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1. Introduction

Due to its practical importance, the asset allocation problem has been widely
discussed since the development of the mean–variance principle for portfolio
selection by Markowitz (1952). This principle defines the behavior of an investor and
is internally related to the maximization of the investor’s utility function, which is
another modeling method for the decision process in asset management. It is
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commonly assumed that asset returns follow multivariate normal distribution. This
assumption implies myopic behavior, and thus the investor’s problem reduces to a
one-period problem and the maximization of the derived quadratic utility function.
This subsequently implies the choice of mean–variance optimal portfolios.
Samuelson (1970), and Constandinides and Malliaris (1995) provide further
discussion on this topic.

As a solution to the utility maximization problem, we obtain the proportions
of wealth that must be allocated to particular assets. Despite the key role of
portfolio weights in asset allocation, their distributional properties have rarely
been studied. In a myopic setup there are at least four important applications of the
distribution of weights. First, tests can be applied to determine whether a current
portfolio weight differs significantly from a given value. In general, this test allows
comparison between portfolios. As a concrete example, we can consider the test of
efficiency of a given portfolio. Jobson and Korkie (1989) derive a test for the
mean–variance efficiency and introduce a potential performance measure related to
the Sharpe ratio. This kind of test is also useful for market and volatility timing
and may lead to an adjustment of the portfolio in real time (Barberis, 2000;
Fleming et al., 2001). Second, the significance of the allocation to a particular
asset can be tested. This can be used, for example, in testing international
diversification. As reported in French and Poterba (1991), the fraction of wealth
allocated to local assets for the five largest stock markets varies from 0.79
(Germany) to 0.922 (USA), which contradicts the theoretical advantages of
diversification. This brought into question the significance of foreign ownership
and resulted in much new research trying to explain the reasons for this puzzle.
Recent developments in information technology made this problem again pressing
(see Stulz, 1995; Britten-Jones, 1999; Ang and Beakert, 2002). Third, one can
apply sequential trading strategy based on controlling optimal weights. Golosnoy
and Schmid (2005) develop and compare this strategy with other common strategies.
This methodology is based on the idea that asset reallocation is performed only in
case of significant changes to the estimated portfolio weights. It appears that
controlling optimal portfolio weights outperforms the buy-and-hold strategy, as well
as the strategies with systematic reallocations. Fourth, since expected portfolio
returns play a crucial role in most financial theories, their evaluation is of
importance. Therefore, the fact that the optimal weights are random should be
incorporated into the derivation of the expected portfolio return as well as into the
portfolio variance. Moreover, it is sensible to treat the portfolio return as a function
of random asset returns and random portfolio weights and to use its exact
distribution.

Excepting Britten-Jones (1999) and Golosnoy and Schmid (2005), the decisions in
such problems are usually based on asymptotic results or on direct comparison of the
weights, without taking into account the stochastic nature of the returns and the
weights, respectively. Jobson and Korkie (1980) derive approximations for the mean
and variance of the estimated weights of the Sharpe ratio optimal portfolio, together
with the asymptotic covariance matrix. However, asymptotic methods are not
suitable for active portfolio management with frequent asset reallocations and short
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estimation periods. Due to these problems, finite sample properties of the portfolio
weights are of interest.

Another important problem that relies on the exact distribution of the weights is
the sensitivity of weights to changes in the assets means or variances (Best and
Grauer, 1991; Chopra and Ziemba, 1993). Chopra and Ziemba (1993) consider an
investor with a risk tolerance of 50 and positively weighted mean–variance efficient
portfolios. They conclude for a concrete data set that the cash equivalent values are
11 times more sensitive to changes in the mean than to changes in the variance, and
21 times more sensitive to changes in the mean than to changes in the covariance.
Results on the exact distribution of portfolio weights will help analytical analysis of
the impact of changes in the mean and the covariance matrix of the returns on the
mean and the covariance matrix of the optimal weights.

