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STOCHASTIC MODELS WITH  
MULTISTABILITY AND EXTINCTION LEVELS*  

FRITZ C O L O N I U S ~ ,  F. JAVIER DE LA R U B I A ~ ,AND WOLFGANG K L I E M A N N ~  

Abstract. For differential equations perturbed by functions of bounded, stationary Markov 
diffusion processes, the region of multistable points is characterized via controllability properties of 
an associated control system. This region is given as the union of the domains of attraction for finitely 
many relatively invariant control sets. For singular systems, i.e., systems with common limit sets for 
all perturbations, the concept of extinction levels, where the system is absorbed, is introduced. The 
qualitative theory of stochastic systems, including multistability, is developed for this class of models. 
Various examples, including a random Lotka-Volterra model and the Lorenz system, are analyzed. 
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1. Introduction. Recently, the phenomenon of bistability (or, better, multista- 
bility) in stochastic systems has attracted considerable attention. A point is multi- 
stable if the system response from this point exhibits different limit behavior, each 
with positive probability. While in deterministic systems the trajectory from an initial 
point converges to its unique limit set (or possibly to m), in systems with random 
excitation the limit set may not be unique, leading to  multistability. This behavior 
is typically observed in systems with a combination of stable and unstable limit sets. 
The Duffing oscillator with its fourth-order potential exhibits bistability under random 
excitation (see, e.g., [31] for a discussion of relative stability under white noise exci- 
tation); the mechanics of ship roll motion in random seas leads to a damped version 
of the Duffing oscillator with two bistable bands (see, e.g., [30] and [I l l ) .  Models of 
chemical reactors with Arrhenius dynamics (see, e.g., [27]) and the Takens-Bogdanov 
oscillator (modeling the motion of a thin panel in a flow [If.?], population dynamics 
[5], or solar gravity [23]) both exhibit the limit set structure that allows us to predict 
bistability under certain random excitations. In fact, using the results of this paper, 
the studies [8] (for chemical reactors) and [ll](for the Takens-Bogdanov oscillator) 
can be interpreted as multistability studies. In this paper we characterize the set of 
multistable points and the possible system response from these points. 

A second phenomenon in stochastic systems that deserves more attention is 
the levels of extinction. Often models with continuous state space are used as ap- 
proximations for discrete events, e.g., in population dynamics or chemical reactions. 
Extinction (or absorption) in these systems will occur already when the solution of the 
continuous model is still a finite distance away from the absorption level; in particular, 
extinction may occur in finite time. Think, for example, of the extinction of species 
with too few offsprings or the dying out of a chemical reaction if the concentration 
of one of the reactants is too low. To avoid mathematical artifacts in approximating 
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continuous models, we will introduce the concept of "extinction levels," i.e. small 
sets in the state space, in which the stochastic system is stopped. A theory of global 
qualitative behavior for these systems will be developed in this paper. 

More precisely, we consider noisy dynamical systems of the form 

(1.1) ~ ( t )= X(x( t ) ,  rl(t)) on M,  
where M is a finite-dimensional, connected C"" manifold and X is a C" vector field 
on M. The noise process ~ ( t )  is determined by a stochastic differential equation 

k 

dE(t) = Y,(E(t))dt + ~ ( [ ( t ) )0 dWi on N, 
i=1 

(1.2) V(t) = F([(t)) 

where N is a finite-dimensional, connected C"" manifold; Y, ,  j = 0, . . . , k ,  are C" 
vector fields on N;  "on denotes the symmetric (StratonoviC) stochastic differential; 
and F: N -+ U c Rm is a surjective C" function. We assume throughout that (1.2) 
has a stationary, ergodic solution and satisfies the nondegeneracy condition 

(A) dim LA{Yl, . . . , Yk}(p) = dim N for all p E N. 

Here LA{.} denotes the Lie algebra of a set of vector fields, and dim LA{.)(p) is 
the dimension of the (differential geometric) distribution generated by LA{.} in the 
tangent space T,N of N at the point p E N .  We refer the reader to [4] for details on 
manifolds, vector fields, and Lie algebras of vector fields; to [18] for details on stochastic 
differential equations on manifolds; and to [21] for a more detailed description of this 
setup. 

We chose the StratonoviC version of stochastic differential equations for the back- 
ground noise [(t) in (1.2), because one of our main tools, the support theorem, uses 
this version. Any Ito stochastic differential equation with smooth coefficients can be 
transformed into a corresponding StratonoviC equation; see, e.g., [18] for the correc- 
tion formula. This formula affects only the drift of the process; hence assumption 
(A) holds for the Ito version iff it holds for the StratonoviT. versions. Consequently, 
all results in this paper concerning regions of the state space M in which the system 
(1.1) has a specific behavior (like stationarity, transience, multistability, or extinction) 
are the same for both the It6 and the StratonoviE versions. Differences between the 
two versions will only show up in the simulated trajectories (see equation (4.3) and 
Figures 4, 10, and 11) and the statistical results based on the simulations, such as the 
extinction probabilities in Figure 7. Note furthermore that the noise process ~ ( t )  in 
our setup can be bounded or unbounded. 

The pair process (x(t) ,  [(t)) from (1.1), (1.2) is a Markov diffusion process if the 
initial condition is independent of the a-algebra generated by the Wiener process W;  
see, e.g., [18]. Note that the component x(t) itself is, in general, not a Markov process. 

We are interested in the qualitative behavior of the stochastic dynamical system 
(1.1), in particular in stationary solutions (i.e., invariant probability measures), areas 
of multistability, convergence toward stationary solutions, and change of behavior 
depending on parameters of the system (stochastic bifurcations). We will analyze this 
behavior in the context of the Markov process (x(t) ,  [(t)),  i.e., on the level of invariant 
distributions and convergence in distribution, and then "project" the results onto 
the x(t)-component. This allows us to interpret the results in a physically meaning- 
ful way. 
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When considering stochastic dynamical systems of the form (1.1) as components 
of a Markov diffusion process, two different cases have to be distinguished. 

Regular systems are systems for which the supports of the transition probabilities 
from each point (x, p) E M x N have nonvoid interior in M x N ;  i.e., they form "thick" 
sets in the state space of the Markov process. A sufficient condition to guarantee this 
fact in terms of the vector fields is (compare 1211) 

(B) dim CA{(X, Yo), Y I ,. . . , Yk)(x,p) = dim M + dim N for all (x,p) E M x N. 

Assumption (B) can be relaxed somewhat, if one is willing to assume conditions 
on the transition semigroup of the Markov process (see, e.g., [24]), but we will stick 
here to assumptions that can be verified directly via the given vector fields. 

Singular systems are systems for which there exist invariant sets I c M with 
empty interior. Typical examples are common fixed points for all noise trajectories, 
i.e., points x* E M with X(x*,  q) = 0 for all q E U, or common lower dimensional 
manifolds, i.e., X(x,  7 )  is tangential to I for all 77 E U. Systems of this type are 
quite common in physics, biology, chemistry, and engineering; compare the examples 
in $4.  In many situations, these systems behave in a small neighborhood of the set 
I as if they were absorbed to I, although in the mathematical model the trajectories 
will not reach the lower dimensional, invariant set from the outside with probability 
one. A theory of global qualitative behavior for these systems will be developed using 
the concept of "extinction levels." In particular, we consider aspects of stationarity, 
convergence, multistability, and bifurcations in the Markovian context. An example 
for a model with extinction level was treated in [25]. 

