Comparison of different estimation techniques
for portfolio selection

Yarema Okhrin - Wolfgang Schmid

Summary The main problem in applying the mean-variance portfolio selection con-
sists of the fact that the first two moments of the asset returns are unknown. In practice
the optimal portfolio weights have to be estimated. This is usually done by replacing
the moments by the classical unbiased sample estimators. We provide a comparison
of the exact and the asymptotic distributions of the estimated portfolio weights as
well as a sensitivity analysis to shifts in the moments of the asset returns. Furthermore
we consider several types of shrinkage estimators for the moments. The correspond-
ing estimators of the portfolio weights are compared with each other and with the
portfolio weights based on the sample estimators of the moments. We show how
the uncertainty about the portfolio weights can be introduced into the performance
measurement of trading strategies. The methodology explains the bad out-of-sample
performance of the classical Markowitz procedures.

Keywords Portfolio analysis - Mean-variance analysis - Estimation of portfolio
weights - Shrinkage estimation

1 Introduction

The classical asset allocation theory of Markowitz (1952) is appealing both from the-
oretical and practical point of view. In the last few decades numerous extensions and
generalizations have been proposed in literature. As a solution to the classical setup
of Markowitz, an explicit expression for the optimal portfolio weights in terms of the
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vector of the expected asset returns and the covariance matrix of the asset returns is
obtained. Despite its simplicity and clearness, the mean-variance approach often fails
in practical applications by leading to portfolios with unrealistic portfolio weights,
for example, highly negative or much larger than one. The reason for such a behav-
1or 1s that the true moments of the asset returns are unknown and should be estimated
from past data. The estimation of the mean and the covariance matrix of multivari-
ate distributions was recently intensively discussed from the perspective of portfolio
selection.

The precise estimation of the optimal portfolio weights is of great importance.
First, note that large errors in the estimated portfolio weights lead to a substantial
but incorrect reallocation of the wealth. For small investors this leads to additional
transaction costs. Moreover, significant changes in the portfolio without any vis-
ible changes in the fundamentals cause investors’ distrust to the mean-variance ana-
lysis. Second, the large attraction of the classical mean-variance analysis is due to
the fact that the optimal portfolio weights are given explicitly and we do not require
any numerical optimization procedures. The price to be paid for this is that we do
not demand non-negative portfolio weights. With the estimation of the moments of
the asset returns this problem becomes even more pressing. Even if the true portfolio
weight is 0.5, the estimated expected quadratic utility portfolio weight for moderate
sample size (for example 60 monthly observations and the risk aversion coefficient
set to 10) can lie outside the unit interval with probability more than 30%. Moreover,
with rather high probability the weights can take extreme and unacceptable values
of less than —0.5 or more than 1.5. Third, several testing procedures that rely on the
portfolio weights become useless. This refers, for example, to tests for the equality
of two portfolios. This is the case in tests for international diversification or tests for
the efficiency of a given portfolio. In case of market or volatility timing such tests can
be useful to assess the significance of portfolio adjustment as well (Barberis 2000,
Fleming et al. 2001).

Despite the large importance of the estimated portfolio weights, there are only
a few papers that discuss the behaviour of these estimators from empirical or theor-
etical perspective. Jobson and Korkie (1980) provide asymptotic approximations for
the mean and the variance of the estimated weights that maximize the Sharpe ratio of
a portfolio. Britten-Jones (1999) derives the exact distribution of the portfolio weights
within a regression framework. Under the assumption of multivariate Gaussian asset
returns Okhrin and Schmid (2006a) calculate the exact moments for four types of esti-
mated portfolio weights. A detailed discussion of these results is given in Sect. 2. The
problem of the robustness of the portfolio weights and the moments of the portfolio
return to shifts in the moments of the asset returns is of special importance. This prob-
lem has been raised in the papers of Best and Grauer (1991) and Chopra and Ziemba
(1993). Gourieroux and Monfort (2005) provide a general theory of testing portfolio
efficiency based on the asymptotic distribution of the optimal portfolio weights.

To improve the portfolio selection two procedures are available. On the one hand,
we can restrict the optimal portfolio weights to belong to the interval [0, w], where w
is some fixed upper bound. This method is discussed by Frost and Savarino (1988).
On the other hand we may try to improve the estimators of the moments of the
asset returns. A popular approach in this direction is the shrinkage methodology pro-
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posed by Stein (1956). Jorion (1986) was the first to apply the shrinkage estimator
to portfolio selection by using a shrinkage estimator of the expected asset returns.
A shrinkage estimator of the covariance matrix has been proposed and applied to
portfolio selection by Ledoit and Wolf (2003, 2004). Both methodologies appear
to be very successful in reducing the estimation uncertainty. Okhrin and Schmid
(2006b) and Golosnoy and Okhrin (2006) proposed a shrinkage estimator applied di-
rectly to the portfolio weights. Both papers argue that shrinkage estimators of the
portfolio weights lead to a decrease of the variance of the portfolio weights and to an
increase of the utility.