In this paper we discuss the exact distribution of four types of weights related to
the mean–variance optimal portfolios. Let l denote the expected return of a
portfolio and R its covariance matrix. R is assumed to be positive definite. For the
expected quadratic utility the portfolio weights are chosen to maximize w0l�

aw0Rw=2 subject to 10w ¼ 1. 1 denotes the vector whose components are all equal to
1. a40 describes the risk aversion of an investor. This leads to the weights of the
expected quadratic utility (EU) optimal portfolio

wEU ¼
R�11

10R�11
þ a�1Rl with R ¼ R�1 �

R�1110R�1

10R�11
. (1)

Taking into account reported evidence that the means of asset returns are difficult to
estimate precisely (Merton, 1980) and, therefore, are difficult to distinguish, the
global minimum variance portfolio (GMV) should be retained. The weights of the
GMV portfolio are given by

wGMV ¼
R�11

10R�11
.

Special portfolios arise from Tobin’s separation theorem and are referred to as
‘‘tangency’’ portfolios. In terms of the efficient frontier, a tangency portfolio is a
portfolio which corresponds to the tangency point between the efficient frontier and
a line drawn from the origin or from the point which stands for a riskless asset, if it is
available. Thus the presence of the riskless asset is important. In case of no riskless
asset, the same tangency portfolio can be obtained via maximization of the Sharpe
ratio of a portfolio. The Sharpe ratio is still one of the most popular measures of
portfolio and asset performance (Cochrane, 1999; MacKinley and Pastor, 2000;
Jobson and Korkie, 1981). The problem can be presented as maximization of
w0l=

ffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

subject to 10w ¼ 1. The Sharpe ratio (SR) optimal weights are given by

wSR ¼
R�1l

10R�1l
(2)

provided that 10R�1la0. If a riskless asset with return rf is available, the investor’s
problem reduces to the maximization of the following derived quadratic utility
function: w0ðl� rf 1Þ � aw0Rw=2. The solution of this optimization is given by the
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weights of the tangency portfolio (TP)

wTP ¼ a�1R�1ðl� rf 1Þ. (3)

This expression provides the vector of optimal weights of the risky assets in the
portfolio. The weight of the riskless asset is given by wTP;0 ¼ 1� 10wTP. A similar
expression arises in a continuous time setup as in Merton (1971). He considers the
consumption-based investment problem with a riskless asset. Taking a constant
relative risk aversion utility function (i.e., UðxÞ ¼ xg=g for g40 and UðxÞ ¼ logðxÞ
for g ¼ 0) and a finite investment horizon, we obtain exactly the same solution as in
(3) (see Ingersoll, 1987, p. 271).

The optimal weights depend on the unknown parameters l and R which must be
estimated in practice. By replacing these quantities with their sample counterparts we
obtain estimators for the optimal weights. In this paper, the behavior of the
estimated optimal weights as functions of random asset returns is discussed for finite
and infinite samples. In Section 2 we deal with finite samples. All results in this
section are based on the assumption that the underlying returns are independent and
multivariate normally distributed. Nowadays, both assumptions are heavily disputed
for describing daily returns (e.g., Osborne, 1959; Fama, 1965; Boness et al., 1974;
Mittnik and Rachev, 1993). Nevertheless, the assumption of normality is
appropriate here due to positive theoretical features, e.g., the consistency with the
mean–variance rule, the equivalence of multiperiod and single period decision rules,
the implication of the capital asset pricing model (e.g., Stiglitz, 1989; Markowitz,
1991). Moreover, Fama (1976) finds that monthly returns can be described by a
normal approach.

Theorem 1 of this paper derives the exact means and the exact covariance
matrix of the estimated optimal weights for a k-asset portfolio obtained by the
expected utility maximization. Special attention is devoted to two-asset portfolios.
In Theorem 2 we derive a formula for the higher moments. The exact multi-
variate density function is given in Proposition 1 for the global minimum
variance portfolio. The univariate density of the tangency portfolio is provided
in Proposition 3. We determine in Proposition 2 the conditional density for the
Sharpe ratio optimal weights. We prove that all moments of order higher than or
equal to 1 do not exist at all. In Section 3 we derive the asymptotic distribution of
the estimated optimal weights. Here we distinguish again between the k-variate and
two-variate case. Contrary to Section 2 it is not assumed that the returns are
independent. The proofs of all theorems and propositions are given in the appendix
(Section 5).
2. Properties for finite sample size

We consider a portfolio consisting of k assets. Let Xt ¼ ðX 1t; . . . ;X ktÞ
0 denote the

return of the portfolio assets at time point t. In this section it is always assumed that
the random vectors X1; . . . ;Xn are independent and identically distributed with mean
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l and covariance matrix R. In order to estimate the unknown parameters l and R we
choose the estimators

l̂ ¼
1

n

Xn

j¼1

Xj ¼ X̄ and R̂ ¼
1

n� 1

Xn

j¼1

ðXj � X̄ÞðXj � X̄Þ0.