In $ 2  we analyze the regions of multistability for regular systems, after a brief 
review of some analytical tools needed for our analysis. Section 3 is devoted to singular 
systems with levels of extinction, and in § 4 we present some examples that show, in 
particular, how the stochastic bifurcation picture can change when extinction levels 
are present. 

2. Multistability in regular stochastic systems. In this section we will char- 
acterize the. region of multistability for regular stochastic systems. The basic math- 
ematical tool of our approach is the analysis of associated control systems and their 
relation to stochastic systems via the celebrated "support theorem"; see, e.g., [29] or 
[22]. We first introduce some notation. 

W(t)  is a standard, k-dimensional Wiener process on a probability space (R, F, 
P ) .  For a Markov process {z(t), t 2 0) on R with topological state space L the family 
of transition probabilities is denoted by P ( t ,  z, A), A E B(L) the Bore1 a-algebra on 
L. A probability measure y on (L, B(L)) is said to be invariant for z(t) if P ty  = y for 
all t 2 0, where {Pt, t 2 0) is the associated Markov semigroup of operators. 

To the stochastic dynamical system (1.1), (1.2) we associate a nonlinear control 
system of the form 

with u E U := {u: [0, cm)-+U; u piecewise constant ). Since we are interested in the 
long-term behavior of the stochastic system, we assume that all solutions p( t ,  x ,  u) of 
(2.1) with (x, u) E M x U,cp(0, x, u) = x are unique and defined for all t 2 0. The 
control sets of (2.1) play an important role in the analysis of the global behavior of the 
stochastic system (1.1); see, e.g., 1201 and [21]. We recall some facts for easy reference. 
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The (positive) orbit of a point x E M up to time t for the control system (2.1) is 
O:,(x) = {y E M; there exist s E [0, t] and u E U with cp(s, x, u) = y), and we set 
-

O+(x) = uOZt- (x). 
t20 

DEFINITION2.1. A set D c M is a control set of (2.1) if 
(i) D c cl O+(x) for all x E D ( (kl" denotes the closure of a set), 

(ii) there exist u E U and x E D with cp(t, x, u) E D for all t > 0, 
(iii) D is maximal (with respect to set inclusion) with the properties (i) and (ii). 

A set L c M is invariant for (2.1) if the orbits for all x E L are contained in the 
closure of L, i.e. Of (x) c cl L for all x E L. In particular, a control set C C M is 
an invariant control set if clOf (x) = cl C for all x E C .  

The domain of attraction A(A) of a set A c M is given by all points x E I11 for 
which there exists a control u that steers x arbitrarily close to A; i.e., for a control set 
D cM we define 

Let D = {D c M;D is a control set of (2.1)) be the set of control sets for the 
control system. On D a natural order is defined through reachability; i.e., for D l ,  D2 
D we set 

(2.3) Dl 4 D2 if there exists x E Dl with cl O+(x) n D2 # a). 

Because of Definition 2.l(iii) this means that any point x E D l  can be steered 
approximately by proper choice of a control u(x) to D2,  but not vice versa if Dl  # D2. 
Note that the invariant control sets are maximal elements in D in this order. 

For the rest of this section we assume that the stochastic system (1.1), (1.2) is 
regular, i.e., that assumptions (A) and (B) hold. Then we can characterize the possible 
limit behavior of the stochastic system, i.e., its stationary solutions and invariant 
measures as follows (compare [20]). A solution xO(t)  of (1.1) is called a stationary 
Markov solution if the pair process (xO(t),  ( ( t ))  is a Markov solution of (1.1), (1.2) 
that is (strictly) stationary. The stationary Markov solutions of (1.1) are determined 
through invariant control sets of (2.1) in the following way. Equation (1.1) has a 
stationary Markov solution iff (1.1), (1.2) admits an invariant probability measure. 
Any ergodic invariant probability p has support suppp = C x N ,  where C is an 
invariant control set of (2.1), and p is unique on C x N. Recall that all invariant 
probability measures are convex combinations of the ergodic ones. An invariant control 
set C with the property that C x N is the support of an invariant probability measure 
is called an ergodic control set. While invariant control sets are not always ergodic, we 
note that the compact ones always have this property. Hence, if all invariant control 
sets of (2.1) are compact, then there is a one-to-one correspondence between ergodic, 
stationary Markov solutions and invariant control sets. 

Having identified the stationary Markov solutions of the stochastic system, we 
turn to the behavior of the individual solutions x(t ,xo)  of (1.1) with initial value 
xo E M and their convergence toward the stationary limiting solutions. Here solution 
means that the pair (x(t,x,),((t,(,)) for (x0,(,) E M x N is a Markov solution of 
(1.1), (1.2). Since the noise component ((t) is independent of the x-component and 
assumed to be uniquely ergodic, ((t, 5,) will tend, for any initial value toE N, in 
distribution to the unique invariant measure of (1.2). Therefore it suffices to analyze 
x(t,  xo). 
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A blarkov process z( t)  with topological state space L is said to converge to  m 
(notation: z(t) -+ cm)if z(t) is transient on any compact set K C L. Note that 
processes in compact invariant sets cannot converge to m;this holds, in particular, if 
L itself is compact. 

The solution x(t, xo) of (1.1) is said to converge to a closed set A c M if its first 
hitting time rA(x0) = inf{t 2 0; x(t, x,, w )  E A )  is finite with positive probability. 
Note that if A is an invariant set of (2.1), then the trajectories of (1.1) that enter A 
will stay in A for all later times. We introduce the following notation. 

c = { C  c M ; C is an invariant control set ) and Ce are those invariant control 
sets of (2.1) such that for C E cewe have that C x N is the support of some ergodic, 
invariant probability of (1. I ) ,  (1.2). 

pc(xo) = P{rc(x0) < m )  is the probability that the first hitting time of C for 
the solution with initial value x, E M is finite. 

pw(xo)= P{x(t, x,) -+ m )  is the probability that x(t,  x,) converges to m .  Note 
that under assumption (B) the control system (2.1) has at most countably many in- 
variant control sets (see, e.g., [20]). The following theorem summarizes some pertinent 
results from [20]. 

THEOREM Consider the stochastic system (1.1), (1.2) under assumptions 2.2. 
(A) and (B). 

(i) For all x, E M we have pw(xo)+ CcEC,pc(z,) = 1. 
(ii) For x, E M and C E c it holds that pc(x,) > 0 i f f  xo E A(C). 

(iii) For C E Ce denote by p c  the unique ergodic invariant measure of (1.1), (1.2) 
with supppc  = C x N If  Zcccepc(x0) = 1, then (x(t ,xo) , t ( t ) )2Z p c ( x 0 ) p c  
as t -+ m, where ==+ denotes convergence i n  distribution. 

n 
This result says that for any initial value x, E M the solution of the stochastic 

system (1.1) converges either to ergodic control sets or to m;no other limit behavior 
is possible. Furthermore, convergence toward an invariant control set C occurs with 
positive probability if and only if the initial value x, is in the control theoretic domain 
of attraction of C as defined in (2.2). Therefore, in compact, invariant sets L c M 
it suffices to compute the invariant control sets and their domains of attraction in 
order to describe the long-term behavior of the solutions of (1.1) completely. Now the 
obvious question arises. For which x, E M does there exist exactly one C E Ce with 
pc(x,) > O? This is the problem of multistability. 

