.20 0.63978 0.70528 0.74925 0.78190 0.80775 0.87591

0.30 0.85938 0.93644 0.98819 1.02636 1.05641 1.13772

0.40 1.05958 1.14680 1.20490 1.24846 1.28294 1.37508

0.50 1.24977 1.34657 1.41191 1.46030 1.49869 1.60182

0.60 1.43718 1.54334 1.61533 1.66888 1.71150 1.82590

0.70 1.62563 1.74195 1.82058 1.87946 1.92656 2.05303

0.80 1.81888 1.94642 2.03264 2.09763 2.14905 2.28868

0.90 2.02083 2.16075 2.25563 2.32728 2.38400 2.53761

1.00 2.23638 2.39080 2.49548 2.57386 2.63689 2.80603



Fig. 1. Asymptotic and finite K¼10, 20, 50 critical limits c (left) and differences between the asymptotic and finite K critical limits (right) as a function of

l calculated for in-control ARL x¼ 20.

Fig. 2. Out-of-control ARLs for the single charts based on St (left) and Tt (right) with l¼ 1, K¼20 as a function of Nt and Tn
t for symmetry preserving shift

of size a.
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pronounced for smaller values of K. The evidence suggests that the common advice to take large smoothing values lt1 for
the quickest detection of large shifts (Montgomery, 2005, p. 412) could not be applied in our case, at least for practically
relevant situations with Kr50.

4. Performance evaluation

The goodness of the monitoring procedure is evaluated by calculating the out-of-control ARLs E1(L). We model the
shifts in the expectation vector EðdtÞ by generating losses from the normal distribution with dk,t �N ðak,1Þ or dt �N ða,IÞ
with a¼ ða1, . . . ,aK Þ

0.
The different specifications of aks reflect various types of shifts violating the EPA hypothesis. Two types of shifts,

investigated in this study, are assessed by modeling aks with a single shift parameter a. The resulting out-of-control ARLs
E1ðLjaÞ can be interpreted as a detection delay for the given type and size of a shift a at time point t¼ 1. A shift of type I,
preserving the symmetry of the distribution of dt , is modeled by setting the out-of-control expectation for the kth model,
k¼1,y,K, as

ak ¼ a
k�1

K�1
�

1

2

� �
, ak 2 ½�a=2,a=2�: ð10Þ

Such deviations from the EPA imply that if one model improves, another one worsens to the same extent. Consequently, a
shift of type I can hardly be detected with the chart using the Wilcoxon statistic, because the distribution of dt remains
symmetric around zero. The chart based on the ordinary sign statistic is, however, suitable for the detection of such shifts.

Alternatively, a shift of type II, which destroys the symmetry of the distribution of dt , is detected by

ak ¼
a

2

k�1

K�1
, ak 2 ½0,a=2�: ð11Þ

A shift of type II implies that all models, except the first one, improve (or worsen) but to different extents. This type of shift
could be detected by both the Wilcoxon and the sign control charts, whereas the former is preferable due to its higher
power. Fig. 3 visualizes the impact of change aðaÞ in the expectation vector EðdtÞ as a function of k¼1,y,K for both
symmetry preserving type I and symmetry destroying type II shifts. Note that the change profiles in Fig. 3 could be easily
generalized for non-linear alterations in EðdtÞ.



α α
Fig. 3. Change ak in the expectation E(dk,t) as a function of k¼1,y,K for symmetry preserving shift I (left) and symmetry destroying shift II (right) with

K¼20, a¼0, 1, 2, 3.
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Delays in shift detection, measured by the out-of-control ARL E1ðLjaÞ, are calculated for the shift a with a 2 A¼
f0:5,1,1:5,2,3g. Note that the resulting mean shifts of type I are larger than the mean shifts of type II. The smoothing
parameter l is chosen from the set L such that l 2 L¼ f0:01,0:03,0:05,0:1,0:15,0:2,0:3, . . . ,1:0g. We consider the in-control
ARLs x¼ 20,50 and the number of competing models K¼10, 20, 50. The asymptotic critical limits c are taken from Table 1. The
out-of-control ARLs E1(L) are reported in Table 2 for shifts of type I and in Table 3 for shifts of type II for the given ðK ,x,lÞ
parameters. The aforementioned results were obtained by 106 replications in a Monte-Carlo simulation study.

