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Summary: This paper discusses in detail the impact of shifts on the process variance (σ2) on the
run length (RL) of modified upper one-sided EWMA charts for the process mean (µ) when the
output is correlated.

Quite apart from the relevance of a process variance change in its own right, a dilation in σ2

can cause an undesirable stochastic decrease in the detection speed of some specific shifts in µ.
This and other stochastic results are proved and illustrated with a few examples.

1 Background and aim
The industrial age was easing into its second century when a young engineer named
Walter A. Shewhart came along and altered the course of industrial history by proposing
the what is grandly termed as control scheme. Control schemes are used to monitor the
distribution parameters (such as the mean) of random variables (i.e., the process output)
over time and to identify the presence of special causes that may affect these parameters
and therefore the quality of the output.

When control schemes for the mean µ are used, two standard assumptions are that
the process output is independent and has constant variance σ2 equal to the known target
value σ2

0 .
The independence assumption can be far from reasonable for some processes of

interest and can also have a severe impact on the performance of the standard control
schemes, as reported by several authors in numerical studies, such as [9], [1], [13], [23],
and proved and discussed in detail namely by [19], [20] and [18].
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Some attention has been given in the statistical process control (SPC) literature to
the RL distribution of schemes for the expected value µ, when the target of the process
variance is unknown (although constant), and therefore the control limits have to be
estimated. For the case of independent output see, for instance, [2], [8], and [6]. The
influence of the variance estimation on the RL is examined by [10] for correlated output.
In both cases it may be quite misleading to assume that the behaviour of RL for σ2 known
can be carried over to draw conclusions about the case where σ2 is unknown.

Another compelling question concerning schemes for µ is to know what happens to
the RL distribution in the presence of shifts in the process variance σ2, if the operator
falsely assumes that σ2 is constant and equal to a known target value σ2

0 , and designs the
control scheme for µ accordingly.

Average run length (ARL) tables for two-sided (Shewhart, CUSUM and EWMA)
schemes for µ are provided by [7], in such a setting. These tables cast some light on the
performance of these schemes. For example, Tables 6–8 show that, for some large but
fixed shifts in µ, the ARL of these two-sided schemes can be an increasing or even a
nonmonotone function of σ . This behaviour – although not commented by the author –
is apparent in the last lines of Tables 6–8, and it implies that these schemes become
progressively less sensitive to some shifts in the process mean, as the process variance
grows.

Moreover, [16] derived sufficient conditions for the RL of the upper one-sided X and
EWMA schemes for the process mean of independent output to have a (stochastically)
increasing or decreasing behaviour. These results were proved using the Markov approach
([5], [12], [15]) and were subsequently extended by [14] for the upper one-sided CUSUM,
combined CUSUM-Shewhart and combined EWMA-Shewhart schemes, also for the
process mean of independent output.

This paper gives analogue results concerning one-sided EWMA schemes for the
process mean of correlated output. These results are proved using a different approach
because the presence of correlation destroys the Markov property of the summary statis-
tic, as noted by [24]. Moreover, the schemes considered here plot the original EWMA
observations and have control limits adjusted to account for the autocorrelation inherent
to the output. Thus, their summary statistic is different from the one used in [16] which
immediately resets any value below the target mean, µ0, to µ0, turning the analysis of the
RL distribution practically unfeasible in the case of correlated output.

2 Model
In what follows {Yt} denotes the target process and we assume it is a (weakly) stationary
process with mean µ0 and autocovariance function {γv}. Let the observations x1, x2, . . .

denote a realization of the observed process {Xt}. We assume here that the processes are
related as follows

Xt =
{

Yt for t ≤ 0
µ0 + δ

√
γ0 + �(Yt − µ0) for t = 1, 2, . . . ,

(2.1)

where −∞ < δ < ∞ and � > 0.
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Behaviour of EWMA schemes in the presence of shifts in σ 399

If δ �= 0 (� �= 1) then a sustained shift in the location parameterµ (scale parameter σ)
has been observed at time t = 1. Clearly, {Xt} is said to be in-control if (δ,�) = (0, 1),
and to be out-of-control otherwise.

In order to control the process mean behaviour EWMA charts are widely applied (see,
e.g., [17], [12], [20] and [11]).