DEFINITION2.3. A point x, E M is said to be multistable, if there exist different 
stationary solutions (x l ( t ) ,  [(t)) and (x2(t), [(t)) with invariant probability measures 
p1 and p2 such that p,,pp,~(xo) > 0 for i = 1,2.  The set of multistable points is 
denoted by M S .  

By Theorem 2.2, multistability can occur only when (2.1) has more than one 
ergodic control set. The following proposition shows that this condition is in fact 
equivalent to M S  # 0 in compact, invariant sets of (2.1). 

PROPOSITION Consider the stochastic system (1.1), (1.2) under assumptions 2:4. 
(A) and (B), and let L C M be a compact, invariant set. Then there exists a multi- 
stable point x, E L iff the system (2.1) has at least two ergodic control sets. 

Proof. If x, E M is multistable, then (2.1) has at least two ergodic control sets, 
since ergodic invariant probability measures on control sets are unique. 

Assume that (2.1) has two ergodic control sets, say C1 and C2, in L. Then 
A(C1) # L, and there exists y E dA(Cl) r- L, where BA(C1) denotes the boundary of 
A(C1). By Theorem 2.2(i) there exists an invariant (and hence ergodic) control set 
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C3 c L with pc3 (y) > 0. Under assumption (B) all invariant control sets have nonvoid 
interior, and therefore there exist a control u E U and a time t3 > 0 with cp(t3, y, u) E 
int C3. By continuous dependence of the solutions of ordinary differential equations on 
the right-hand side, there exists a continuous function v :  [0, ts + 11 -+ U with an Lm- 
neighborhood V(v) and a neighborhood B(y) c L such that p(t3 + 1,z , w) E intC3 for 
all z E B(y) and all w E V(v). Now by [22], P{F-lV(v)) > 0, and thus pc,(z) > 0. 
Pick z E B(y) n A(Cl); then by Theorem 2.2(ii) z is a multistable point. U 

Remark 2.5. The concept of multistability, as defined in Definition 2.3, is the 
standard one used in the physics literature (there often called "bistability"). To prove 
results for this concept, we must consider a compact, invariant set L C M in Propo- 
sition 2.4 and in the results that follow in this section. If one generalizes Definition 
2.3 to allow for p,(x,) > 0 as one of the possible limit behaviors from x,, then the 
compactness assumption is not necessary. This generalization is straightforward and 
left to the reader. 

Proposition 2.4 gives a criterion for the existence of multistable points. We now 
proceed to  describe the set M S  more precisely. To avoid certain degeneracies at the 
boundary dL of the compact, invariant set L c M ,  we require that all limit sets of 
the control system (2.1) be (uniformly) bounded away from dL. The following strong 
invariance condition turns out to be sufficient: 

L = cl(int L) ,  and for all x E M S  n int L there exists ~ ( x )  > 0 
such that whenever cp(t, x, u) E M S  for some t 2 0, u E U then 

(c)  d(q(t ,  x. u ) ,  dL) 2 ~ ( x ) :there exists €0 > 0 such that for all 
x E cl M S  and u E U we have that if y = lim y ( t k , x , u )  M S  

k-00  
for some sequence tk  -+ co,then d(y, dL) 2 to. 

Here d( . , .) denotes the metric on the state space M .  
The set M S  of multistable points has some obvious topological properties, which 

we list next. Note that in a compact invariant set L c M there are at least one and 
at most finitely many invariant control sets. From now on we assume that the set L 
as above is given and that there are 1 invariant control sets in L. It follows directly 
from the proof of Proposition 2.4 that the set M S  c L is open in L and given by 

Let d M S  and d L M S  denote the boundaries of M S  in M and in L, respectively. Define 

Since each y E d L M S  is in the domain of attraction of exactly one invariant control 
set, we have 

1  1 

dL.MS= U $ M S  and 8 M S  = U $MS. 
j=1 j =O 

8,MS is isolated and open in dLhlS .  and in the topology of M 

Note further that d L M S  consists of at least two different d jM.  Analogous definitions 
can be given for every connected component of M S ,  and all the properties stated 
above remain valid. 
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We will characterize the set M S  of multistable points in L via a finite number 
of specific variant control sets, which, however, share some properties of the invariant 
control sets. The idea is to use the order between control sets, as defined in (2.3). 
Recall that the invariant control sets Cl,  . . . ,Cl in L are the maximal elements in 
(D,3 ) .  Multistable points are those from which at least two invariant control sets C1 
and C2 can be reached in (2.1). Hence we are looking for control sets D such that 
D 3 C1 and D 4 Cz. To characterize all multistable points, we must consider the 
maximal control sets D E (D,3 )  with this property and their corresponding domains 
of attraction. As we will see below, this idea does, in fact, work. However, it is 
easier for the proofs to work with the following, more technical definition. Recall from 
Theorem 2.2(ii) that x E M S  c L iff there exist (at least) two invariant control sets 
C1,Cz c L with x E A(Ci) for i = 1,2. 

DEFINITION2.6. A control set D c M S  is called relatively invariant, if x E D 
and p(t ,  x, u) $ D for some t > 0, u EU imply p(t ,  x, u) $ MS.  

The following two lemmas present basic properties of relatively invariant control 
sets that will be needed later in the article. Recall first of all that by (B) control 
sets with nonvoid interior are closed iff they are invariant (see [20]). For relatively 
invariant control sets we obtain an analogous result. 

LEMMA2.7. For a control set D the following properties are equivalent. 
(i) D is relatively invariant. 

(ii) int D # 0,and D is closed in MS;  i.e., D c M S  and (dD\D) n M S  = 0. 
Proof. If D is relatively invariant, consider x E D ,  u E U with p( t ,  x, u) E D c 

M S  for all t 2 0. By assumption (B), p ( t , x ,u )  E C?$,(x) c cl(int C?$,(x)) for t > 0 
(see, e.g., [19, p. 691 for this standard fact from geometric control theory). Thus we 
have M S  n cl(int C?$,(x)) # 0 and, since M S  is open, also M S  n int C?$,(x) # 0.By 
relative invariance of D one obtains that M S  n int C?$,(x) c D and hence int D # 0. 

Next suppose that D is not closed in M S ,  i.e., there exists y E (dD\D) n MS.  
But M S  is open, and hence (B) implies 0 # int C?$,(y) c M S  for t > 0 sufficiently 
small. By Definition 2.l(iii), int ~ ; , ( y )  n D = 0 (otherwise y E D),  and hence there 
exists z E int C?$,(~)\D. Now continuous dependence of the solutions on the initial 
value yields a contradiction to relative invariance. 

Conversely, suppose that int D # 0 and there are t > 0,x  E D ,  and u E U 
with p(t ,  x, u) E MS\D.  Let T := sup{^ > 0;p(r,x, u) E D).  Clearly p(T, x, u) E 
M S  n dD. If p(T,  x, u) E D one can steer this point into int D.  Now continuous 
dependence gives a contradiction to maximality of T .  O 

LEMMA2.8. For every x E M S  there exist y E C?+(x) and J (y)  c {I,  . . . ,1) such 
that y E n,, A(Cj) and J is minimal for y in the following sense. If p( t ,  y, v) E M S  
for some t > 0, v EU ,  then p( t ,  y, v) E n,, A(Cj). 