These estimators are asymptotically normal if the fourth moments exist (cf.
Muirhead, 1982). Replacing l and R with l̂ and R̂ in (1)–(3) we obtain estimators for
the optimal weights. The estimator of the optimal weights in the sense of maximizing
the expected utility is given by

ŵEU ¼
R̂
�1
1

10R̂
�1
1
þ a�1R̂l̂ with R̂ ¼ R̂

�1
�

R̂
�1
110R̂

�1

10R̂
�1
1

. (4)

The estimators of the global minimum variance portfolio weights, the optimal
weights obtained by the Sharpe ratio and the tangency portfolio are

ŵGMV ¼
R̂
�1
1

10R̂
�1
1
; ŵSR ¼

R̂
�1

l̂

10R̂
�1

l̂
and ŵTP ¼ a�1 R̂

�1
ðl̂� rf 1Þ. (5)

In this section we calculate the mean, the variances, and the covariances of the
elements of ŵEU. Furthermore, we determine the exact density of ŵGMV, the
conditional densities of the components of ŵSR and the univariate density of ŵTP.
This is done under the assumption that the random vectors Xt have a k-variate
normal distribution with mean l and covariance matrix R. We use the notation
Nkðl;RÞ to refer to the k-variate normal distribution. In the following R is always
assumed to be positive definite.

Now let ŵEU;i denote the ith component of ŵEU, and also let us use similar
notation for ŵGMV, ŵSR and ŵTP. Let ei be the k-dimensional vector with ith
component equal to 1 and all other components equal to zero. As usual rankðAÞ

stands for the rank of a matrix A and trðAÞ for its trace.

2.1. Weights of the expected quadratic utility optimal portfolio

In Theorem 1 we derive the mean and the covariance matrix of ŵEU.

Theorem 1. Let X1; . . . ;Xn be independent random vectors and let Xi�Nkðl;RÞ for

i ¼ 1; . . . ; n.
(a)
 Assume that either

(i) a ¼ 1, nXk þ 1, and kX2 or

(ii) ao1, nXk þ 2, and kX3
is satisfied. Then it follows that

EðŵEUÞ ¼
R�11

10R�11
þ

n� 1

n� k � 1
a�1Rl (6)
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(b)
 Assume that either

(i) a ¼ 1; nXk þ 2, and kX2 or

(ii) ao1, nXk þ 4, and kX3 is satisfied.
Then the variance of the estimated expected quadratic utility optimal portfolio

weights ŵEU exists. Moreover if (ii) is replaced by ðii0)
ðii0Þ ao1; nXk þ 4, and kX4

then it holds that

VarðŵEUÞ ¼
1

n� k � 1

R

10R�11
þ a�2c1Rll0Rþ a�2c2 l0RlR

þ
a�2

n
c1 þ c2ðk � 1Þ þ

ðn� 1Þ2

ðn� k � 1Þ2

� �
R,

with

ðn� 1Þ2ðn� k þ 1Þ ðn� 1Þ2

c1 ¼
ðn� kÞðn� k � 1Þ2ðn� k � 3Þ

; c2 ¼
ðn� kÞðn� k � 1Þðn� k � 3Þ

.

Note that the estimator ŵEU is biased. Nevertheless, it can be shown that the
unbiased estimator

~̂wEU ¼
R̂
�1
1

10R̂
�1
1
þ a�1

n� k � 1

n� 1
R̂l̂

performs worse in terms of the mean square error, i.e.

MSEðŵEUÞ ¼ VarðŵEUÞ þ ðEðŵEUÞ � wEUÞðEðŵEUÞ � wEUÞ
0pMSEð ~̂wEUÞ,

where ApB means that B� A is a non-negative-definite matrix.
In Theorem 1 we have different assumptions on k. These restrictions are necessary

in order to apply a basic tool of our proof, Theorem 3.2.11 of Muirhead (1982). For
that reason we consider the case of two assets separately in the following. Let

l ¼
m1
m2

!
; R ¼

s21 s12
s12 s22

!
; l̂ ¼

X̄ 1

X̄ 2

!
; R̂ ¼

ŝ21 ŝ12
ŝ12 ŝ22

!
.