Table 2 reports the out-of-control ARLs for type I shifts, where the dt distribution remains symmetric around zero. The
shifts are detected more quickly for larger K values. The optimal choice of l depends on the shift size a, confirming the
conventional result that the optimal smoothing parameter should increase with increasing shift magnitude. We found no
great influence of the preselected in-control ARLs on the optimal l values. These results are in general supported by the
evidence from Table 3, where shifts of type II destroy the symmetry around zero required by the EPA. Note that shifts of
type II are detected on average much more quickly than comparable type I shifts.

The found evidence speaks against using charts with ls close to unity. Fig. 1 reports that the asymptotic critical limits
function properly only for lr0:8. As shown in Tables 2 and 3 for a zero shift of size a¼0, the actual in-control ARLs almost
coincide with the required in-control ARLs only for lr0:8. Using asymptotic critical limits for l40:8, however, leads to
very strong misspecifications of the in-control ARLs. This evidence confirms that the asymptotic critical limits are not
appropriate for ls close to unity. Calculating the exact critical limits for each given K is rather computationally demanding.
Balakrishnan et al. (2009) provide the exact critical limits for a special case l¼ 1, however, they cover only a limited set of
in- and out-of-control ARLs which could be achieved due to the discreteness of the control statistics. Since it is of practical
interest to have critical limit which does not depend on the number of strategies K, the asymptotic critical limits for K-1

are advantageous in applications. For this reason we consider further only memory parameters satisfying lr0:8.
The benefits from using both charts simultaneously arise from the quick detection of different types of EPA violations.

The chart based on the Wilcoxon statistic should be preferred for detecting shifts destroying symmetry, while the chart
based on the ordinary sign test is more suitable for shifts where symmetry remains preserved. Signal proportions from the
Wilcoxon Tt-chart are provided in Table 4, confirming our conjecture for the considered shift types. In particular, the
majority of symmetry destroying shifts is signaled by the Wilcoxon chart, while symmetry preserving shift are primarily
detected by the ordinary sign chart.
5. Selecting memory parameter k

The size and type of a shift to occur is usually unknown. To make a recommendation concerning the choice of
the smoothing parameter l, we suggest to minimize the aggregated costs arising due to delays in the shift detection. Let
the type of a coming shift be known. A unit of time delay in the shift detection causes costs assessed by the function f(a) for
each shift size a, which determines the shift vector a. The number of forecasting models K, the in-control ARL x and the
smoothing parameter l are given in advance. Then the aggregated cost function QðK ,x,lÞ is defined as a definite integral
over plausible shift sizes a. The integration goes over the cost function f(a) for a shift size a 2 A, weighted by the



Table 2

Out-of-control ARL: symmetry preserving change at t¼ 1 : ak ¼ aððk�1Þ=ðK�1Þ� 1
2Þ 2 ½�a=2,a=2�.

ARL¼20 ARL¼50

l K¼10, a l K¼10, a

0.00000 0.50000 1.00000 1.50000 2.00000 3.00000 0.00000 0.50000 1.00000 1.50000 2.00000 3.00000

0.01 19.60028 19.69670 18.73974 15.27849 11.13029 6.25072 0.01 48.76920 48.59378 41.76606 27.93143 18.00498 9.51465

0.03 19.48447 19.60250 18.67686 15.13175 10.95528 6.10737 0.03 48.45451 48.42780 41.77810 27.45127 17.17714 8.69565

0.05 19.44199 19.60988 18.71932 15.15331 10.89329 5.98944 0.05 48.25434 48.37406 42.07361 27.60007 16.88374 8.24784

0.10 19.38588 19.58132 18.85213 15.32663 10.89157 5.75893 0.10 47.93638 48.34596 43.26938 28.81158 17.06599 7.73066

0.15 19.31884 19.56379 19.02226 15.66777 11.06371 5.63595 0.15 48.21563 48.80227 44.82921 30.73193 17.95080 7.61221

0.20 19.46553 19.74742 19.34340 16.13896 11.42266 5.66675 0.20 48.06597 48.81555 45.69408 32.27298 18.88713 7.66200

0.30 19.43612 19.78508 19.68180 16.84115 12.11053 5.85156 0.30 48.42481 49.42287 47.46127 35.56324 21.30451 8.09213

0.40 19.15104 19.55927 19.65308 17.26319 12.59259 5.85716 0.40 50.25732 51.41965 50.50180 39.89270 24.87445 9.17932