The aim of this paper is to illustrate and to assess the impact of estimating the mo-
ments of the asset returns on the portfolio weights. An extensive simulation study is
performed to obtain the sample densities and the moments of the portfolio weights
using classical and shrinkage estimators for the moments of the asset returns. The re-
sults stress the need for new and precise estimators of the portfolio weights. Special
attention is drawn to the Sharpe ratio optimal weights, where the moments of order
greater or equal than one do not exist. This questions the usefulness of such a meas-
ure for practical applications. We also provide a comparison for of the out-of-sample
performance of Markowitz-based trading strategies by introducing the uncertainty in
portfolio weights. Additionally, the robustness of the portfolio weights with respect
to changes in the mean and in the variance of the asset returns is analyzed. It appears
that changes in the covariances of the asset returns have a very strong impact on the
mean and the covariance matrix of the portfolio weights.

The paper is structured as follows. In Sect. 2 various optimal portfolio weights are
discussed and the estimation methodology is described. In Sect. 3 the results of the
empirical study are given.

2 Portfolio selection
2.1 Choice of the portfolio weights

In this paper we consider four classical types of optimal portfolio weights related to
the Markowitz theory. Let X denote the k-dimensional vector of the asset returns.
It is common to assume in academic literature that X follows a multivariate normal
distribution, i.e., X ~ Ny (u, X), where X is positive definite. This assumption, des-
pite being heavily criticized (see Fama 1965, Mittnik and Rachev 1993, etc.), is
a standard benchmark and brings enormous technical advantages. Moreover, there are
several papers that argue that the asset returns over longer sampling periods (monthly,
quarterly data, etc.) can be seen as arealization of a Gaussian random variable
(cf. Fama 1976). Let w denote the vector of portfolio weights, i.e., relative fractions
of the individual assets in the portfolio.

At each moment of time the investor is confronted with the problem of the ex-
pected utility maximization

max E U(R)), s.t. wl=1,
w
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where R, denotes the portfolio return. It is equal to R, = w'X in case if no risk-free
asset is available and to R, = W' (X —ry1) +r if arisk-free asset with fixed return
ry is present. Here, 1 stands for the vector of ones, i.e., 1 = (1, ..., 1)". The power,
exponential, log and quadratic utilities are the most widely used utility functions in
the economic literature. However, in general any concave and monotone increasing
function can be used for the purposes of portfolio selection. Assuming this type of the
utility function and Gaussian asset returns, the problem of maximization of the util-
ity is equivalent to the mean-variance or the expected quadratic utility maximization
problem (cf. Ingersoll 1987) given by

max E(R,)— %Var(Rp), st wl=1,
w

where y > 0 is called the risk-aversion coefficient. It measures the investors attitude to
risk (see Ingersoll 1987). In case if no risk-free asset is available the problem is given

by
/ y / /
max wp— — w Xw, st. wl=1. (1)
w 2
The solution of (1) is denoted by wgy and it is given by
r 11 LR pere R— 31 OIS § i @
= , r = -
Weu =5 oig TV KM, where 111

Note that wgy 1s a linear function of the asset means, and, therefore, a precise esti-
mation of the expected stock returns is crucial for the estimation of wgy. The impact
diminishes with the increase of the risk aversion coefficient. The limit as y tends to
infinity leads to the global minimum-variance portfolio weights wgyy with

r11
Wemy = 1x-11° (3)
In the presence of a risk-free asset with return r; the mean-variance optimization
problem is given by

/ y /
mvzle w(p—rrl) 7 wWXw.

This leads to the tangency portfolio. The optimal weights of the risk assets are equal
to

wrp =y ' Z (u—rs1). 4)

The weight of the risk-free asset is given by wrpo =1 —1'wyp.
Another popular measure of the portfolio performance is the Sharpe ratio

E(R))

JVar(R,)

If no riskless asset is available, then maximizing the Sharpe ratio leads to the portfolio
weights

: )
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provided that 1’Y ~! g = 0. These portfolio weights depend on the inverse of a linear
form in the expected asset returns. This implies that all classical estimation pro-
cedures of p would lead to results that are difficult to interpret since they provide
estimators that do not bound 1Y ~!' u away from zero. We illustrate this point below
and Okhrin and Schmid (2006a) assessed it more rigorously.

Note that the components of w usually take values between zero and one; however,
negative values or values larger than one are allowed. The ‘short selling’ corresponds
to the situation, when the investor sells an asset which he does not own. This leads
to negative portfolio weights. Usually it is implemented by borrowing the asset from
another institution and selling it on the market. A value of the weight higher than one
implies that the investor sold other assets short in order to achieve more than 100%
stake of this asset in the portfolio. An extensive discussion of this point can be found
in Farrell (1997). If we pose the restriction that the portfolio weights belong to the
interval between zero and one, then the formulaes for the optimal portfolio weights
cannot be derived explicitly and numerical Kuhn—Tucker optimization is required.

2.2 Sample estimators of the portfolio weights

The expressions for the optimal portfolio weights in the last section are infeasible,
since the true distribution parameters of the asset returns are unknown. In practice
p and X are estimated by historical data. It is assumed that a sample X, ..., X, is
available with X; ~ AV (pu, ). Next we consider several estimation methods.