Modified EWMA charts for the mean of stationary processes were introduced by [20].
They are based on the following EWMA statistic

Zt =
{

µ0 for t = 0
(1 − λ)Zt−1 + λXt for t = 1, 2, . . . ,

(2.2)

where λ ∈ (0, 1] is a smoothing parameter that represents the weight given to the
most recent observation. Following [20], the expectation and variance of this summary
statistic – with respect to Model (2.1) – are equal to

Eδ,�(Zt) = E0,1(Zt) + δ
√

γ0
[
1 − (1 − λ)t]

= µ0 + δ
√

γ0
[
1 − (1 − λ)t] (2.3)

Var
δ,�

(Zt) = �2 Var
0,1

(Zt)

= �2 λ

2 − λ
γ0

[
1 − (1 − λ)2t

]

+ �2 2λ

2 − λ

t−1∑
v=1

γv(1 − λ)v
[
1 − (1 − λ)2(t−v)

]
. (2.4)

The indexes “δ,�” and “0, 1” mean, throughout the remainder of this paper, that the quan-
tity (an expectation, a variance, a probability, etc.) is calculated with respect to Model (2.1)
and to the in-control situation (that is, given an arbitrary (δ,�) and (δ,�) = (0, 1), re-
spectively).

The upper one-sided modified EWMA chart triggers a signal at time t, suggesting
that an increase in the process mean has occurred, if

Zt − E0,1(Zt) > c
√

Var
0,1

(Zt) ,

for some fixed c > 0. This signal is called a valid alarm, in case the process is out-of-
control, and a false alarm, otherwise. We denote the RL of this chart conditioned on the
Model (2.1) by

Nδ,� = inf

{
t ∈ N : Zt − E0,1(Zt) > c

√
Var
0,1

(Zt)

}
, (2.5)

the number of observations taken after t = 0 until a signal is triggered by the control
chart.
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It is worth mentioning here that the in-control asymptotic variance is frequently
preferred in practice to Var0,1(Zt), since this substitution avoids updating the control
limits at each time point. Assuming that {γv} is absolutely summable we get the asymptotic
variance

σ2
δ,� = �2 lim

t→∞ Var
0,1

(Zt)

= �2 σ2
0,1

= �2 γ0
λ

2 − λ

[
1 + 2

∞∑
v=1

γv

γ0
(1 − λ)v

]
. (2.6)

Table 2.1 In-control asymptotic variances for white noise and stationary AR(1) and ARMA(1,1)
models.

Model γ0 γv/γ0, v = 1, 2, . . . σ2
0,1

WN σ2 0 γ0
λ

2−λ

AR(1) σ2

1−α2 αv γ0
λ

2−λ
1+α(1−λ)
1−α(1−λ)

ARMA(1,1) σ2 (1+2αβ+β2)

1−α2
(1+αβ)(α+β)

1+2αβ+β2 αv−1 γ0
λ

2−λ

[
1 + 2 (1+αβ)(α+β)

1+2αβ+β2
1−λ

1−α(1−λ)

]

For future reference we list in Table 2.1 the in-control asymptotic variances of the
EWMA summary statistic (σ2

0,1) when the target process is governed by a white noise
(WN) process, and by stationary AR(1) and ARMA(1,1) models (i.e. Yt = εt , Yt =
αYt−1 + εt and Yt = αYt−1 + εt + βεt−1, respectively, with {εt} ∼ WN(0, σ2) and
α ∈ (−1, 1)). For more details about these three models see, for example, [4] or [3].

3 Main results
Before we proceed with the main results of the paper, we need two preparatory definitions.

The random variable X is said to be stochastically smaller than Y in the usual sense –
X ≤st Y – if and only if their survival functions satisfy P(X > x) ≤ P(Y > x),
−∞ < x < ∞ (see [22, p. 4]).

Let Xθ be a random variable whose distribution depends on parameter θ ∈ 
. Then
we denote the fact that Xθ stochastically increases with θ ∈ 
 in the usual sense by –
Xθ ↑st with θ – if and only if Xθ ≤st Xθ ′ , θ ≤ θ ′ (θ, θ ′ ∈ 
).