0.50 19.83767 20.20352 20.58492 18.60738 14.05137 6.53431 0.50 50.73270 51.87562 51.34810 41.77188 27.03228 9.96511

0.60 19.68274 20.06781 20.56015 18.88154 14.53373 6.81980 0.60 52.19950 53.38461 53.29022 44.91702 30.35266 11.55486

0.70 20.20169 20.64659 21.25459 19.89705 15.73462 7.47826 0.70 51.99348 53.02937 53.40918 46.66598 33.27552 13.32201

0.80 22.03824 22.57759 23.61001 23.02845 19.23974 9.56083 0.80 48.14458 48.91078 49.11318 43.69659 32.42697 14.13761

0.90 24.22580 24.86369 26.39473 26.80113 23.80666 13.15424 0.90 39.60910 40.06495 40.22762 36.49299 28.42783 13.54859

1.00 24.63640 25.35809 26.82314 27.07672 23.98243 13.15259 1.00 36.78118 37.26984 37.40555 34.42117 27.42484 13.45182

l K¼20, a l K¼20, a

0.00000 0.50000 1.00000 1.50000 2.00000 3.00000 0.00000 0.50000 1.00000 1.50000 2.00000 3.00000

0.01 19.86589 19.87003 18.02964 13.33669 9.11319 4.99974 0.01 49.44389 48.79967 38.11019 22.86020 14.11445 7.32581

0.03 19.75696 19.79917 17.95895 13.14008 8.83811 4.73681 0.03 49.18394 48.79627 38.10761 22.17039 13.25763 6.63920

0.05 19.71942 19.80832 18.01483 13.13145 8.72063 4.60055 0.05 49.21149 48.81802 38.42993 22.07706 12.84287 6.22170

0.10 19.71825 19.85837 18.17834 13.18658 8.59106 4.32325 0.10 49.23137 49.25695 40.05675 22.88216 12.62620 5.67609

0.15 19.74156 19.90862 18.41202 13.47934 8.65399 4.22837 0.15 48.95840 49.36025 41.42315 24.06246 12.86480 5.42151

0.20 19.65251 19.84866 18.55765 13.74099 8.73951 4.11368 0.20 49.23015 49.71936 42.92845 25.64172 13.42666 5.32992

0.30 19.84304 20.11747 19.17873 14.59862 9.30364 4.12181 0.30 49.55791 50.30905 45.39452 28.75324 14.99644 5.42133

0.40 19.73427 20.05567 19.44040 15.27459 9.80510 4.13431 0.40 50.10639 51.14803 47.67042 32.01827 16.97363 5.66620

0.50 19.86695 20.26019 20.00117 16.22846 10.66562 4.39949 0.50 50.59096 51.78168 49.42660 35.05941 19.09688 6.06087

0.60 20.13699 20.57112 20.46927 17.18533 11.59305 4.70273 0.60 50.88171 52.15320 50.68593 37.91130 21.53843 6.60345

0.70 20.25601 20.69634 20.88507 18.01701 12.50629 5.02277 0.70 51.55943 52.85434 52.31339 40.98129 24.46498 7.49700

0.80 19.72516 20.24336 20.64255 18.34281 13.25877 5.33445 0.80 52.39329 53.71415 53.91444 44.48781 27.92917 8.67960

0.90 18.75409 19.17535 19.48190 17.41252 12.72841 5.25436 0.90 51.41379 52.78084 54.06158 47.73196 33.17276 11.68044

1.00 15.54323 15.82759 16.05248 14.77865 11.40693 5.12249 1.00 49.85812 51.39350 52.64140 46.74290 32.92739 11.72995

l K¼50, a l K¼50, a

0.00000 0.50000 1.00000 1.50000 2.00000 3.00000 0.00000 0.50000 1.00000 1.50000 2.00000 3.00000

0.01 19.89476 19.67237 15.83699 9.90225 6.27115 3.38081 0.01 49.74548 47.69886 30.30582 15.83080 9.48796 4.95398

0.03 19.88901 19.69759 15.79007 9.70781 6.08268 3.23253 0.03 49.71965 47.81579 29.92536 14.97641 8.70922 4.42106

0.05 19.92314 19.71931 15.78194 9.60143 5.92691 3.10558 0.05 49.74746 48.07976 30.09454 14.58493 8.25442 4.08829