The classical approach is based on the unbiased sample estimators of the expected
returns and the covariance matrix of the risky assets. Let X = (X1, ..., Xy)'. Then the
classical estimators of p and X are given by

1 A 1
by = -X'1, Yg=—-"XA-11"/n)X.
n n—1

Thus the estimated portfolio weights are given by

> . >
~ (cl) cl —1 ~ ~ (cl) cl
w - A +V R l,-‘l’ [ s w - A )
EU= T&—1< ¢ GMV = T a_11
s ‘ s
f
~ (cl) B R ~ (cl) X By
WTCP =y X, (pyg—rel), WSCR =

l/ﬁc_lli:"cl

Under the assumption of Gaussian returns (n — 1))501 follows a Wishart distribu-
tion with n — 1 degrees of freedom. Thus the analysis of the estimated portfolio
weights involves the analysis of inverted Wishart matrices, linear and quadratic forms
in Wishart matrices and their ratios. Based on such results, Okhrin and Schmid
(2006a, b) provide properties of the exact and asymptotic distributions of the esti-
mated portfolio weights. In case of a finite sample they assumed that the variables
X1, ..., X, are independent, while for asymptotic considerations it is demanded that
{X;} is a stationary sequence. They proved that wj;ﬁ} Wg]l&v and \?ng,? are asymptot-
ically unbiased and consistent as well. However, the finite sample bias and the sample
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variance can be extremely large for the values of n usually used in practical applica-
tions. For the estimated Sharpe ratio optimal weight it is shown that the first moment
does not exist at all. This implies in practice that different sample sizes used for esti-
mating higher moments may provide absolutely opposite results. Moreover, relying
on the moments of the asymptotic is not eligible since they are useless if the finite
moments do not exist.

Two simple modifications of the classical estimators are directly obtained. First,
the estimators of the portfolio weights are corrected for the bias. Nevertheless, it can
be shown that the mean squared error for the unbiased estimators is higher than for the
biased estimators. The second possibility is to consider the maximum-likelihood es-
timator of the covariance matrix. In this case the estimator for the portfolio weights is
a maximume-likelihood estimator of the true portfolio weights since the latter are con-
tinuous functions of p and X. However, the performance of the maximum-likelihood
estimators is very similar. This implies, that to obtain a less volatile estimator other
estimation procedures are required.

2.3 Shrinkage estimators

There are several alternatives to estimate the moments of the asset returns. Recently,
the shrinkage technique is widely applied. Shrinkage estimators are constructed as
a weighted sum of the usual estimators and estimators based on other models or as-
sumptions. The idea of shrinkage was stimulated by the seminal work of Stein (1956),
who argues that the sample mean is inadmissable in terms of the average risk func-
tion in dimensions higher than two. Efron and Morris (1976) extended the result of
Stein. For X ~ Ny (u, X) with k > 3 they obtained the class of estimators of the form
f; = (1 —w)fr, +wp that has uniformly lower risk than the sample mean. w de-
notes the shrinkage coefficient and p, an arbitrary constant to which the sample mean
is shrunk. The optimal choice of the weighting parameter is obtained by minimiz-
ing the mean squared error (MSE) of the shrinkage estimator. Thus, the shrinkage
methodology provides a solution to the trade-off between bias and estimation error.
In other words the new estimator is biased, but achieves a lower MSE compared with
the classical estimator.

Jorion (1986, 1991) was the first to apply this method to the expected asset returns
with the estimators given by

) R 1 A 11
1= (1—&)fpg+aliy, ;=241 511’
= (1—o)py+ ol J "’( +n+)»>+n(n—|—1—|—)») I’Ec_lll
(6)
where
1270 D
IL\LO:M, A= Cl)nA. (7)
1/2511 1—o

The optimal shrinkage intensity w is chosen to minimize the quadratic loss function

L(p, )= (p—p)' = (n—f) .
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The result of Stein can be alternatively derived using a Bayesian setup with conju-
gate informative prior for the mean (see Jorion 1986). From this approach and using
empirical Bayes techniques the estimator of w used in (6) and (7) can be given by

k+2
k+2+n(fr— 1o)X~ — fro)

=

In practice X is unknown and it is replaced as in Zellner and Chetty (1965) by
(n— 1))361 /(n—k—2). iy is called the grand mean. In our framework it is equal to
the average return on the global minimum-variance portfolio, if the parameters are re-
placed by classical estimators. Using these estimators the following portfolio weights
can be constructed

. ¥ 11 : , Sy
~ () J —-1p A ~ () -1y -1, ~ () J J
Wp = —= +y Ripg;, Wrp=y X (p—rrl), Wip=———.