Theorem 3.1 Let

δL = inf
t=1,2,...

c√
γ0

√
Var0,1(Zt)

1 − (1 − λ)t (3.1)

δU = sup
t=1,2,...

c√
γ0

√
Var0,1(Zt)

1 − (1 − λ)t
. (3.2)

Bereitgestellt von | Universitaetsbibliothek Augsburg
Angemeldet

Heruntergeladen am | 22.02.19 10:21



Behaviour of EWMA schemes in the presence of shifts in σ 401

Then the following stochastic monotone behaviours hold for the run length defined in
(2.5) for the upper one-sided modified EWMA chart:

Nδ,� ↓st with �, for fixed δ ≤ δL (3.3)

Nδ,� ↑st with �, for fixed δ ≥ δU . (3.4)

Proof: Properties (3.3) and (3.4) follow by virtue of the monotone behaviour (in terms
of �) of the survival function of Nδ,�

Pδ,�(Nδ,� > k) = Pδ,�

[
Zt − Eδ,�(Zt)√

Varδ,�(Zt)
≤ At(δ)

�
, t = 1, . . . , k

]
, (3.5)

for k = 1, 2, . . . , where

At(δ) = �
c
√

Var0,1(Zt) + E0,1(Zt) − Eδ,�(Zt)√
Varδ,�(Zt)

= c − δ
√

γ0
[
1 − (1 − λ)t

]
√

Var0,1(Zt)
.

In fact, the survival function of Nδ,� decreases (increases) with respect to � if At(δ) ≥
(≤) 0 for t = 1, 2, . . . , that is, if

δ ≤ (≥)
c√
γ0

√
Var0,1(Zt)

1 − (1 − λ)t
, for all t = 1, 2, . . .

The bounds in Equations (3.1) and (3.2) immediately follow. �

Remark 3.2 The results of Theorem 3.1 certainly deserve a few comments.

1.) Property (3.3) enables us to conclude that, for fixed δ ≤ δL , the larger the shift in scale
(i.e., as � increases), the sooner a signal is produced, yielding to a more sensitive
chart in stochastic terms.

2.) Result (3.4) essentially means that the upper one-sided modified EWMA chart re-
gretfully decreases its ability to trigger a signal as shifts in scale become more severe,
provided that δ is fixed and δ ≥ δU . This disadvantage is surely due to the fact that
the upper one-sided modified EWMA chart is essentially designed to detect shifts in
the location of the model, under the assumption that the scale remains constant and
equal to its target value.

3.) We are not able to establish the stochastic behaviour of Nδ,� with respect to �, for
any values of δ in the interval (δL, δU).
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We close this section by stating the analogue of Theorem 3.1 for

Nδ,� = inf {t ∈ N : Zt − E0,1(Zt) > cσ0,1}, (3.6)

the RL of the modified upper one-sided EWMA scheme with control limits based on the
asymptotic variance.

Corollary 3.3 If asymptotic control limits are at use then Theorem 3.1 remains valid if
the bounds δL and δU are replaced by

δL = c√
γ0

σ0,1 (3.7)

δU = δL

λ
. (3.8)

Proof: This lemma can be proved in a similar way to Theorem 3.1 if we take into account
that in this case

At(δ) = �
c σ0,1 + E0,1(Zt) − Eδ,�(Zt)√

Varδ,�(Zt)

= 1√
Var0,1(Zt)

{
c σ0,1 − δ

√
γ0

[
1 − (1 − λ)t]} . �

Remark 3.4 1.) Considering that there is a shift at the very first point of surveillance
is a very common assumption in the SPC literature. However, the assumption of
a shift at an arbitrary time point q > 1 can be easily dealt with. In fact, additional
calculations led to the conclusion that this assumption has no impact on the results
of Theorem 3.1 if the variance of the EWMA statistic is an increasing function of �

(this holds if, for instance, the autocovariance function {γν} is nonnegative).

2.) A comment ought to be made about situations in which the mean and the variance
do not change simultaneously. These situations, though interesting, are, as far as
we know, not considered in SPC literature. Nevertheless, it can be also dealt with
considering, without any loss of generality, a shift in the mean at time t = 1 as in
the paper and a shift in σ2 at time t = q. In fact, we can also prove that the bounds
in Equations (3.1) and (3.2) still hold if the variance of the EWMA statistic is an
increasing function of �.