0.10 19.90656 19.78243 15.89579 9.49526 5.68553 2.87978 0.10 49.58469 48.48320 31.32656 14.47540 7.70191 3.62905

0.15 19.89467 19.83994 16.13000 9.54430 5.57249 2.72681 0.15 49.70227 48.85244 32.84608 14.89394 7.54442 3.37378

0.20 19.88522 19.92806 16.40574 9.71117 5.55243 2.65383 0.20 49.67838 49.26425 34.54924 15.60298 7.57889 3.21880

0.30 19.88479 19.96154 16.94204 10.17160 5.59692 2.44671 0.30 49.82497 49.87007 37.44485 17.42635 7.95397 3.03560

0.40 19.93878 20.11583 17.58823 10.85179 5.87699 2.45063 0.40 49.93258 50.34894 40.06287 19.60381 8.63677 2.96332

0.50 19.90873 20.10312 18.03229 11.50491 6.15550 2.36629 0.50 50.43357 51.01658 42.56432 22.21697 9.72014 3.06935

0.60 20.09332 20.38608 18.70434 12.45404 6.71739 2.45562 0.60 50.56973 51.37337 44.58020 24.78845 10.86653 3.08748

0.70 20.17565 20.51142 19.20984 13.31081 7.28713 2.54636 0.70 50.73887 51.75811 46.44530 27.52804 12.41186 3.31549

0.80 19.82919 20.20361 19.24596 13.82937 7.63564 2.44549 0.80 51.02152 52.18384 48.11942 30.56010 14.30156 3.61187

0.90 19.68829 20.08432 19.46914 14.77178 8.56031 2.69316 0.90 50.89111 52.14974 49.28327 33.27292 16.46080 4.16153

1.00 17.76410 18.09398 17.61118 13.70807 8.25134 2.68951 1.00 41.16804 41.86201 39.68100 27.85028 14.66149 3.78943
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corresponding out-of-control ARLs, which represent detection delays. This aggregated cost function is

QðK ,x,lÞ ¼
Z

a2A
f ðaÞE1ðLjK ,x,l,aÞ da: ð12Þ

The out-of-control ARL E1ðLjK ,x,l,aÞ is calculated for the given shift size a. Then the optimal smoothing l is chosen by
minimizing the aggregate cost function Qð�Þ:

l�ðx,KÞ ¼ argmin
l
QðK ,x,lÞ: ð13Þ

The weighting function f(a) corresponds to the penalty for a time unit of detection delay given the shift size a. Thus the
function f(a) can be interpreted as the utility loss caused by a detection delay. The weighting function is either f(a)¼1 with
an equal penalty for all shift sizes, or f(a)¼a with a penalty proportional to the shift size a. The function f(a)¼1
overweights smaller shifts, while the function f(a)¼a underweights smaller shifts in favour of larger ones.



Table 3

Out-of-control ARL: symmetry destroying change at t¼ 1 : ak ¼ ða=2Þðk�1Þ=ðK�1Þ 2 ½0,a=2�.

ARL¼20 ARL¼50

l K¼10, a l K¼10, a

0.00000 0.50000 1.00000 1.50000 2.00000 3.00000 0.00000 0.50000 1.00000 1.50000 2.00000 3.00000

0.01 19.60028 12.64752 7.63773 5.46913 4.37208 3.35591 0.01 48.76920 22.14103 11.95758 8.30353 6.55287 4.95005

0.03 19.50394 12.44870 7.40493 5.26680 4.18553 3.18066 0.03 48.42725 21.31457 11.06435 7.54259 5.89332 4.41727

0.05 19.44930 12.33677 7.24813 5.10314 4.03192 3.04575 0.05 48.21853 21.05438 10.56822 7.09060 5.48762 4.06928

0.10 19.37847 12.25445 7.00802 4.82526 3.76028 2.78760 0.10 47.84236 21.42108 10.09031 6.50503 4.93058 3.59320

0.15 19.32661 12.34330 6.92318 4.67034 3.58676 2.62320 0.15 48.22995 22.36943 10.10059 6.27281 4.65088 3.31160

0.20 19.44528 12.53728 6.94297 4.60200 3.49412 2.53674 0.20 48.05984 23.57464 10.37386 6.23021 4.51484 3.13970

0.30 19.42306 13.11655 7.20929 4.64224 3.44994 2.46446 0.30 48.47600 26.33266 11.37581 6.42159 4.45341 2.95259