EU 1’):]._11 il adi TP j j f SR l,zj_lﬂj

Recently, Ledoit and Wolf (2003) proposed a shrinkage estimator of the covariance
matrix under the assumption that the asset returns are Gaussian. It is a common prac-
tice in finance to use linear regression models (or factor models) for modeling asset
returns or for testing asset pricing theories. More precisely, assume that the asset
returns are generated by the following model

Xl'j:Oli-I-,BiZ()j—l—Eij, i=1,....k, j=1,...,n,

where Zj; denotes asingle stochastic regressor. Then the covariance matrix of
A A A/ A A

X; = (Xij,..., Xxj) can be estimated by F = sgo,B,B +D. Here 3 denotesAthe

least-squares estimators (LSE) of the slope parameters 3 = (81, ..., Br). D is

the LSE of the covariance matrix of the residuals and s3, is the sample vari-

ance of the single stochastic regressor. The shrinkage estimator of X is then given
by

2A:lw - éﬁ+(1 _é)icl .

A useful property of this estimator is that it is also feasible if the number of
assets is larger than the length of the estimation period, i.e., if the sample covari-
ance matrix is singular. The optimal shrinkage intensity minimizes as before the
MSE of the weighted estimator. Ledoit and Wolf (2003) provide a detailed dis-
cussion on the consistent estimation of 6. We use this approach to estimate the
portfolio weights. The covariance matrix is estimated by ¥, and the expected
returns are estimated by fi.; as above. We denote the corresponding portfolio weights
by w™). For comparison purposes we also consider portfolio weights with the ex-
pected portfolio return estimated as in Jorion (1986) and the covariance matrix
estimated according to Ledoit and Wolf (2003). These weights we write with the
superscript W
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2.4 Out-of-sample utility

The fact that the optimal portfolio weights are estimated is crucial for the investor.
This can be illustrated in the best way by analyzing the out-of-sample performance
of the portfolios. The empirical and theoretical analysis of the out-of-sample perform-
ance has been an intriguing issue in portfolio selection starting from Frankfurter et al.
(1971) and Jobson and Korkie (1981) and up to the recent contributions of Kan and
Zhou (2006) and Kan and Smith (2006). In practice the investor estimates the port-
folio weights at time point ¢ and keeps the portfolio over the holding period s. For
simplicity we discuss only the case of the expected quadratic utility. Let Wgy; denote
any estimator of wgy calculated at time point ¢ by the independent random sample
X nits .-, X; with X; ~ Ny (e, X) fori =t—n-+1,...,t. At time point 7 + s the
investor is willing to assess the goodness of his strategy. To do so he uses the form-
er portfolio weights Wgy , and the moments of the asset returns valid at the end of
the holding period ¢ 4 s. We denote these moments by p* and X *. The direct way of
computing the utility at time point ¢ + s by

~ ~ ~ ~ Y ~ ~
Wiy  EXigs) — EW/EUJVCW X)) WEU,: = Wey 5 — EW%UJ): “Weu: o (8)

does not take into account the uncertainty caused by estimating the portfolio weights,
i.e., it treats the portfolio weights as known quantities. However, as it is illustrated in
the empirical part this uncertainty may lead to substantial deviations in the efficient
frontier. The correct way to compute the out-of sample utility which incorporates the
uncertainty in wgy is, therefore, the following

A Y " )
E(Wgy Xits) — Eva’"(W%U,Xt W) = EWpu ) pt ©)
v . . ) o
_E[tr(z* Var(Wey.)) -+ ' Var(Wpy )i + E(py, ) E* EGey,)]

This utility can be explicitly computed for the classical estimators using the results of
Okhrin and Schmid (2006a). However, for the shrinkage estimators discussed in the
previous section no explicit expression can be given.

As we will see there can be a substantial difference between the in-sample and the
out-of-sample utilities if the variance of the portfolio weights is large. This fact ex-
plains the commonly reported evidence about the bad out-of-sample performance of
Markowitz procedures.

3 Analysis and comparison of the portfolio estimators

The aim of the section is threefold. First, since the unbiased estimators are still the
most common estimators of the distribution parameters, we want to assess the finite
sample properties of the classical estimators of the portfolio weights. Second, the sen-
sitivity of the moments of these weights with respect to changes in the means and the
covariance matrices of the asset returns is examined. Third, we compare the impact
of other estimation strategies on the distribution of the optimal portfolio weights. The
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analysis is performed for different values of the risk aversion coefficient and different
sample sizes.

For the empirical study we use monthly data from Morgan Stanley Capital Inter-
national (MSCI) for the equity markets of 10 developed countries (U.K., Germany,
France, the Netherlands, U.S., Canada, Japan, Italy, Spain, Switzerland) for the
period from January 1970 to April 2004 (413 observations for each country). The
MSCI World Index is taken as the single factor for the shrinkage estimation proposed
by Ledoit and Wolf (2003). The whole sample is used to estimate the mean and the
covariance matrix of the returns. In the following these values are taken as our model
parameters. We choose this procedure to get realistic values for the moments of the
returns.

For the classical estimators of the weights, we have formulas for their moments.
Note that the explicit density is only available for the global minimum-variance port-
folio. However, we are not aware of similar results for the shrinkage estimators. This
is first of all due to the complicated structure of the estimated shrinkage intensities. In
order to discuss the performance of the portfolio characteristics, it is possible to esti-
mate the relevant quantities within a simulation study. For a given sample size n we
simulate independent multivariate normal observations with the parameters given by
the classical estimators as described above. Using the simulated data, we estimate all
portfolio weights using the methods described above. This procedure is repeated 10’
times. The sample of the estimated portfolio weights is used for further computations.