3.) Moreover, when the target values of the mean µ and the autocovariance function {γν}
are unknown, we are dealing with a slightly different setting. However, the assessment
of the impact of estimation on the distribution of the run length and its stochastic
behaviour is beyond the scope of this paper.
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4 Further results
The bounds δL and δU , defined by (3.1) and (3.2), are often difficult to obtain. However,
under mild conditions, the bounds δL and δU may be replaced by simpler expressions,
namely, related to the asymptotic in-control variance, as stated in the next corollary.

Corollary 4.1 Let the target process {Yt} be stationary with mean µ0 and absolutely
summable autocovariance function {γv}. If√

Var0,1(Zt)

1 − (1 − λ)t
decreases with t (4.1)

then the bounds δL and δU are equal to

δ′
L = c√

γ0
σ0,1 (4.2)

δ′
U = c. (4.3)

Proof: Under the assumptions of the lemma the bounds δL and δU in Equations (3.1) and
(3.2) are given by

δL = inf
t=1,2,...

c√
γ0

√
Var0,1(Zt)

1 − (1 − λ)t
= c√

γ0
σ0,1 = δ′

L

δU = sup
t=1,2,...

c√
γ0

√
Var0,1(Zt)

1 − (1 − λ)t
= c√

γ0

√
Var0,1(Z1)

1 − (1 − λ)
= c = δ′

U . �

Now, it is natural to inquire whether there are target processes verifying (4.1).

Lemma 4.2 Let {Yt} be a stationary process with mean µ0 and absolutely summable
autocovariance function {γv}. If {γv} is a nonnegative decreasing sequence then the ratio√

Var0,1(Zt)/[1 − (1 − λ)t ] decreases with t.

The proof of this decreasing behaviour is excruciatingly long and was compacted in
the Appendix.

Note that Lemma 4.2 holds for: any WN process; any stationary AR(1) model, with
parameter α ∈ [0, 1); and any stationary ARMA(1,1) model, with parameters such that
α ∈ [0, 1) and (1+αβ)(α+β)

1+2αβ+β2 > 0.

Remark 4.3 In Table 4.1, we can find the corresponding expressions of the ratio

ηt =
[

λ

2 − λ
γ0

]−1 Var0,1(Zt)

[1 − (1 − λ)t ]2
(4.4)

and of the lower bound δL = δ′
L , for the WN process and the stationary AR(1) and

ARMA(1,1) models.
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Table 4.1 Expressions of δL = δ′
L , for the WN process and the stationary AR(1) and ARMA(1,1)

models (with ξt = ∑t−1
v=1 αv(1 − λ)v[1 − (1 − λ)2(t−v)]).

Model ηt δL = δ′
L

WN 1+(1−λ)t

1−(1−λ)t
c

√
λ

2−λ

AR(1) 1+(1−λ)t

1−(1−λ)t
+ 2ξt

[1−(1−λ)t ]2 c
√

λ
2−λ

√
1+α(1−λ)
1−α(1−λ)

ARMA(1,1) 1+(1−λ)t

1−(1−λ)t
+ (1+αβ)(α+β)

α(1+αβ+β2)

2ξt
[1−(1−λ)t ]2 c

√
λ

2−λ

√
1 + 2 (1+αβ)(α+β)

1+2αβ+β2
1−λ

1−α(1−λ)

ηt is clearly a decreasing function of t for WN output since λ ∈ (0, 1].
Now, notice that the sum ξt and ηt can be written in a recursive way for t = 1, 2, . . . :

ξt+1 =
t∑

v=1

αv(1 − λ)v
[
1 − (1 − λ)2(t+1−v)

]

= α(1 − λ)
{
ξt +

[
1 − (1 − λ)2t

]}
; (4.5)

ηt+1 = [1 + (2k − α)(1 − λ)] − (1 − λ)2(t+1)[1 + (2k − α)/(1 − λ)]
[1 − (1 − λ)t+1]2

+ α(1 − λ)

[
1 − (1 − λ)t

1 − (1 − λ)t+1

]2

ηt , (4.6)

where k = (1 + αβ)(α + β)/(1 + 2αβ + β2), for the ARMA(1,1) model; and k = α, for
the AR(1) model. However, from (4.5) we conclude that ξt is not a monotone function
of t and (4.6) fails to help us prove that ηt is a decreasing function of t. The complete
proof of this monotone behaviour can be found in the Appendix, as mentioned before.