Proof. Since x E M S ,  there exists J1 c (1 , .  . . ,1) with x E njEJ1A(Cj). If 
there are t l  > 0 and vl E 24 with yi := p( t l , x ,v l )  E M S \ n j E J 1  A(Cj), then there 
exists 0# J25J1with yl E njEJ2A(Cj). Proceeding recursively, one ends up, after 
finitely many steps, with a point y E C?+(x) with a minimal index set J .  O 

Note that a minimal index set as in Lemma 2.8 has at least two elements. Fur- 
thermore, the lemma implies that for each relatively invariant control set D there is 
J C (1, .  . . ,1) such that for each x E D the index set J is minimal. This follows 
simply from the fact that D is a control set. The following fundamental proposition 
shows the existence of relatively invariant control sets and gives some insight into their 
structure. 
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PROPOSITION2.9. Assume (C). Let x E M S  c L with 

where J c (1,.. . , l )  is some minimal index set for x. 
j € J  

Then there exists a relatively invariant control set D C clC?+(x) with 

Proof. We first introduce some notation. Denote the connected component of 
M S  that contains x by Mz, and let 

where ~ ( x )  is chosen according to assumption (C). For E > 0 and j E J define 

Using (2.5), we can choose E > 0 small enough such that 

Hence the sets Q, (6) are nonvoid, compact, and pairwise disjoint with distance at least 
36. Decreasing, if necessary, E further, we may assume that x E Mz\ UjE Nj(26). 

Every trajectory {p(t,  y , u ) , t  2 0) with y E clO+(x) n (Mz\Nj(26)) that ap- 
proaches Cj for t + must exit through djMz nQo and must cross Qj(e). For every 
y in this set there exists a control u E U with this property. We find that 

for all j E J and all E > 0 small enough. Define 

Now consider the family of sets 

These sets are nonvoid by the remarks above, since Qj(x,  6) and Qi(x, E )  have distance 
at least 3e for i # j .  Furthermore, these sets are compact and ordered via 

Every linearly ordered set {Q(yi, E ) ;  i E I) has an upper bound 

Q(Y,e ) = E)n~ ( i i ,  for some Y E nQ ( Y ~ ,E). 
~ € 1  i E I  

since this intersection is nonempty. Thus Zorn's lemma implies that this family of sets 
has a maximal element Q(y, 6). Now the set 

D := cl {z E MS;  z E C?+(y)), 

where the closure is taken in M S  , is a relatively invariant control set due to the 
following explanation. Observe first that every z E D is approximately reachable from 
y. Conversely, y E clO+(z) for all z E D,  since otherwise y 6 Q(z,e) = clO+(z) n 
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invariant control set D with x E A(D).  Since int D # 0 by Lemma 2.7, we obtain a 
contradiction to the relative invariance of D, for n large enough. O 

The following theorem is the main result of this section. It characterizes the set 
of multistable points via relatively invariant control sets and summarizes the findings 
of this section. 

THEOREM2.12. Consider the stochastic sys tem (1.1), (1.2) under  assumptions 
(A) and (B). Let L c M be a compact invariant  set satisfying assumption ( C ) .  T h e n  
the set M S  of multistable points i s  given by 

where Dj , j = 1 , .. . ,l1 < x, are the relatively invariant  control sets of (2.1). 
Proof. By the proof of Proposition 2.4, x E M S  iff there exist invariant control 

sets C1, Cz in L such that x E A(Ci),z = 1,2. Corollary 2.10 shows that each point 
in a relatively invariant control set D and hence each point in A(D) satisfies this 
property because relatively invariant control sets are open according to Lemma 2.7. 
By Proposition 2.11 we have that l1 < x,and hence u:=, A(Di) c MS.  Conversely, 
let x E MS.  By Lemma 2.8 there exists y E Of (x) with minimal index set J. Now 
Proposition 2.9 implies that y ,  and hence x ,  are in the domain of attraction of some 
relatively invariant control set. O 

Theorem 2.12 reduces the computation of multistable points for the stochastic 
system (1.1) to the computation of the finitely many relatively invariant control sets 
and their domains of attraction for the control system (2.1). It is easy to see that not 
all variant control sets are relatively invariant, even if there is more than one invariant 
control set; see Remark 2.13 below and the examples in 5 4. 

For systems with small noise, the control structure can be described as a per- 
turbation of the limit structure of the system without noise; see, e.g., [8] and [9]. 
However, even in this case the control sets and their domains of attraction have to 
be computed numerically (see [15] for an algorithm, which is effective at least in low 
dimensions). 

Remark  2.13. For one-dimensional systems, the control sets can be computed 
explicitly; see [7] and [lo]. One sees easily that under the assumptions of Theorem 
2.12 and for dim M = 1, a control set is relatively invariant iff it is open. Hence the 
connected components of the set M S  of multistable points in L are given exactly by 
the open control sets in L. A similar result does not, in general, hold for dim M 2 2; 
compare the examples in § 4. 

Finally, we would like to mention that the result of Theorem 2.12 need not hold 
in unbounded, invariant sets. There multistable points need not be in the domain of 
attraction of any control set, as some simple examples show. We refer to Remark 2.5 
for the necessary generalizations in this case. 

3. Extinction levels in singular stochastic systems. For the analysis of 
extinction in stochastic systems we use the following setup. Let M be an open set in 
a Cm manifold A, whose boundary d M  consists of a finite union of lower dimensional 
submanifolds Mi, i = 1, . . . ,r .  The Mi need not be of the same dimension. We assume 
that the system (1.1), (1.2) is regular on M ,  i.e., that assumptions (A) and (B) hold 
and that the Mi are invariant for the stochastic system. Note that if the Lie algebra 
CA{(X, Yo), Yl, . . . , Yk) has maximal rank at some point (x, J) E M x N, then it has 
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maximal rank in a neighborhood of this point. Therefore, this setup describes the 
typical situation of singular systems. 

We are interested in the behavior of the stochastic system as it approaches the 
boundary of M I  because its behavior on M was described in 3 2. Locally the behavior 
near the boundary d M  could be analyzed, for example, using linearization techniques 
and Lyapunov exponents, describing convergence or divergence of the trajectories at 
d M  in a random neighborhood of the boundary; compare, e.g., [3], [I], or [21]. Here 
we are interested in the global behavior of systems, i.e. in a complete description of 
the system on the closure cl M of M I  where cl M = Mi, and, in particular, M U U'i='=, 
in the absorption behavior a t  one or more of the boundary sets Mi. If Mt C d M  is 
an invariant set of (1.1), then all vector fields X ( . ,q), q E U ,  are tangential to Mt ,  
and hence d M  cannot be reached from M in finite time. With this in mind we model 
absorption using extinction levels. 

Let z(t)  be a Markov process on a state space L with continuous trajectories. For 
a Bore1 set A C L the first hitting time of A by z(t)  is defined as 

TA = inf{t > 0; z( t )  E A). 

The corresponding absorption process a t  A (also called stopped process in the litera- 
ture; see, e.g., [13]) is given by 

z( t ) ,  for 0 5 t < TA: 

= { z( rA)  for t > rA. 

The absorption process z ~ ( t )  has continuous trajectories and is a Markov process 
if z(t)  is strong Markov-a property that holds, for example, for the solutions of 
(1.1), (1.2); see 1131 for these and other properties of absorption processes. With this 
notation we can define the concept of extinction levels. 

DEFINITION3.1. Let I C d M  be an invariant set of the stochastic system. 
An extinction level at I of size E > 0 is a set E ( I ,  E) = (y E cl M ;  d(y, I )  5 E), 
where d ( y , I )  denotes the distance of y to the set cl I on the underlying manifold A. 
The process absorbed at E ( I ,  E) is XE( I ,~ ) (~ ,X , ) ,  where x, E M is the initial value 
for (1.1). 