In our study the risk-free rate of return is set equal to 0.02. In financial literature
a risk aversion coefficient equal to 2 reflects a low risk aversion and a value of 25 or
50 reflects a highly averse risk behaviour (cf. Elton and Gruber 1999). We use in our
study an investor with a modest aversion to risk and set y equal to 10.

3.1 Behaviour of the classical portfolio estimators

Figure 1 plots the exact and the asymptotic densities for different sample sizes n. Ac-
cording to Okhrin and Schmid (2006a) the estimated optimal portfolio weights are
asymptotically normally distributed. These results are used for the plotting of the
asymptotic densities. The exact finite sample densities are estimated by histograms.
This approach is justified due to the large number of repetitions (107).

First, note that the spread of the optimal portfolio weights is extremely large. For
n = 96 only about 70% of the expected quadratic utility optimal portfolio weight for
the U.S. market lies in the interval between zero and one. This is especially striking
since the estimated weight is approximately 0.55 and lies in the middle of the interval.
For the weights of the other countries the situation is even worse. This problem seems
to be of special relevance for the portfolio weights which depend on the estimated ex-
pected asset returns, i.e., the expected quadratic utility, the tangency and the Sharpe
ratio optimal portfolio weights. The global minimum variance portfolio weights are
independent on the estimated expected asset returns and the probability of obtaining
negative or values higher than one is almost zero.

Second, note that the exact distributions appear to have much heavier tails than the
asymptotic counterparts. This implies, that relying on the asymptotic results would
underestimate the probabilities of extreme portfolio weights. However, with increas-



118

1 ! 1
) 7o ' 4 [}
2 ey = 7} R
- ! n=36, exact ! N n=36, exact
! ‘ —— n=36,asymp. LQ M Y‘ —— n=36, asymp.
Q ! ' n=96, exact ~N -+ T n=96, exact
d , ‘\\ = = n=96,asymp. Q r’ ) = = n=96,asymp.
O / "\\ \ o~ / S
oS ) N n i \
d \ - /4 A
< ' \ 1 \
. 7 o #
o ) ‘\\\\ ,_' /7 1 ‘\
N / r’ N n / r'7 ]
© // . N o / 4 \ \
Q L -7 S (=] —d//_a" S
© o
-1.0 -05 00 05 1.0 15 20 00 02 04 06 08 1.0 1.2
\ﬁ(d) \Q( d)
EU,5 GMV, 5
.~ [ st Sz O E——
o . ) 1 1 ! ! o s T n=36, exact
. ; —— n=36,asymp.
— ' \‘ n=;2, exact < , ’ N n=96, exact
' —— n=36,asymp. . [ y
Q ! y n=96,exact | o ’ \ n=96, asymp.
d /r \ = = n=96,asymp. /I \
e, A m ’ Ay
O JI / N\ \ S 7 = ‘\
o 14 N © K TS L
el Y
< f \ N s
S A}
o I’ \\ \ o ”/ \ .
o A ‘ — N
°© / / ! \ o 7 N
o l— e R P >
o T T T T T T
-10 -05 00 0.5 1.0 15 =1 0 1 2
\ﬁ(d) w(cl)
TP,5 SR,5

Fig.1 The densities of the portfolio weights of the U.S. market as a function of the sample size. The
black lines correspond to the asymptotic densities and the grey lines to the exact ones. The number of
replications is set to 107, the risk aversion coefficient is equal to 10 and the risk-free rate to 0.02.

ing sample size, the exact distributions become more peaked and their tails decrease.
For W(GCIZ&IV the exact density appears to be closer to the asymptotic density compared
with the other types of weights. For the other portfolio weights and for usual estima-
tion periods of 4-5 years, the difference between the exact and asymptotic densities
is still too large to rely on the asymptotic results.

The distribution of the Sharpe ratio portfolio weights requires a separate discus-
sion. Okhrin and Schmid (2006a) showed that the moments of Wgcl? do not exist for
orders greater or equal one. This implies that the average portfolio weight for differ-
ent replications within the simulation study does not converge to the true portfolio
weight as it is motivated by the weak law of large numbers. Furthermore the vari-
ance of the estimated portfolio weights may increase with the number of replications.
Another consequence is the fact that minor changes in the observations, i.e., adding
a few new observations, may lead to dramatic changes in the portfolio weights. More-
over, the tails of the exact distribution are extremely heavy, what is also illustrated on
Fig. 1. Since W(SCI? is asymptotically normally distributed, the difference between the
exact and asymptotic densities diminishes with larger sample sizes. However, the rate
of convergency is extremely slow compared with the other types of portfolio weights.