Finally, note that our numerical studies using Mathematica ([25]) led us to conjecture
that ηt (and therefore the ratio

√
Var0,1(Zt)/[1 − (1 − λ)t ]) either decreases with t, or

has two decreasing subsequences (for odd and even values of t) converging to the same
limit, for all constellations of set parameters considered for the stationary AR(1) and
ARMA(1,1) processes, regardless of their autocorrelation functions. If this conjecture
holds then the bounds in Corollary 4.1 are valid for all stationary AR(1) and ARMA(1,1)
processes.

Remark 4.4 It should be added that Lemma 4.2 implies

Var0,1(Zt+1)

Var0,1(Zt)
≤

[
1 − (1 − λ)t+1

1 − (1 − λ)t

]2

, (4.7)
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Behaviour of EWMA schemes in the presence of shifts in σ 405

while [21] has shown that, for an arbitrary stationary Gaussian process with nonnegative
autocovariance function, we have

Var0,1(Zt+1)

Var0,1(Zt)
≥ 1 − (1 − λ)2(t+1)

1 − (1 − λ)2t

=
[

1 − (1 − λ)t+1

1 − (1 − λ)t

]2

×
{

1 − 2λ(1 − λ)t[
1 + (1 − λ)t

] [
1 − (1 − λ)t+1

]
}

. (4.8)

In case (4.1) does not hold, replacing the exact bounds δL and δU for easy-to-compute
ones is also of practical use. For instance, if {Yt} is stationary with mean µ0 and absolutely
summable autocovariance function {γv}, we get

Var
0,1

(Zt) ≤ γ0
λ

2 − λ

[
1 + 2

∞∑
v=1

(1 − λ)v

]
= γ0.

Thus,

δU = sup
t=1,2,...

c√
γ0

√
Var0,1(Zt)

1 − (1 − λ)t
≤ c

λ
.

In the light of this result we infer that an inaccurate upper bound is c/λ. However, we can
further improve such an inexact upper bound and also provide an alternative to the exact
lower bound δL .

Corollary 4.5 The stochastic order relations (3.3) and (3.4) are still valid if δL and δU
are replaced by

δ∗
L = cλ

δ∗
U = c

λ
√

γ0
σ0,1,

provided that the autocovariance function {γν} is nonnegative and absolutely summable.

Proof: Bounds δ∗
L and δ∗

U are obtained as follows:

δL ≥ inf
t=1,2,...

c√
γ0

√
Var
0,1

(Zt) = c√
γ0

√
Var
0,1

(Z1) = cλ = δ∗
L ;

δU ≤ sup
t=1,2,...

c

λ
√

γ0

√
Var
0,1

(Zt) = c

λ
√

γ0
σ0,1 = δ∗

U . �
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Remark 4.6 A few comments about the exact and alternative lower and upper bounds.

1.) For i.i.d. output, the bounds δL = δ′
L and δU = δ′

U obtained here are distinct from the
ones in [16] for the upper one-sided EWMA chart they considered, since this chart
has a summary statistic different from (2.2) and uses control limits that are functions
of the asymptotic variance. In fact, the lower bound corresponding to δL = δ′

L in
[16] is equal to −c(1 − λ)/

√
λ(1 − λ), thus, negative. As for the upper bound, these

authors obtained c/
√

λ(1 − λ), which is larger than the corresponding δU = δ′
U = c.

2.) Note that, for a stationary target process with mean µ0, an absolutely summable

autocovariance function {γv} and a decreasing ratio
√

Var0,1(Zt )

[1−(1−λ)t] , we get δL = δ′
L = δL

and δU = δ′
U ≤ δ∗

U = δU . Thus, the range of the interval where we cannot predict the
monotone behaviour of Nδ,�, (δL , δU), is larger than the interval associated to Nδ,�,
(δL , δU). Using exact limits does indeed pay off.

5 Simulation results and concluding remarks
To give the reader further insight into how the ARL behaves as a function of �, for fixed
values of δ, we present a simulation study, since there is no other possibility of obtaining
an ARL defined as Eδ,�(Nδ,�) = 1 + ∑+∞

k=1 Pδ,�(Nδ,� > k), where the term of this
sum is defined by Equation (3.5) and therefore related to the distribution function of
a k-dimensional multivariate normal r.v.