0.40 19.17107 13.45056 7.44051 4.66660 3.36097 2.28428 0.40 50.39597 29.78925 13.05560 7.02507 4.66078 2.93849

0.50 19.80030 14.38888 8.09498 4.96925 3.49198 2.28635 0.50 50.69887 32.89277 15.15178 7.92531 5.02916 2.99213

0.60 19.69624 14.94556 8.68479 5.27064 3.60014 2.22755 0.60 52.26348 36.64557 18.04344 9.35186 5.70241 3.14064

0.70 20.20494 15.91038 9.67483 5.89426 3.94716 2.34349 0.70 51.91704 39.23960 21.03479 11.10328 6.57723 3.31605

0.80 22.02916 17.81253 11.11141 6.74439 4.41988 2.45444 0.80 48.13347 39.47621 24.19518 13.62870 8.13344 3.89182

0.90 24.22228 20.05384 12.93563 7.99425 5.20461 2.75284 0.90 39.63152 35.13027 25.02757 15.84429 9.91040 4.62818

1.00 24.65084 21.19967 14.79226 9.59209 6.33229 3.23891 1.00 36.75233 33.81236 26.54786 18.61948 12.49611 6.00820

l K¼20, a l K¼20, a

0.00000 0.50000 1.00000 1.50000 2.00000 3.00000 0.00000 0.50000 1.00000 1.50000 2.00000 3.00000

0.01 19.86589 9.94343 5.58301 3.96975 3.18786 2.43125 0.01 49.44389 16.13112 8.41908 5.87341 4.66915 3.56229

0.03 19.75422 9.68760 5.35587 3.78083 3.02117 2.30156 0.03 49.24400 15.20011 7.66118 5.26555 4.15730 3.19083

0.05 19.76241 9.55594 5.19639 3.63213 2.88959 2.21568 0.05 49.12230 14.76853 7.21119 4.89396 3.83998 2.94355

0.10 19.73294 9.37744 4.91750 3.37976 2.66934 2.09760 0.10 49.16393 14.60205 6.62555 4.36363 3.37667 2.50741

0.15 19.74551 9.39141 4.77761 3.22840 2.53694 1.99894 0.15 49.00175 14.98654 6.39956 4.08573 3.11340 2.29881

0.20 19.66345 9.48501 4.69480 3.11596 2.42786 1.86863 0.20 49.17192 15.62415 6.33688 3.93449 2.95663 2.19926

0.30 19.79758 9.89203 4.68718 3.00073 2.28141 1.67380 0.30 49.59219 17.44140 6.52994 3.81544 2.78865 2.04253

0.40 19.74978 10.36555 4.78227 2.93884 2.16668 1.51550 0.40 50.13081 19.62236 7.00501 3.84710 2.70982 1.88449

0.50 19.89572 10.99932 5.00775 2.95609 2.11409 1.43359 0.50 50.65170 22.10425 7.75047 4.00621 2.69746 1.78266

0.60 20.11189 11.79146 5.36115 3.05715 2.12243 1.39773 0.60 50.94679 24.69163 8.72885 4.26929 2.72928 1.67894

0.70 20.21547 12.55742 5.80744 3.20651 2.15129 1.36731 0.70 51.57735 27.65289 10.13519 4.72342 2.85493 1.63440

0.80 19.74706 12.98276 6.18498 3.33320 2.15077 1.31616 0.80 52.31019 30.80337 12.00106 5.46757 3.12755 1.66016

0.90 18.75939 13.30687 6.79554 3.65734 2.29061 1.33418 0.90 51.45476 33.38447 14.27889 6.50525 3.55500 1.71408

1.00 15.52319 12.12214 6.96564 3.89233 2.40579 1.33702 1.00 49.97204 35.03354 16.57566 7.74305 4.11940 1.79746

l K¼50, a l K¼50, a

0.00000 0.50000 1.00000 1.50000 2.00000 3.00000 0.00000 0.50000 1.00000 1.50000 2.00000 3.00000

0.01 19.89476 6.72243 3.65504 2.62914 2.15896 1.92815 0.01 49.74548 10.30455 5.36844 3.80499 3.09187 2.32106

0.03 19.90820 6.49522 3.47884 2.49554 2.08398 1.78373 0.03 49.72437 9.47694 4.80644 3.38677 2.73009 2.06063