Figure 2 illustrates the impact of uncertainty in the portfolio weights on the ex-
pected utility. The solid line shows the efficient frontier for the estimated portfolio
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Fig.2 The picture shows the true (solid line) and the out-of-sample (dashed line) efficient frontiers given
by equations (8) and (9), respectively. On both frontiers the portfolios with y =5 and 10 are marked with
a triangle and a square respectively. The ellipsoids are the asymptotic 95%-confidence intervals for given
portfolios due to the uncertainty in the portfolio weights

weights taken as certain quantities, 1.e., as in equation (8). The extreme left-side point
corresponds to the global minimum variance portfolio with an infinite risk aversion
coefficient. A decrease of the risk aversion moves the optimal portfolio along the
efficient frontier in the direction of higher returns and volatility.

To assess the impact of the estimated portfolio weights we construct an asymptotic
joint confidence interval for the portfolio return and the standard deviation of the port-

folio return. Let g(Wey) = (W™, /Wy X*Wey)'. Following the Delta-method
the asymptotic distribution of g(Wgy) is given by

Vi(@(WEy) — g(Wep)) = N2 (0, Z,) .

~ 0g(Wgy)

a /
where %, = [ lim n Var(wpy)] B2

aw/EU n—00 OWEY
Then the asymptotic confidence intervals constitute such values of 8 € R? that satisfy
the inequality

(g(Wew) —0)'Z; (g(Wew) —0) < X314

where x3 ,_, stands for the quantile of the x? distribution with two degrees of free-
dom.

The two marked points on the efficient frontier correspond to the portfolios with
the risk aversion coefficient equal to 5 (for the upper point) and 10 (for the lower
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point). We consider a holding period of 36 months. Thus all observations except
the last 36 months are used to estimate the portfolio weights. At the end of the
holding period the estimation window is shifted 36 months ahead. Thus all ob-
servations except for the first 36 months are used to estimate E(X,436) = p* and
Var(X;+36) = X*. These quantities are used for plotting the above described confi-
dence intervals in form of ellipsoids with & = 5%.

The confidence ellipsoids illustrate how damaging far from the true position the es-
timated portfolios may be located. Note that this uncertainty has a higher impact on
the portfolio return than on its standard deviation. As the risk aversion increases, the
impact of the estimated expected asset returns substantially decreases and this leads
to much narrower confidence intervals for the optimal portfolios. Bias corrections for
the portfolio weights have minor impact on the out-of-sample utility.

The dashed line shows the out-of-sample efficient frontier, i.e., the efficient fron-
tier if the investor recognizes the uncertainty in the estimated portfolio weights
(see (9)). The marked points on it refer to the same portfolios with the risk aversions
5 (triangles) and 10 (squares) as as two marked portfolios on the true frontier. The
dash-dotted lines show the shift in the points on the efficient frontier due to the uncer-
tain portfolio weights. The minor vertical move is only due to the bias in the estimated
portfolio weights; however, the large horizontal move is due to their variance. The
less the risk aversion coefficient is, the higher is the risk caused by estimation. In
practice if the investor uses the out-of-sample efficient frontier as a benchmark, then
he would be more satisfied with the performance of his portfolio, than using the true
frontier as a benchmark.

Table1 The table provides the results of a robustness analysis of V*v}:fg (left side) and v"v(jfz,) (right side)
subject to a percentage change of size £ in the mean or in the standard deviation of the U.S. market.
Block A: the overall turnover caused by the shift; block B: largest absolute change in the mean of the
portfolio weights; block C: largest relative change in the variance of the portfolio weights

Expected Quadratic Utility Weights Tangency Portfolio Weights
& =30% —20% —10% —5% 5% 10% 20% 30% —30% —20% —10% —5% 5% 10% 20% 30%
1% Shifts in the expected asset returns Shifts in the expected asset returns

A 2 218 145 073 036 036 073 145 218 237 158 079 039 039 079 158 237
10 044 029 0.5 007 007 015 029 044 047 032 016 0.08 008 0.16 032 047

B 2 -107 -071 -036 -0.18 0.18 036 071 107 -130 -086 -043 -022 022 043 086 130
10 -0.21 -0.14 -0.07 -0.04 004 0.07 0.14 021 -026 -0.17 -0.09 -0.04 0.04 0.09 0.17 0.26

c 2 079 03 010 -004 005 0.1 029 067 0.00 000 000 0.00 000 000 001 002
10 003 001 000 000 000 000 001 003 000 000 000 000 0.00 000 0.01 0.02

Shifts in the covariance matrix Shifts in the covariance matrix

A 2 09 071 036 0.18 017 033 062 08 333 181 076 035 030 056 099 133
10 1.09 077 039 019 019 036 068 093 067 036 015 0.07 006 0.11 020 027
oo 111 0.78 0.4 020 019 037 069 095

B 2 047 034 0.17 009 -008 -0.16 -031 -042 225 1.17 048 022 -0.18 -033 -0.57 -0.75
10 052 037 0.19 009 -009 -0.18 -033 -046 045 023 0.10 0.04 -0.04 -0.07 -0.11 -0.15
oco 053 038 0.9 010 -0.09 -0.18 -034 -047

c 2 -047 -030 -0.13 -006 005 009 015 0.18 108 058 024 0.11 -0.09 -0.18 -031 -041
10 -049 -031 -0.14 -0.06 005 009 015 019 108 058 024 0.11 -0.09 -0.18 -031 -041
oo -049 -031 -0.14 -006 005 0.10 0.16 0.19
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3.2 Sensitivity analysis for the classical portfolio estimators