The simulation results refer to an upper one-sided modified EWMA chart for the mean
of a few stationary AR(1) and ARMA(1,1) processes and were obtained by considering
106 replications, λ = 0.1, µ0 = 0 and σ0 = 1.

The constant c which defines the upper control limit was chosen, via simulation,
in such way that the scheme requires an in-control ARL close to 500 samples. The
remaining parameters, namely the autoregressive and moving average parameters, the in-
control asymptotic variances of the EWMA summary statistic and the bounds δ′

L and δ′
U

(as defined in Corollary 4.1) can be also found in Table 5.1.

Table 5.1 Parameters, in-control ARLs, and bounds δ′
L and δ′

U , for upper one-sided modified
EWMA chart for the mean of stationary AR(1) and ARMA(1,1) processes.

α β In-control ARL γ0 σ2
0,1 δ′

L = c√
γ0

σ0,1 δ′
U = c

0.5 0 500.004 1.333333 0.185008 0.888915 2.386350

0.8 0 499.994 2.777778 0.898079 1.239752 2.180351

0.6 0.3 499.995 2.265625 0.460991 1.043992 2.314434

0.6 –0.3 500.000 1.140625 0.139195 0.836669 2.395045

Figure 6.1 presents several ARL curves for values of � ranging from an 80 % reduction
of the process standard deviation (� = 0.2) to a 300 % increase in this parameter
(� = 3).
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On one hand, some of these plots illustrate the fact that Eδ,�(Nδ,�) is a decreasing
(an increasing) function of � for δ = δ′

L (δ = δ′
U), when we are dealing with upper

one-sided modified EWMA for the mean of stationary AR(1) and ARMA(1,1) processes
under the conditions of Corollary 4.1 and Lemma 4.2.

On the other hand, the three intermediate curves on the left hand side of Figure 6.1,
set separately and in a different scale on the right hand side of the figure, portray a
completely different scenario for δ = 0.7δ′

L + 0.3δ′
U, 0.6δ′

L + 0.4δ′
U, 0.5δ′

L + 0.5δ′
U :

Eδ,�(Nδ,�) can have a nonmonotonous behaviour in terms of �. A plausible explanation
for this nonmonotonous behaviour as the level of the standard deviation increases, for
a fixed δ belonging to the interval (δ′

L, δ′
U), is the fact that Nδ,� starts by having a stochastic

decreasing behaviour in � when δ ≤ δ′
L , and becomes stochastically increasing in � when

δ ≥ δ′
U .

Moreover, the percentage points of Nδ,� in Table 6.2 either have no monotone be-
haviour or change their monotone behaviour in terms of �, for δ = 0.7δ′

L + 0.3δ′
U ,

δ = 0.6δ′
L + 0.4δ′

U and δ = 0.5δ′
L + 0.5δ′

U . Take for instance the ARMA (1,1) process
with parameters α = 0.6, β = 0.3, in case δ = 0.6δ′

L + 0.4δ′
U : the 5, 10, 25% percentage

points, the median and the mean of Nδ,� all decrease with � suggesting an increasing
ability to trigger an out-of-control signal; however, the 75, 90 and 95 % percentage points
increase with � suggesting just the opposite.

As for the ARL results in Figure 6.1 and Table 6.2, we can add that not only the charts
do not give any protection to decreases or increases in the standard deviation but also that
an increase in σ can lead to an increase in the out-of-control ARL for large values of δ.
Both situations should not be tolerated by the practitioners.

Control schemes are often used to monitor a process for the sole purpose of detecting
assignable causes that result in changes in parameters which in turn may result in lower-
quality output.

Unlike some authors who argue that consideration of the theoretical properties of
the control schemes (the “probabilistic” approach) reduces the usefulness of the tech-
niques (as observed by [26]), we strongly believe that the knowledge of the RL distri-
bution and its stochastic monotone behaviour in terms of the model parameters provides
decisive insights into how schemes work in practice and helps practitioners better un-
derstand the ability of the control scheme to monitor process quality and the way its
performance changes or can be improved. In particular, we proved that under certain
conditions the discriminating effect of the upper one-sided EWMA chart for the mean of
correlated output decreases with the magnitude of the shift in the process variance. The
financial impact of such behaviour can only be avoided by using a joint scheme for µ

and σ2.