0.05 19.88931 6.33391 3.34115 2.39608 2.01738 1.61976 0.05 49.71101 9.00170 4.45841 3.11790 2.47854 2.01469

0.10 19.87615 6.06601 3.10367 2.21709 1.84619 1.30838 0.10 49.66221 8.43870 3.95608 2.71595 2.18737 1.89756

0.15 19.89123 5.95129 2.95060 2.08442 1.68908 1.16080 0.15 49.59049 8.29734 3.68928 2.50490 2.04681 1.61405

0.20 19.88775 5.92140 2.84613 1.97685 1.56311 1.09089 0.20 49.75942 8.36393 3.52958 2.36838 1.91921 1.37823

0.30 19.88437 5.97732 2.70490 1.81312 1.39192 1.03654 0.30 49.78038 8.84628 3.37484 2.17844 1.69282 1.15107

0.40 19.95708 6.22347 2.64144 1.70619 1.29712 1.01893 0.40 49.87475 9.66628 3.34298 2.04987 1.53754 1.07353

0.50 19.87692 6.53293 2.61710 1.63357 1.23792 1.01154 0.50 50.46588 10.79914 3.41248 1.97653 1.44267 1.04442

0.60 20.10326 6.98913 2.65527 1.59453 1.20291 1.00825 0.60 50.63746 12.15048 3.55175 1.93271 1.37444 1.02881

0.70 20.15095 7.51898 2.74158 1.58329 1.18450 1.00639 0.70 50.61098 13.78556 3.80303 1.93469 1.34029 1.02155

0.80 19.84190 8.02550 2.83788 1.57459 1.16756 1.00511 0.80 51.01141 15.78248 4.20386 1.97940 1.32617 1.01817

0.90 19.70039 8.70812 3.03869 1.59985 1.16549 1.00465 0.90 51.01053 18.05070 4.77285 2.07203 1.32739 1.01609

1.00 17.75387 9.09074 3.30061 1.64974 1.16943 1.00446 1.00 41.09257 18.86873 5.45429 2.22079 1.34496 1.01498
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The practically relevant shift magnitudes (e.g., in engineering applications) can be characterized by the interval
a 2 ½0:04,4� (cf. Montgomery, 2005, p. 217ff). Since the out-of-control ARLs E1ðLjK ,x,l,aÞ cannot be calculated explicitly, we
replace the integral Qð�Þ by the sum Q�ð�Þ over the set of shifts A¼ fa1 ¼ 0:04,a2 ¼ 0:08, . . . ,ana ¼ 4:00g, which consists of
na ¼ jAj ¼ 100 elements. Then the integral in (12) is represented by the sum of the corresponding rectangles:

QðK ,x,lÞ �Q�ðK ,x,l,naÞ ¼
X

ai

f ðaiÞE1ðLjK ,x,l,aiÞða
�
i�a�i�1Þ, i¼ 1, . . . ,na,

where a�i ¼ ðaiþ1þaiÞ=2, a0¼0 and anaþ1 ¼ 4:04. Consequently,

Q�ðK ,x,l,naÞ ¼ n�1
a ðana�a0Þ

X
ai

f ðaiÞE1ðLjK ,x,l,aiÞ:



Table 4

Signal proportions given by T-chart for symmetry preserving ak ¼ aððk�1Þ=ðK�1Þ� 1
2Þ (left) and symmetry destroying ak ¼ ða=2Þðk�1Þ=ðK�1Þ (right) shifts

at t¼ 1.

ARL¼50, K¼20, a-preserving ARL¼50 K¼20, a-destroying

l\a 0.50000 1.00000 1.50000 2.00000 3.00000 l\a 0.50000 1.00000 1.50000 2.00000 3.00000

0.01 0.47357 0.30548 0.10671 0.02491 0.00041 0.01 0.92821 0.98768 0.99581 0.99765 0.99751

0.03 0.47201 0.30649 0.11235 0.02857 0.00068 0.03 0.91664 0.98342 0.99366 0.99595 0.99628

0.05 0.46925 0.31033 0.11637 0.03165 0.00098 0.05 0.90817 0.97991 0.99168 0.99465 0.99474

0.10 0.46790 0.31815 0.12467 0.03560 0.00156 0.10 0.89101 0.97196 0.98747 0.99175 0.99363

0.15 0.46127 0.32285 0.13047 0.03802 0.00196 0.15 0.87505 0.96527 0.98334 0.98863 0.99129