Table 1 contains the results of a robustness analysis for the exact moments of \?Vgg and
of ngll,) with respect to changes in the mean and the variance of the fifth asset (U.S.)
for different values of the risk aversion coefficient. Block A contains the turnover
which arises due to the shift. We compute it as the sum of the absolute deviations
between the portfolio weights with and without the shift. This measure is of special
importance since the transaction costs payed by the investor are in most cases propor-
tional to it. Block B provides the largest absolute change in the portfolio weights and
block C the largest relative change in the covariance matrix of the portfolio weights.

As it has been widely reported, \?Vgg and VAV(TC[I,) react sensitive already to small
changes in p (see Best and Grauer 1991). Note that in contrary to Best and Grauer
(1991), we are able to compute the shifts in the moments of portfolio weights ana-
lytically and not via a simulation study. For moderate changes of the mean for the
U.S. market (here: £ = 10%) and arisk aversion of 2 the highest absolute change
in the weights is 0.36, what implies a large reallocation of assets. The turnover pro-
vides even a more dramatic illustration. The investor falsely reallocates 73% of the
expected quadratic utility portfolio (or 79% for tangency portfolio). Note that due
to the large uncertainty in the estimation of the expected asset returns an error of
10% can still be seen as modest. The influence on the covariances decreases very fast
for larger values of the risk aversion. The global minimum variance portfolio does
not depend in the limit on the mean vector at all. The tangency portfolio is almost
insensitive to any shifts in the mean of asset returns. The mean and the turnover de-
pend symmetrically on the shifts in the mean; however, the variance reacts stronger
to negative shifts than to positive ones.

The second part of the table presents the results subject to shifts in the variance
of the U.S. market. All quantities of interest react strongly even to small changes
and this reaction is very robust with respect to the risk aversion coefficient. This im-
plies that investing to the global minimum variance portfolio reduces the systematic
risk, but the estimation risk is kept at the same level as for the other portfolios on
the efficient frontier. Here a decrease of the standard deviation of the asset leads to
a stronger change in the quantities of interest than an increase. We do not report for
which weight the strongest reaction was observed, but it is worth noting that mostly
quantities related to the shifted asset are subject to the largest change. Thus estimation
errors in the mean and the variance of an asset have the largest impact on the weight
of the same asset. The results on the sensitivity of the correlation coefficients are not
presented here, but the magnitude of the change was in most cases close to that for the
variance.

3.3 Shrinkage estimators for the portfolio weights

Next we compare the classical estimators of the portfolio weights with the estima-
tors based on the shrinkage technique. In general by its idea the shrinkage estimation
should outperform the underlying strategy. This is because by shrinking we replace
a fraction of a volatile quantity by a deterministic or a less volatile quantity. This leads
to an overall reduction in the volatility but also to a higher finite sample bias. To
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Fig.3 Mean and root mean-square error of the optimal portfolio weight for the U.S. market as a function
of the sample size using different estimation methods. The number of replications is equal to 10°, the risk

aversion coefficient is equal to 10 and the risk-free rate to 0.02

assess this bias and the decrease in the mean square error we plot the mean and the
root mean-square error (RMSE) for each estimation method as a function of the sam-
ple size. The results are presented in Fig. 3. We consider the following estimators for
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the portfolio weights: a) W (f1.; and ¥ are used as the estimators of the moments
of asset returns ); b)W'” (f1; and 35 ¢) W (fu, and 3,.); d) WU (fr;and ).
The results for the mean are compared with the true optimal portfolio weights. The
results for the RMSE are compared with the standard deviation of the asymptotic dis-
tribution which we denote by RMSE (@Ff’s)). These quantities were derived in Okhrin
and Schmid (2006a).

For wgy and wgyyv the methodology which involves the shrinkage for the covari-
ance matrix as proposed by Ledoit and Wolf (2003) leads to a substantial bias in the
weights even for larger sample sizes (10 years). On the contrary, the shrinkage of
Jorion (1986) is close to the asymptotic mean, for all weights except of wgg. In case
of the RMSE the methods ¢) and d) show the best performance beating even the
asymptotic RMSE with known g and X. Thus it seems that minimization of the MSE
for the mean and variance of the asset returns also substantially decreases the MSE
of the estimated portfolio weights for small sample sizes. However, for larger sam-
ple sizes (5 years and more) the difference in the performance is not that drastic. The
behaviour of the mean and of the RMSE of wgy reflects the fact that the first two
moments of the Sharpe ratio optimal portfolio weights do not exist.

3.4 Expected utility in case of estimated portfolio weights

In this section we assess the impact of the sample size on the out-of-sample utility,
and we show the difference between the out-of-sample and the usual utility on the
example of real trading.