6 Appendix
The reader should be reminded that this appendix has the sole purpose of presenting
a short version of the proof that the sufficient condition (4.1) of Corollary 4.1 holds
for any stationary process with mean µ0 and nonnegative decreasing and absolutely
summable autocovariance function {γv}, as stated in Lemma 4.2.
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(a) AR(1) processes: α = 0.5 (top), 0.8 (bottom)

(b) ARMA(1,1) processes: α = 0.6, β = 0.3 (top), α = 0.6, β = −0.3 (bottom)

Figure 6.1 Plots of Eδ,�(Nδ,�), for upper one-sided modified EWMA charts and � ∈ [0.2, 3].
On the left: δ = δ′

L , 0.7δ′
L + 0.3δ′

U , 0.6δ′
L + 0.4δ′

U , 0.5δ′
L + 0.5δ′

U , δU from top to bottom. On
the right: δ = 0.7δ′

L + 0.3δ′
U , 0.6δ′

L + 0.4δ′
U , 0.5δ′

L + 0.5δ′
U .
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Table 6.2 AR(1) and ARMA(1,1) processes – Nδ,� percentage points (p.p.) and Eδ,�(Nδ,�)

values, for upper one-sided modified EWMA charts.

α = 0.5

δ = 0.7δ′
L + 0.3δ′

U δ = 0.6δ′
L + 0.4δ′

U δ = 0.5δ′
L + 0.5δ′

U
Nδ,� p.p. � � �

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
5 % 3 1 1 2 1 1 2 1 1

10 % 4 1 1 3 1 1 2 1 1
25 % 6 3 1 4 2 1 3 2 1
50 % 8 7 4 6 5 3 5 4 3
75 % 12 12 11 9 9 9 7 8 8
90 % 15 18 19 12 14 16 9 12 14
95 % 17 22 26 13 18 22 10 15 19
Eδ,�(Nδ,�) 9.03 8.39 7.60 6.88 6.72 6.51 5.38 5.50 5.68

α = 0.8

δ = 0.7δ′
L + 0.3δ′

U δ = 0.6δ′
L + 0.4δ′

U δ = 0.5δ′
L + 0.5δ′

U
Nδ,� p.p. � � �

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
5 % 3 1 1 2 1 1 1 1 1

10 % 4 1 1 3 1 1 2 1 1
25 % 7 3 1 5 2 1 4 2 1
50 % 12 8 5 10 7 4 8 5 3
75 % 20 19 16 16 16 14 13 13 12
90 % 29 32 32 23 27 29 19 24 26
95 % 35 41 44 29 36 40 24 31 36
Eδ,�(Nδ,�) 14.64 13.21 11.42 11.71 11.09 10.36 9.46 9.45 9.26

α = 0.6, β = 0.3

δ = 0.7δ′
L + 0.3δ′

U δ = 0.6δ′
L + 0.4δ′

U δ = 0.5δ′
L + 0.5δ′

U
Nδ,� p.p. � � �

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
5 % 3 1 1 3 1 1 2 1 1

10 % 4 2 1 3 1 1 3 1 1
25 % 7 4 1 5 3 1 4 2 1
50 % 10 8 5 8 7 4 6 5 4
75 % 15 15 13 12 12 11 9 10 10
90 % 20 23 24 16 19 21 13 16 19
95 % 23 29 32 18 24 28 15 20 25
Eδ,�(Nδ,�) 11.41 10.55 9.34 8.99 8.76 8.19 7.16 7.23 7.23

α = 0.6, β = −0.3

δ = 0.7δ′
L + 0.3δ′

U δ = 0.6δ′
L + 0.4δ′

U δ = 0.5δ′
L + 0.5δ′

U
Nδ,� p.p. � � �

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
5 % 3 1 1 2 1 1 2 1 1

10 % 3 1 1 2 1 1 3 1 1
25 % 5 3 1 4 2 1 3 2 1
50 % 7 6 4 6 5 3 4 4 3
75 % 10 11 10 8 8 8 6 7 7
90 % 14 16 18 10 13 15 8 10 13
95 % 16 20 24 12 16 21 9 13 17
Eδ,�(Nδ,�) 8.07 7.61 7.03 6.03 6.05 6.03 4.62 4.83 5.14
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Let