According to  this definition, an extinction level consists of a size E > 0 and an 
extinction set E ( I ,  E). It  has associated with it the corresponding absorption processes 
XE(I,€) (t ,  2,) for initial values in M ,  and we have, in particular, that x(a ,  x,) E E ( I ,  E) 
for some (random) time a implies xE(I,<) (T, x,) E E ( I ,  E) for all T 2 a .  As we will 
see below, the introduction of extinction levels amounts mathematically to  a (partial) 
compactification of M .  

First of all, we consider the effect of extinction levels on the behavior of the 
process on invariant control sets. 

PROPOSITION Consider the system (1.1) with extinction level E ( I ,  E).  3.2. 
(i) Let C c M ,  be an ergodic control set, or a control set such that C\int E ( I ,  E) is 

compact. If E ( I ,  E) n int C # 0, then TE(I,€) < w with probability one for all x, E C. 
In  particular, the absorbed process XE(I ,€)  does not admit an invariant measure in 
C \ E ( I ,  €1. 

(ii) Let C C M be an invariant control set with E ( I ,  E) n int C = 0; then  
P ( T ~ ( ~ , € )= w) = 1 for initial values x, E C \ E ( I ,  E),  and  
P { T ~ ( ~ , ~ )= 0) = 1 for initial values x, E C nE ( I , 6 ) .   

If C is an ergodic control set for (1.1) with invariant probability measure v , then the 
same invariant measure is invariant for the absorption process. 
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Proof. (i) We discuss the case where C is an ergodic control set; the other case 
uses similar arguments. Denote R = E(I,E) n int C and let x, E C.  Then, by 
Theorem 4.1 in [20], rR(x0) < cc with probability one. Suppose that the absorbed 
process has an invariant measure in C \ E ( I ,  E ) ,  say p,  with p (C \E( I ,  E ) )  = 1. Denote 
Q = C \ E ( I , E ) .  If Q = 0, the result is trivial. If Q # 8, choose two compact sets 
K1 c (int Q x N )  and K2 c (int R x N )  with nonvoid interior. Then there exists, by 
Proposition 2.3 in [6], a time T > 0 such that infUEu{t > 0, y( t ,  ( f  ) , u )  = y) < T 
for all ( f  ) E K1, y E K2 for the control system associated with (1.1), (1.2). Since the 
solutions of the associated control system depend continuously on the right-hand side, 
the support theorem implies that P{(x, T, x,), [(t, to))E K2) > 0 for all (Too ) E K1 
(compare, e.g., [20] or [2] for this standard argument). By definition of the absorbed 
process, this implies that P { ( x ~ ( ~ , ~ ) ( ~ ,  E E(I,E )  > 0 for all t >x,), [(t, to)) x N )  
T I  and therefore the joint process (x(t) ,  [(t)) cannot admit an invariant probability 
measure in Q x N .  

(ii) Note that, under assumption (B), c l C  = cl(int C)  for invariant control sets 
in M .  If x, E C \ E ( I , E ) ,  then P{z(t,x,) E int C for all t > 0) = 1 (compare [2]) 
and hence, under the assumption in (ii), P { T ~ ~ ~ , ~ )= cc) = 1 for x, E C \ E ( I ,  E ) .  By 
Corollary 2.2 in [2], u(int C )  = 1 for the invariant measure on an ergodic control set. 
Hence, if E(I,E) n int C = 8, then u is also invariant for the absorption process. O 

Proposition 3.2 describes the stationary solutions of the absorption process in M 
as: These are the stationary solutions of the original process, whose supports do not 
intersect int E(I,E) .  Next, we turn to the multistability behavior of the absorption 
process. 

We introduce the absorption orbits of the control system (2.1) with respect to 
E(I,E)  as 

OL(I,t)(x)= {y E M ;  there exist t > 0 and u E 2.4 with cp(t,x,u) = y and 
y(s ,  x, u) E M \ E ( I ,  E )  for all 0 < s 5 t). 

The absorption orbit of x E M consists of all points that can be reached from x via 
trajectories that do not pass through the extinction set E(I,E ) .  The control sets of 
the absorption system are defined by using O&I,E) instead of 0+ in Definition 2.1. 
In particular, any control set D of (2.1) with D C M \ E ( I ,  E)  is also a control set of 
the absorption system. Furthermore, if Da is a control set of the absorption system, 
then there exists a unique control set D of (2.1) with Da C D. But there may exist 
control sets of (2.1) that do not contain a control set of the absorption system. A 
slight modification of the numerical procedure presented in [15] allows us to compute 
the control sets of the absorption system numerically. 

The following lemma shows that extinction sets E(I,E) play the role of an in- 
variant control set in the global qualitative theory of singular systems with extinction 
level. 

LEMMA3.3. Consider the system (1.1) with extinction level E(I,6). Let x, E M 
be an initial value. Then 

P{x(t, x,) +E(I,E) as t + cc) > 0 iff x, E A ( E ( I ,  6)). 

Proof. This result is proved in the same way as Theorem 2.2(ii), using the asso- 
ciated control system and the support theorem. O 

Theorem 2.2 and Lemma 3.3 give a complete characterization of the convergence 
toward stationary solutions in systems with extinction levels. To characterize the 
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multistable points in these systems, we adapt Definitions 2.3 and 2.6 in the follow- 
ing way. 

A point x ,  E hf is said to be multistable for the absorption system if there exist 
different sets F'I and F2 in M with P { x ( t , x , )  + Fi as t + CQ} = pi > 0 for i = 
1,2, where Fi is either an ergodic control set or an extinction set. 

A control set Da  of the absorption system is called relatively invariant if it satisfies 
the conditions of Definition 2.6 with respect to the set MSa  of multistable points of 
the absorption system. Similarly, the strong positive invariance condition (C) for the 
absorption process is reformulated with respect to the set MSa.  

With these definitions, the results of 5 2 remain valid in the following form. 
PROPOSITION3.4. Consider the system (1.1) with extinction level E(I,E ) ,  and 

let L C M be a compact, positively invariant set of the absorption system. 
(i) There exists a multistable point x ,  E L\E( I ,  E )  i f f  the absorption control sys- 

tem has at least two sets that are either invariant control sets or extinction sets. 
(ii) If L satisfies the strong positive invariance condition for the absorption control 

system, then the set of multistable points is given by 

where D l , .  . . ,Dl ,  are the relatively invariant control sets of the absorption control 
system with 1 5 l 2  < m. 

COROLLARY3.5. If M cA is bounded and the extinction set is given as E(dh.1, E ) ,  
then Proposition 3.4 holds for hf instead of L. 

Remark 3.6 (on E + 0). 
(i) A multistable point of the stochastic system (1.1) need not be a multistable 

point of the absorption system. However, for each x E M S  there exists E > 0 such 
that x E MSa for the absorption system with extinction set E (dM,  6). 

(ii) A similar result need not hold for the stationary solutions of (1.1). Let C be 
an ergodic control set in M such that c lC  n cl M # 0. Then, for every E > 0, the 
absorption system for E (dM,  E )  does not admit an invariant probability measure with 
support in C ,  by Proposition 3.2; compare also the examples in 5 4. 