0.20 0.45830 0.32707 0.13652 0.03998 0.00218 0.20 0.86073 0.95972 0.98035 0.98648 0.99125

0.30 0.44862 0.33022 0.14553 0.04351 0.00261 0.30 0.83232 0.95009 0.97527 0.98378 0.98880

0.40 0.43903 0.33056 0.15334 0.04666 0.00273 0.40 0.80167 0.93723 0.96766 0.97660 0.97728

0.50 0.42730 0.32718 0.15887 0.04999 0.00273 0.50 0.76824 0.92378 0.96064 0.97215 0.97872

0.60 0.41403 0.32133 0.16363 0.05403 0.00320 0.60 0.72963 0.90139 0.94550 0.95667 0.95761

0.70 0.40591 0.31997 0.17142 0.05899 0.00361 0.70 0.69490 0.88457 0.93836 0.95444 0.96117

0.80 0.39968 0.31783 0.17832 0.06447 0.00399 0.80 0.66090 0.86399 0.92943 0.94974 0.96072

0.90 0.38555 0.31196 0.18676 0.07577 0.00556 0.90 0.61645 0.83195 0.91463 0.94326 0.96065

1.00 0.39501 0.32187 0.19429 0.07987 0.00604 1.00 0.59156 0.80118 0.89328 0.92899 0.95473

Fig. 4. Weighted costs of delay in detection E1ðLjK ¼ 20,x¼ 50,l,aÞ (left) and aE1ðLjK ¼ 20,x¼ 50,l,aÞ (right) as functions of shift a for different values of l
for shift I (above) and shift II (below) with lr0:8.
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Fig. 4 plots the weighted costs of delay in the detection E1ðLjK ¼ 20,x¼ 50,l,aÞ and a � E1ðLjK ¼ 20,x¼ 50,l,aÞ in dependence
on the shift size a for different values of the smoothing parameter l. Fig. 4, left, shows the importance of small shift
detection for the equal penalty function, whereas shifts of size about a� 1, see Fig. 4 right, are more costly for the
proportional penalties.

The suggested criterion for the choice of l from the set f0:01, . . . ,0:8g should minimize the aggregate cost function Qð�Þ
in (12), which corresponds to the area under the curves.

Using the approximation Q�ð�Þ, we provide evidence about the optimal ls given a cost function f(a). The optimal values
of l for shifts of type I and II are presented in Table 5 for f(a)¼1 and in Table 6 for f(a)¼a. The upper parts of the tables
show the results for all shifts A¼ f0:04, . . . ,4g, while the middle and lower parts report the values for the small shifts
Asmall ¼ f0:04, . . . ,1g and large shifts Alarge ¼ f1, . . . ,4g, respectively.



Table 5

Optimal ls for all (upper panel), small (middle panel) and large (lower panel) shifts, f(a)¼1.

ARL All shifts I, A¼ f0:04, . . . ,4g All shifts II, A¼ f0:04, . . . ,4g

20 30 40 50 60 100 20 30 40 50 60 100

K

10 0.1 0.1 0.1 0.05 0.05 0.05 0.2 0.2 0.15 0.15 0.1 0.1

20 0.1 0.1 0.05 0.05 0.05 0.05 0.4 0.2 0.15 0.15 0.15 0.1

50 0.15 0.1 0.1 0.1 0.05 0.05 0.3 0.3 0.2 0.2 0.2 0.1

Small shifts I, Asmall ¼ f0:04, . . . ,1g Small shifts II, Asmall ¼ f0:04, . . . ,1g

10 0.1 0.1 0.05 0.05 0.03 0.03 0.15 0.1 0.1 0.05 0.05 0.05

20 0.03 0.03 0.03 0.03 0.03 0.01 0.15 0.1 0.1 0.1 0.05 0.05

50 0.01 0.03 0.01 0.03 0.03 0.01 0.2 0.15 0.1 0.1 0.1 0.05

Large shifts I, Alarge ¼ f1, . . . ,4g Large shifts II, Alarge ¼ f1, . . . ,4g

10 0.1 0.1 0.1 0.05 0.05 0.05 0.4 0.3 0.3 0.3 0.2 0.2

20 0.1 0.1 0.1 0.1 0.05 0.05 0.5 0.5 0.5 0.4 0.4 0.3

50 0.15 0.15 0.15 0.1 0.1 0.1 0.7 0.6 0.6 0.6 0.6 0.6

Table 6

Optimal ls for all (upper panel), small (middle panel) and large (lower panel) shifts, f(a)¼a.