B(t) = Var0,1(Zt+1)

γ0(1 − x)2

= 1 − x2(t+1)

1 − x2 + 2

1 − x2

t∑
ν=1

ρνxν[1 − x2(t+1−ν)], (6.1)

where x = 1 − λ ∈ [0, 1) and {ρν} represents the autocorrelation function of a stationary
process. Then from (2.4) we conclude that (4.1) is equivalent to

B(t − 1)(1 − xt+1)2 ≥ B(t)(1 − xt)2,∀t. (6.2)

Taking into account the symmetry of the autocorrelation function and that

B(t) − B(t − 1) = 2
t−1∑
ν=0

ρt−νxt+ν + x2t (6.3)

B(t) − x2B(t − 1) = 1 + 2
t∑

ν=1

ρνxν (6.4)

xt +
t−1∑
ν=0

ρt−νxν + xt
t∑

ν=1

ρνxν =
2t∑

ν=0

ρt−νxν, (6.5)

(6.2) can be successively rewritten as

B(t) − x B(t − 1) −
2t∑

ν=0

ρt−νxν ≥ 0 (6.6)

(1 − x)B(t − 1) + 2
t−1∑
ν=0

ρt−νxt+ν + x2t −
2t∑

ν=0

ρt−νxν ≥ 0. (6.7)

Now, noting that

B(t − 1) = 1 − x2t

1 − x2 + 2

1 − x2

t−1∑
ν=1

ρνxν[1 − x2(t−ν)]

t−1∑
ν=0

ρt−νxt+ν =
t−1∑
ν=1

ρνx2t−ν + ρt x
t (6.8)

2t∑
ν=0

ρt−νxν = ρt(1 + x2t) + xt +
t−1∑
ν=1

ρt x
t−ν + xt

t−1∑
ν=1

ρνxν, (6.9)

we obtain
t−1∑
ν=1

ρν

(
2

xν + x2t−ν+1

1 + x
− xt−ν − xt+ν

)
− ρt(1 − xt)2

+ (1 − xt)(1 − xt+1)

1 + x
≥ 0. (6.10)
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which is still equivalent to (6.7), and to
t∑

ν=0

ρν

(
2

xν + x2t−ν+1

1 + x
− xt−ν − xt+ν

)
≥ (1 − xt)(1 − xt+1)

1 + x
. (6.11)

After dividing both members of (6.11) by (1−xt)(1−xt+1)
1+x , we get

1

1 − xt

t∑
ν=0

ρν(x
ν − xt−ν) + 1

1 − xt+1

t∑
ν=0

ρν(x
ν − xt−ν+1) ≥ 1. (6.12)

This inequality can be rewritten as

1

1 − xt

t∑
ν=0

ρν(x
ν − xt−ν) + 1

1 − xt+1

t+1∑
ν=0

ρν(x
ν − xt+1−ν) ≥ 1 − ρt+1. (6.13)

Since x ∈ [0, 1) and we assumed that {ρν} is a nonnegative and decreasing sequence,
it can be shown that

∑t−1
ν=1 ρν(xν − xt−ν) ≥ 0. In fact, for even values of t, t = 2l, we

have 2l−1∑
ν=1

ρν(x
ν − x2l−ν) =

l−1∑
ν=1

(ρν − ρ2l−ν)(x
ν − x2l−ν) ≥ 0 (6.14)

and, for odd values of t, t = 2l + 1, we get

2l∑
ν=1

ρν(x
ν − x2l+1−ν) =

l∑
ν=1

(ρν − ρ2l+1−ν)(x
ν − x2l+1−ν) ≥ 0. (6.15)

Consequently, for w = t, t + 1, it follows

w∑
ν=0

ρν(x
ν − xw−ν) = (1 − xw)(1 − ρw) +

w−1∑
ν=1

ρν(x
ν − xw−ν)

≥ (1 − xw)(1 − ρw). (6.16)

Thus, the left member of (6.13) is greater or equal to (1 − ρt) + (1 − ρt+1). Hence, the
inequality (6.13) holds. This completes the proof of Lemma 4.2.
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