Remark 3.7 (on multiple extinction sets and reachability order in singular sys- 
tems). So far, we have considered singular systems with one extinction set E(I,E). 
All results above remain true if we define for invariant sets Ii C d M , i  E J, and 
different levels ~i > 0, i E J, the corresponding orbits and control sets of the absorption 
system for a given family of extinction sets E(Ii,~ i ) .With these concepts we can also 
extend the order defined in (2.3) to singular systems with extinction levels. Now the 
description of the set of multistable points in Corollary 2.10 extends analogously to 
the absorption system. 

Remark 3.8 (on limit behavior in singular systems). Using Proposition 3.2 and 
Lemma 3.3 we see that Theorem 2.2(i) remains valid for singular systems with extinc- 
tion levels if we replace the union over all ergodic control sets C E ceby the union 
over all ergodic control sets and all extinction sets. Similarly, Theorem 2.2(iii) holds 
when conditioned on the set {x(t, x,) + UCEC,C).  Note that unique ergodicity need 
not hold for the absorption process in extinction sets. 

Remark 3.9 (on the system behavior on dM) .  If we take the dynamics of the 
system on d M  into account, then some of the results above can be made more detailed. 
Define F as the union of all invariant control sets of the system on d M ,  and let G be an 
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extinction set containing F ,  possibly with different extinction levels. Then one obtains 
that Corollary 3.5 holds with G instead of E(dM, 6 )  and that so does Remark 3.6(ii). 
Including all invariant control sets in cl M I  with an obvious extension of the order, 
allows a description of the multistable points with respect to cl M as in Corollary 2.10. 

Remark 3.10 (on one-dimensional systems). If levels of extinction are introduced, 
the only remaining gap in the discussion of one-dimensional systems (see [lo, $4.11) 
can be closed. Suppose dimA = 1 and thereis an invariant control set C (with nonvoid 
interior) that has a common fixed point x0 of the vector fields X( . ,u),u E U ,  at its 
boundary. If the other end point x1 of the interval C belongs to C ,  then an extinction 
set E({xO),E O )  such that Ca = C\E({xO),cO)# 0 (i.e.,c0 < /x l-xOl) has the following 
effect; Ca is a variant control set of the absorption system and solutions starting in 
C, are absorbed at E({xO),6') in finite time with probability one. If x1 $! C, then 
x1 is also a common fixed point, and the introduction of a corresponding extinction 
set E({xl),  6)with D, = C\(E({xO),E O )  U E({xl),  6))# 0 makes Da a relatively 
invariant control set of the absorption system; i.e., D, is a connected component of 
the set MSa  of multistable points. 

4. Examples. In this section we analyze four examples of stochastic systems 
that exhibit multistability behavior and/or are subjected to the effects of extinction 
levels. 

4.1. A one-dimensional system with imperfect pitchfork bifurcation. 
Consider the one-dimensional cubic differential equation 

1 
(4.1) x = --x3 + bx2 + c(q - q,)x =:X(x ,q),2 

where b, c > 0 and q, E R are constants. If we consider q as a bifurcation parameter, 
then this model undergoes an (imperfect) pitchfork bifurcation at q = q,. Stochastic 
versions of (4.1) have been treated, for example, in [17], [lo], or [26]. Here we are 
interested in the case where q is a stochastic process ~ ( t )as described in 3 1 with 
values in U,P = [a- p, a + p],a E R,p > 0. This model was analyzed in [lo, 3 4.31 
and we continue the discussion here by considering the effect of an extinction level at 
xO= 0. According to Remark 3.10, the interesting case occurs when xObelongs to the 
boundary of an invariant control set of the associated control system. 

Define qh, = qc - b2/2c, and let p < $(qc - qhc) = b2/4c. Figure 1 shows the 
associated control sets for a range of a-values. For each a, the corresponding shaded 
areas indicate the following items: 

C1,C2: invariant control sets; 
B, D: variant control sets; 
F: the fixed point xO= 0. 

The control sets are obtained by projecting, for a fixed a-value, the shaded area 
over this a-value onto the x-axis. 

Introducing a level of extinction E({xO),6 )  with 6 < b yields control sets of the 
absorption system as indicated in Figure 2. According to Proposition 3.2 and Lemma 
3.3 we obtain the following results. 

For a 2 al,Cal = C1, and the system with extinction level E < b has unique 
stationary Markov solutions in Cal  for each a 2 a l .  If a > a 2 ,  then Ca2 = C2, which 
again are the supports for unique stationary solutions. For a < a 2 ,  the invariant 
control sets in region Ca2 do not carry invariant measures, and the process with initial 
value x(0) < 0 gets absorbed at the extinction set in finite time with probability one. 
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F I G .  1. Control sets associated to the system (4.1)  with b = 2. c = 1. q,. = 3, and p = 0.5. 

FIG.2. Control sets of the absorption control system com-espondzng to (4 .1)  with E ( { O } ,  6 )  and 
E = 0.4. 

For a E [al,a s ) ,  the control sets in region B a  consist exactly of the bistability points 
of the absorption process; here bistability is with respect to Gal and E({O),E). 

If E 2 b, then the bistability region disappears and some of the invariant control 
sets in region C a  are no longer ergodic. This occurs iff minCal  < b, according to 
Proposition 3.2. 

4.2. Bacterial respiration process. In [12], Degn and Harrison proposed a 
model for the existence of a maximal oxygen consumption rate at low oxygen concen- 
tration in Klebsiella aerogenes cultures. Fair& and Velarde [14] analyzed this model 
with respect to its limit cycle and bifurcation behavior. They also carried out simula- 
tions of a stochastic version with white noise fluctuations. Using the theory developed 
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above, we discuss the following bistability phenomena in the model under bounded, 
diffusion type excitations. 

The Degn-Harrison model reads in dimensionless units as (see [14]) 

Here a and q are positive constants and b is the critical parameter, depending on 
the concentration rates in the underlying chemical reaction scheme. In our analysis, 
we treat the case where the parameter b is disturbed by an underlying diffusion process 
as described in § 1. Using the values a = 11.0,q = 0.5, b(t) E U = [19.97,20.03], we 
obtain the control sets of the associated control system as depicted in Figure 3. 

FIG. 3. Control sets of (4.2) with a = 11.0, q = 0.5, and b 6 [19.97,20.03] 

Mathematically, the control set picture in Figure 3 can be explained as follows. 
By a result in [8]and [9], the control sets of a system form around the limit sets of a 
nominal (uncontrolled) system, and their order represents exactly the Morse order of 
the limit sets in the nominal system if the control range is small. (A limit set w l  is 
smaller than a limit set w2 in the Morse order if there exists a trajectory that converges 
for t + -ato w l  and for t + +ato w2; see [9] for details.) If we take the system 
(4.2) with b = 20.0 as the nominal system, then this system has a stable fixed point, 
surrounded by an unstable periodic solution (limit cycle) which in turn is surrounded 
by a stable periodic solution. Since the control range 10.03 is relatively small, we 
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expect to see two invariant control sets (around the stable fixed point and the stable 
limit cycle) and one variant control set (around the other limit cycle). Note that for 
nonlinear systems it is, in general, impossible to compute the control sets explicitly 
(except for the one-dimensional case; see [7]). Likewise, the size of the control range 
at which control sets merge so that the one-to-one correspondence between limit sets 
and control sets does not hold anymore cannot, in general, be computed explicitly. 
Hence numerical algorithms like the one developed in [15] are needed. (We refer to 
5 4.3 for an example with a large control range.) Note that for this example the set 
L = [O, 201 x [O, 601 is a compact, invariant set that satisfies all requirements in 5 2, 
including the strong invariance condition (C). 