Figure 4 illustrates the out-of-sample expected quadratic utilities given in (9) for
different estimation methods as a function of the sample size. As already discussed
above the out-of-sample utility can be computed explicitly for the classical esti-
mation, but we use the portfolio returns from the simulation study to compute the
moments of the portfolio weights for the shrinkage estimation. The number of repli-
cations is set to 10°. The moments p* and X * are estimated as described in Sect. 3.1.
The holding period is set to 60 months. This approach allows us to assess the im-
pact of the sample size on the trading strategy performance. For all types of portfolio
weights the shrinkage estimation leads to a higher utility than the classical estima-
tion. The outperformance is strong for small estimation periods up to 5 years and
diminishes for longer estimation periods. These results imply that the reduction of
the estimation uncertainty for the moments of the asset returns leads also to a signifi-
cant reduction in the estimation uncertainty of the portfolio weights as well as of the
moments of the portfolio return.

The last illustration helps to determine the impact of the sample size, however,
does not lead to any conclusions about the impact of estimated weights. To assess this
impact, we consider an investor with the following trading strategy. At each moment
of time ¢ the optimal portfolio weights are estimated using the last n observations. The
length of the holding period is set s. At time point ¢ + s the investor assesses the util-
ity of the investment ones using the utility as given in (8) and ones as in (9). In the
case of the classical estimators for the portfolio weights we use the results of Okhrin
and Schmid (2006a). For the shrinkage estimator, we compute the moments of the
estimated portfolio weights via a simulation study. The asset returns are generated
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Fig.4 Out-of-sample expected quadratic utility as a function of the sample size of the portfolios based
on: a) classical estimation of moments (‘CL’); b) estimation as in Jorion (1986) (‘J’); ¢) estimation as
in Ledoit and Wolf (2003) (‘LW’); d) combined estimation as b) and c¢) (‘J & LW’). The risk aversion
coefficient is equal to 10 and the risk free rate to 0.02. The number of replications is set to 10°

from the normal distribution with the sample estimators taken as true values and using
these returns we estimate the shrinkage portfolio weights. We estimate their moments
using 10’ replications.

In Fig. 5 we plot both types of the expected utilities for a holding period of three
months and an estimation period of 60 and 120 months. The grey lines correspond
to the utility without uncertainty in the portfolio weights and the black lines cor-
respond to the utilities with uncertainty. The solid lines are used for the classical
estimation and the dashed lines for the J & LW shrinkage estimations. We skip the
other shrinkage estimators for a better visual perception; however, the results for
them are similar. If the investor does not take the uncertainty in the portfolio weights
into account then the classical portfolio weights outperform the shrinkage estima-
tion over the whole estimation period. This is due to the fact that for short holding
periods the estimated portfolio weights are close to the true optimal weights and,
therefore, outperform other estimators in terms of the quadratic utility. However, if
the uncertainty in the portfolio weights is taken into account, the classical estimators
are inferior to their shrinkage counterparts. Note that there is a rather small differ-
ence between the two types of utility for shrinkage estimators. This supports the
evidence from the previous subsection that the precision of these portfolio weights
is high.
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Fig.5 The expected utilities with taking the estimation of portfolio weights into account (equation (9),
black lines) and without (equation (8), grey lines). Solid lines correspond classical estimators, dashed
lines to Jorion and Ledoit & Wolf estimators. The holding period is set to three months, the estimation
period to 60 (above) and 120 (below) months. The risk aversion coefficient is equal to 10. The number
of replications is set to 10

From the above results we conclude that for moderate sample sizes (up to 100
observations) the shrinkage estimation really provides a significant improvement to
portfolio selection. However, for larger samples this improvement becomes marginal.
For example, for three years of weekly data (156 observations) there would be al-
most no improvement in terms of the MSE and the utility, but still a substantial bias.
Thus we may conclude that despite of its drawbacks the classical estimation still pro-
vides acceptable results in case of larger sample sizes compared to more sophisticated
estimation techniques.
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4 Conclusions

The paper discusses different estimation procedures for portfolio selection. The stan-
dard mean-variance portfolio strategies are infeasible in practice due to the unknown
parameters of the distribution of the asset returns. Here we consider the classical
sample unbiased estimators as well as several shrinkage techniques. The empirical
study shows that the classical approach leads to portfolio weights that are negative or
larger than one with very high probability. Moreover, we cannot rely on the asymp-
totic results even for sample sizes commonly used in practice. The sensitivity analysis
shows that the moments of the portfolio weights are very sensitive not only to shifts
in the expected asset returns, but also to shifts in their covariance matrix. Moreover,
upward shifts have a larger impact than downward shifts. As an alternative to the clas-
sical estimation we consider shrinkage estimators for the mean and for the covariance
matrix of the asset returns. The improvement in the properties of the estimated port-
folio weights due to the application of shrinkage techniques appears to be crucial
only for short samples. For large sample sizes, the improvement is marginal. We also
provide a technique for computing the out-of-sample utility and explain the bad per-
formance of simple Markowitz strategies. To summarize, we conclude that for small
sample sizes the current estimation procedures do not lead to satisfactory estimators
of the weights and further research on new methods is required.
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