Then the optimal weight ŵEU;2, here briefly ŵEU, is given by

ŵEU ¼
ðX̄ 2 � X̄ 1Þa�1 þ ŝ21 � ŝ12

ŝ22 þ ŝ21 � 2ŝ12

¼
a��1ð

Pn
i¼1 X 2i �

Pn
i¼1X 1iÞ þ

Pn
i¼1 ðX 1i � X̄ 1Þ

2
�
Pn

i¼1 ðX 1i � X̄ 1ÞðX 2i � X̄ 2ÞPn
i¼1ðX 1i � X̄ 1Þ

2
þ
Pn

i¼1 ðX 2i � X̄ 2Þ
2
� 2
Pn

i¼1 ðX 1i � X̄ 1ÞðX 2i � X̄ 2Þ

ð7Þ
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with a� ¼ na=ðn� 1Þ. In Theorem 2 we determine the moments of the
estimated weights of a two-asset portfolio. Now let a ¼ nðm2 � m1Þ=a

�, b ¼

nðs21 þ s22 � 2s12Þ=ð2a�2Þ,

dk:¼
1

k!

qk

qtk
1

eat1þbt21

�����
t1¼0

¼
Xk

j¼½ðkþ1Þ=2�

j

k � j

!
1

j!
bk�ja2j�k ð8Þ

¼ a��k
Xk

j¼½ðkþ1Þ=2�

nj
j

k � j

!
1

j!

s21 þ s22 � 2s12
2

� �k�j

�ðm2 � m1Þ
2j�k

ð9Þ

and

aj;k ¼
j

k � j

!
k!

j!
rk�jq2j�k (10)

with

q ¼ 2ðs21 � s12Þ; r ¼ s21s
2
2 � s212. (11)

Theorem 2. Let k ¼ 2 and X1; . . . ;Xn be independent random vectors and let

Xi�N2ðl;RÞ for i ¼ 1; . . . ; n. Then it holds that for n42mþ 1

Eðŵm
EUÞ

¼ ðs21 þ s22 � 2s12Þ
�m
Xm

k¼0

m!

k!
dm�k

Xk

j¼½ðkþ1Þ=2�

aj;k

2j
Qm

l¼jþ1 ðnþ 2j � 1� 2lÞ
, ð12Þ

where dk and aj;k are defined in (8) and (10), respectively.

It can easily be shown that the distribution of ŵEU is skewed. For equal means it is
positively skewed if s12os21; otherwise it is negatively skewed. For the proof of
Theorem 2 the interested reader is referred to Okhrin (2004).
2.2. Weights of the global minimum variance portfolio

We consider the global minimum variance portfolio weights given by the formula

wGMV ¼
R�11

10R�11
.

In this section, we derive the density of ðm� 1Þ arbitrary components of this
vector. Without loss of generality we restrict ourselves to the first ðm� 1Þ
components and denote this subvector by ~wGMV. Setting m ¼ 2 provides the
marginal density of a single weight, and m ¼ k provides the exact density of the
first k � 1 weights. In the latter case the distribution of the last weight is obtained
from ŵGMV;k ¼ 1� 10k�1 ~̂wGMV. Let us consider ~wGMV as a function of a sample of
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size n of returns

~̂wGMV ¼
e01R̂
�1
1

10R̂
�1
1
; . . . ;

e0m�1R̂
�1
1

10R̂
�1
1

!
.

Proposition 1. Let Xt�Nkðl;RÞ, nXkXmX2. Then ~̂wGMV follows an m� 1-variate

elliptical t-distribution with n� k þ 1 degrees of freedom and has parameters ~wGMV and

1

n� k þ 1

~R

10R�11
,

where ~R ¼ fe0iRejgi;j¼1;...;m�1 (see Muirhead (1982), p. 48). In formulaic terms, the

density function is given by

f ~̂wGMV
ðxÞ ¼

ð10R�11Þðm�1Þ=2

pðm�1Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detð ~RÞ

q Gððn� k þmÞ=2Þ

Gððn� k þ 1Þ=2Þ

�ðð10R�11Þðx� ~wGMVÞ
0 ~R
�1
ðx� ~wGMVÞ þ 1Þ�ðn�kþmÞ=2. ð13Þ

Moreover,

Eð ~̂wGMVÞ ¼ ~wGMV and Varð ~̂wGMVÞ ¼
1

n� k � 1

~R

10R�11
.