In Figure 3 the sets C1 and C2 are invariant control sets, hence each of them 
carries a unique invariant probability measure and, therefore, a unique stationary, 
ergodic Markov solution of the system. The set B is a relatively invariant control set, 
hence it consists exactly of the bistable points from which the ergodic control sets C1 
and C2 are reached with positive probability. Note that the boundaries of C1 and C2 
belong to these sets, while B is open; i.e., the boundary dB is not part of the set 
B. Typical trajectories emanating from B in Figure 3 show how C1 and C2 can be 
reached. The probabilities pc, (x,) of reaching Ci, i = 1,2, from x, E B depend, of 
course, on the dynamics of the underlying diffusion process c(t),  while the supports 
of the invariant measures, i.e., the sets C1, C2, and the bistability area B depend only 
on the range U of the perturbation ~ ( t )  = F(E(t)).  

Figure 3 suggests another interesting phenomenon in this model. In the outer 
control set C2 the upper left-hand corner shows a larger diameter than the rest of 
this set. This suggests greater variability of the stochastic trajectories in this area 
and a rather "deterministic" behavior elsewhere in C2. By increasing the range of 
the noise to b(t) E [16, 201, one does actually observe randomness in the trajectories; 
compare Figure 4. But regions of larger variation occur around the minimum and the 
maximum of the x-component, where the control set C2 is relatively thin. The reason 
for this behavior lies in the fact that the deterministic vector field has small norm 
in these areas, hence random fluctuations around it become visible. In other parts 
of C2 the deterministic vector field has large norm and the trajectories move so fast 
that stochastic variations have no time to influence them. It is noteworthy that the 
y-component does not show significant fluctuations during any part of its cycle. 

For these figures, the stochastic perturbation process 

was used, where m and p were adapted for the specific noise range. The process c has 
a stationary density of the form (for y E [ O , l ] )  

with X = -( 1 1 ~ ) ~1,l? being the gamma function. p(E) has expectation 0, is symmetric 
around J = 0, and = 0 at E = &I. It converges toward the uniform density on [-I, 11 
as y + 1. For our simulations, we used the parameter settings 7 = 0.1 and y = 0.7. 
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time 
(a) 

time 
(b) 

FIG.4. Simulated trajectory of (4.2) with a = 11.0, q = 0.5, and b E [16,20]. (a) shows the x 
and (b) the y-component of the trajectory; the horizontal axis is  (dimensionless) t ime.  

4.3. Lotka-Volterra model with hunting and resting periods. In [17, 
p. 184ff], Horsthemke and Lefever describe a predator-prey model that includes hunt- 
ing and resting periods of the predator. They analyze this model under white noise 
disturbances by approximating it with a one-dimensional stochastic differential e-
quation. We will analyze the two-dimensional model under bounded, diffusion type 
disturbances of different range with respect to bistability and extinction behavior. 
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The model is given by the equation 

where $ corresponds to the hunting time of the predator y, $ corresponds to his resting 
time, and normalization is done via setting $ + $ = 1. Furthermore, a,K ,  and L are 
positive constants. 

Note first of all that the rectangle [0,K ]  x [0,L] is an invariant set of (4.4) as 
long as P and y are positive. The y-axis itself is invariant, and so is the interval 
(0) x [0,L]. In the notation of 5 3 we have M = (0,K )  x (0,L),  and the crucial part 
of the boundary d M  is Ml UM2,  with M1 = (0) x (0,L), M2 = ((0, L)) ,  where (0,L) 
is a fixed point of the system. We are interested in the coexistence and extinction 
behavior of the two species, as hunting time (and, as a consequence, resting time) of 
the predator undergoes random fluctuations. 

For our analysis, we choose the following parameter values: 

K = 0.5,L = 1 . 0 , ~= 4.0,P(t)E U' = [4.1,4.2],and P(t) E u2= [3.0,5.0]. 

4.3.1.T h e  case P(t)€iY1= [4.1,4.21. 
Sta t ionary  solutions (coexistence). In this P-parameter range the (deter-

ministic) system (4.4) has three fixed points in cl M :  the stable point (0,L), and an 
unstable and a stable point in M .  By the same reasoning as in 5 4.2, we expect to see 
an invariant control set C around the stable points in M and a variant control set D.  
Figure 5 shows that this is, indeed, the case. In C there exists a unique stationary 
Markov solution, indicating coexistence of the two species for random hunting periods 
in U 1 .  

Bistability. Considering the system on the closed space cl M yields D as a 
relatively invariant control set with D 4 C and D 4 ((0, L)). (Note that the point 
(0,L) is a common fixed point for all P E U 1.) In this model the y-axis is invariant; 
i.e., the strong invariance condition (C) is not satisfied at the y-axis. It is, however, 
satisfied on the sets (0,K )  x (0.5) and (0,K )  x (1.01, and Theorem 2.12 can be used 
for this example. Hence D together with its domain of attraction A(D) consist exactly 
of the bistable points, as shown in Figure 6. From this figure we see that 

for an initial value to the right of the right boundary of A(D),  the system will 
converge in distribution to the invariant measure in C ,  and the species will coexist; 

for an initial value to the left of the left boundary of A(D),  the system will 
converge toward the point (0,L),  indicating extinction of the prey x; 

for initial values in A(D) the system can go either way with positive proba-
bility. 

Recall that the set M S  of multistable points depends only on the size of the 
random perturbation but not on the specific dynamics of the perturbation process. 
The probabilities p c  (;:) and pf (;:) of reaching C or f = (0,L) from a point (;:) E 
A(D)  do, of course, depend on the specific process. Using again the perturbation 
model (4.3))now with range U 1 ,we have simulated from each point in a grid on A(D) 
1000 trajectories. The corresponding probabilities pf (;:) of "reaching" f = (0,L) are 
shown in Figure 7(a). Figure 7(b) shows the corresponding level curves. As expected, 
the set of (E:) for which pf (E:) is numerically different from 0 or 1is a relatively narrow 
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FIG. 5. Control se ts  of the  s y s t e m  (4.4) wi th  K = 0.5, L = 1.0, a = 4.0, and b E [4.1,4.2] 

F IG .6. T h e  set  A ( D )  of bistable points in s y s t e m  (4.4) wi th  K = 0.5, L = 1.0, a: = 4.0, and 
p E [4.1,4.2]. 
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FIG.7a. Probabilities of "reaching" the extinction point ( 0 ,  L)  from the bistability region i n  
system (4.4)  with K = 0.5, L = 1.0, CY = 4.0, and P ( t )  E [4.1,4.2]. 

X 

FIG.7b. Level curves of the extinction probabilitites i n  Figure 7a. 
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band inside A(D).  Perturbation processes with more skewed invariant distributions 
will produce a band that is closer to the left (or to the right) boundary of A(D).  

Extinction levels. Equation (4.4) is the continuous space limit of a population 
model. Therefore, extinction of the prey x should not be considered as the situation 
where a solution of (4.4) has an x component equal to zero. In fact, since the y- 
axis is an invariant set of the model, no solution with initial value in M will reach 
x = 0 in finite time. This is the situation that led us to the introduction of extinction 
levels in 5 3. Setting this level to x = 0.01 means in the precise language of 5 3 
that I = (0) x [0, L] ,E  = 0.01, E(I,e) = {(x, y) E R2;  x E [0,0.01], y E [0, L]). 
Figure 8 shows the effect of introducing this extinction level into the model (4.4) with 
U1 = [4.1,4.2]. The lower left corner of the original bistability set, i.e., initial values 
in A(D) n E(I,E ) ,  are now extinction points. The other areas of the global picture 
are not affected by the extinction level. The situation changes drastically when we 
consider a larger range of random perturbations for P. 