ARL All shifts I, A¼ f0:04, . . . ,4g All shifts II, A¼ f0:04, . . . ,4g

20 30 40 50 60 100 20 30 40 50 60 100

K

10 0.15 0.1 0.1 0.1 0.1 0.05 0.4 0.3 0.3 0.2 0.2 0.15

20 0.2 0.15 0.15 0.1 0.1 0.05 0.5 0.5 0.4 0.4 0.4 0.2

50 0.3 0.2 0.15 0.15 0.1 0.1 0.5 0.5 0.5 0.4 0.4 0.4

Small shifts I, Asmall ¼ f0:04, . . . ,1g Small shifts II, Asmall ¼ f0:04, . . . ,1g

10 0.03 0.05 0.03 0.03 0.03 0.01 0.15 0.1 0.1 0.1 0.05 0.05

20 0.03 0.03 0.03 0.03 0.01 0.01 0.15 0.15 0.1 0.1 0.1 0.1

50 0.01 0.03 0.03 0.03 0.03 0.01 0.3 0.2 0.2 0.15 0.15 0.1

Large shifts I, Alarge ¼ f1, . . . ,4g Large shifts II, Alarge ¼ f1, . . . ,4g

10 0.15 0.1 0.1 0.1 0.1 0.05 0.4 0.3 0.3 0.3 0.3 0.3

20 0.2 0.15 0.15 0.1 0.1 0.1 0.5 0.6 0.6 0.6 0.5 0.5

50 0.3 0.2 0.2 0.15 0.15 0.1 0.8 0.7 0.7 0.7 0.7 0.6
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The results from Tables 4 and 5 suggest that the optimal l should be smaller for the cost function f(a)¼1 than for the
function f(a)¼a. The optimal ls are larger for situations with symmetry preserving shifts than for symmetry destroying
shifts. The latter finding corresponds to the evidence that the out-of-control ARLs are larger for type I shifts than for type II
shifts. If there is no prior information about the size and type of the shift, we recommend a smoothing parameter between
0.05 and 0.3 relying on the function f(a)¼1, and between 0.1 and 0.5 relying on the function f(a)¼a. For small shifts the
corresponding optimal ls belong to the intervals [0.03,0.15] and [0.03,0.2], respectively. For large shifts the optimal ls
refers to the intervals [0.1,0.6] and [0.1,0.7] for f(a)¼1 and f(a)¼a functions.

The visual presentation of the aggregate cost functions Q�ðK ¼ 20,x,lÞ provides the information concerning their sensitivity
with respect to the choice of l. Fig. 5 shows the aggregated costs Q�ðK ¼ 20,x,lÞ, calculated as n�1

a ðana�a0Þ
P

ai
E1ðLjK ¼ 20,

x,l,aiÞ and n�1
a ðana�a0Þ

P
ai

aiE1ðLjK ¼ 20,x,l,aiÞ, for different in-control ARLs x in dependence on l. Evidence from Fig. 5
suggests that the aggregate cost criterion is quite insensitive to ls from the recommended intervals, namely [0.05;0.3] for
f(a)¼1 and [0.1;0.5] for f(a)¼a functions. Thus our procedure shows robustness with respect to the suboptimal choices of l for
the considered cost functions f(a).

6. Summary

A sequential monitoring approach is developed for online decisions about the validity of the equal predictive ability
(EPA) hypothesis for a large number of competing forecasting models or forecasters. It combines two nonparametric
EWMA control charts based on the Wilcoxon signed rank test and the ordinary sign test statistics. A signal from the
introduced simultaneous control chart would indicate that the EPA validity is statistically rejected starting from this point
in time. Our monitoring scheme shows sound detecting properties for important types of shifts violating the EPA.



Fig. 5. Aggregated costs of detection delay n�1
a

P
ai

E1ðLjK ¼ 20,x,l,aiÞ (left) and n�1
a

P
ai

aiE1ðLjK ¼ 20,x,l,aiÞ (right) as functions of l for different values of x
for shift I (above) and shift II (below).

                                                                              3180
Moreover, it is parsimonious and robust against suboptimal choices of the control chart parameters. Recommendations
concerning the optimal design of the procedure are provided based on aggregated costs due to delays in shift detections.
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