FIG.8 .  Effect of the extinctzon level x = 0.01 o n  the system (4.4)  wzth K = 0.5,  L = 1.0, 
CY = 4.0, and P ( t )  E [4.1,4.2]. 

4.3.2. The case P ( t )E u 2  = [3.0, 5.01. For P fixed, the system (4.4) has the 
following limit behavior in cl M .  If ,Ll > 4.0, there exist a stable fixed point (0, L) on 
the boundary and a stable and an unstable fixed point in M ;  compare part (I). For 
,O< 4.0, the fixed point (0, L) is hyperbolic with the stable manifold being the y-axis 
and the unstable manifold pointing into M ;  furthermore, there exists one stable fixed 
point in M .  At ,Ll = 4.0 the system undergoes a subcritical bifurcation at (0, L). 

For the perturbation range U 2  = [3,5], we have a mixture of these two limit 
behaviors. Hence we expect to see one (invariant) control set in M that contains the 
control sets from (I) and those corresponding to variations around ,Ll for P < 4. With 
increasing control range, all these control sets have merged into one. Figure 9 shows 
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FIG.9. The  ( invariant)  control set of the system (4.4) with K = 0.5, L = 1.0, cu = 4.0, and 
p E [3.0, 5.01. 

the invariant control set for (4.4) with range U2. Note that according to Propositiog 
2.4, the set of multistable points is empty. / 

Stationary solutions. The unique invariant control set C of this system is not 
closed (at the point (0, L)) ,  and therefore we cannot use Theorem 2.2 to decide the 
existence of an invariant measure and, hence, a stationary solution in C. Analyzing 
the Lyapunov exponents at the crucial point (0, L) we obtain the linearization of (4.4) 
at (0, L)  as 

which can be solved explicitly to yield for the initial value (vy, uz) 
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The Lyapunov exponents of the solution are 

where E denotes the expectation. The exponent corresponds to the invariant 
manifold being the y-axis and X2 < 0 for this model because P - 1 > 0. The crucial 
exponent, therefore, is X I ,  with invariant manifolds pointing into C. For our parameter 
settings, X1 < 0 iff EP(t) > 4 and X1 > 0 iff IEP(t) < 4. Hence we expect that 
there exists a (unique) invariant probability measure in C iff IEP(t) < 4 (compare the 
arguments in [3]) but we do not have a proof for this conjecture. 

Extinction levels. According to Proposition 3.2 introducing an extinction level 
a t  x = E > 0 yields (independent of whether there exists an invariant measure in C or 
not) that the absorption process will hit the extinction set E ( I ,E)= {(x,y) E EX2; x E 
[0,€1, y E [0,L]) from any initial value in cl M in finite time with probability one. 
This means that the prey population x will become extinct with probability one. This 
phenomenon occurs, even if the expected hunting time satisfies l /EP(t)  < 114, for 
which the mean system and the system with small perturbation range as in part (I) 
show coexistence of the two species. Occasional excursions of the hunting time above 
114 will eventually lead to  the extinction of the prey if even very small extinction 
levels are included in the model. 

The distribution of the extinction time depends, of course, on the dynamics of 
the noise process P(t).  Using again the random perturbation model (4.3), we analyzed 
numerically two cases. 

U3 = [2.9,4.9],EP(t) = 3.9, 6 = 0.01, initial value (x,, yo) = (0.03,.91). 
In this case, the simulated trajectories eventually hit the extinction set E(I,E), but 
for all simulated trajectories it took over 45,000 time units. Figure 10 shows the x-
component of one of the simulated trajectories. Because of this long extinction time, 
we were not able to  simulate sufficiently many trajectories on our equipment to obtain 
a reliable distribution (average CPU time was about 3 hr per trajectory, with 1000 
time steps per time unit). 

U4 = [3.1,5.1],EP(t) = 4.1, E = 0.005, initial value (x,, yo) = (0.02,0.95). 
In this case, 1000 simulated trajectories gave a good impression of the distribution of 
the extinction time. The result is shown in Figure 11. 

Our analytical results show that in the model with extinction level E > 0 extinc-
tion of the prey occurs as soon as a - LP > 0 is possible, independent of the specific 
dynamics of the random perturbation. Our numerical simulations, however, point out 
the fact that the extinction time depends drastically on the crucial parameter IEP(t), 
namely on a - LIEP(t) being positive or negative. This corresponds to  the stochastic 
bifurcation point a t  the equilibrium (0,L) as A1 = a - LEP(t) passes through zero 
as discussed above. Note that with increasing extinction level 6 the size of IEP(t) will 
have a less drastic effect. 

4.4. The Lorenz model with extinction level. Consider the parametrically 
excited Lorenz system 
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time 

time 

FIG.10. Simulated trajectory of the system (4.4) with extinction level t = 0.01, P( t )  E [2.9,4.9], 
IEP(t) = 3.9, and initial value (x,, = (0.03,0.91). 

with q(t )  E UP = [r- p, r + p], p > 0. In the interpretation of the Lorenz equations 
as a (finite-dimensional) model of the Rayleigh-Bknard convection the random per- 
turbation term corresponds to  the Raleigh coefficient, i.e., to  the applied temperature 
difference at  the boundary. Note that the x3-axis is an invariant set of (4.5) for all 
random excitations. Recall that for p = 10,b = 813, r = 28 (and p = O), this system 
exhibits a numerically observed "strange attractor" (see, e.g., [28]). We will consider 
the case where p > 0 and r - p > 1 and analyze the effect of extinction levels on the 
random system (4.5). Note first of all that the set 
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time 

FIG. 11. Extinction time distribution of the system (4.4) with extinction level t = 0.005, P(t)  E 
[3.1,5.1], IEP(t) = 4.1, and initial value (xo,yo)= (0.02,0.95). 

is strongly positive invariant for a large enough. Hence we can use the results from § 3 
for hl = L\Z,  d h l  = L nZ ,  where Z is the xs-axis, i.e., Z = { ( X I ,  2 2 ,  23) E R3;XI  = 
x2 = 0). 

Consider the extinction set E ( I ,  E) with E > 0 and I = L n Z. It was shown in 
[9, Thm. 7.11 that for all E > 0 and all initial values xO E R3\Z there exists a control 
set C of (4.5) with r = 28, p > 0, such that E(I,6 )  nw(xO)c int C ,  where w(xo) is 
the ("chaotic") limit set of the trajectory of (4.5) corresponding to r = 28, p = 0, and 
initial value xO. Since cl L is a compact set, the control set C is invariant. Hence for any 
E E (0,a )  we are in the situation of Proposition 3.2(i). This means that the reaction 
modeled by the random Lorenz system (4.5) with (arbitrarily small) extinction level 
/x31 = E > 0 will become extinct with probability one if fluctuations occur in the 
Rayleigh coefficient around the chaotic regime. 

Acknowledgments. Figures 3, 5, 6, 8, and 9 were produced by G. Hackl, Uni- 
versity of Augsburg, Germany. 
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