Corollary 1. The univariate marginal distribution of ŵGMV is a scaled t-distribution with

n� k þ 1 degrees of freedom, more preciselyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10R�11
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� k þ 1
pffiffiffiffiffiffiffiffiffiffiffi
e0iRei

p ðŵGMV;i � wGMV;iÞ�tn�kþ1.

The standard distribution of ŵGMV simplifies the application of tests, since the
marginal distribution of a multivariate t-distribution is again a t-distribution (see
Muirhead (1982)).

2.3. Weights of the sharpe ratio optimal portfolio

Next we consider the estimated weights of the Sharpe ratio optimal portfolio.
They are given by

ŵSR ¼
R̂
�1

l̂

10R̂
�1

l̂
. (14)

As above we consider k risky assets, but restrict the analysis to the ith component of
ŵSR. This leads to ŵSR;i ¼ e0iR̂

�1
l̂=10R̂

�1
l̂. It is shown that all moments higher or

equal to 1 of ŵSR;i do not exist. Because this estimator is commonly used in practice
this should serve as a warning to practitioners. It holds that

f ŵSR;i
ðxÞ ¼

Z
� � �

Z
f ŵSR;ijl̂

ðxjyÞnkðl;R=nÞðyÞdy,



              
                                                       243
where the conditional density of ŵSR;ijl̂ is given by f ŵSR;i jl̂
ðxjyÞ and nkðl;R=nÞð�Þ

denotes the density of a k-variate Gaussian vector with parameters l and R=n and
stands for the density of l̂. Using the fact that l̂ and R̂ are independent (see
Muirhead (1982), Theorem 3.1.2) the conditional distribution of ŵSR given l̂ is
specified only by the distribution of R̂.

Assume that the matrix M0 ¼ ðei; 1; yÞ has rank 3. Let H ¼ ðMR�1M0Þ�1.
Moreover, let H�1 be split into the submatrices H

ð�Þ

ij for i; j ¼ 1; 2, Hð�Þ22 ¼ y0R�1y
and similarly for H with components Hij for i; j ¼ 1; 2. Furthermore let

xðxÞ ¼
jðx 1ÞH12jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðHÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � xÞH
ð�Þ

11 ð1 � xÞ0
q .

Proposition 2. Let X1; . . . ;Xn be independent random vectors and let Xi�Nkðl;RÞ for

i ¼ 1; . . . ; n. Suppose that 10R�1ya0 and that rankðMÞ ¼ 3. Let nXk þ 1 and kX3.
Then the density function of ŵSR;i conditional on l̂ is given by

f ŵSR;i jl̂
ðxjyÞ ¼

1

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðH
ð�Þ

11 Þ

q detðH�1Þ

detðH
ð�Þ

11 ÞH
ð�Þ

22

!ðn�kÞ=2
1

ðx 1ÞH11ðx 1Þ0

þ
n� k þ 1

p

ffiffiffiffiffiffiffiffiffiffi
H
ð�Þ

22

q
jðx 1ÞH12j

ðdetðH�1ÞÞðn�kþ1Þ=2

ððx 1ÞH11ðx 1Þ0Þðn�k�1Þ=2

ðð1 � xÞH
ð�Þ

11 ð1 � xÞ0Þðn�kþ2Þ=2

�

Z xðxÞ

0

ð1þ v2Þ�ðn�kþ3Þ=2 dv.

All moments of ŵSR;ijl̂ of order bX1 do not exist, but all moments of order
b 2 ½0; 1Þ exist. To show this, note that for the first term the existence of the moment
of order b requires the integral of the formZ 1

0

xb

ðx 1ÞH11ðx 1Þ0
dx

to be finite, which is possible only if bo1. The second term has a representation in
terms of a Gaussian hypergeometric function (see Muirhead (1982)) and finite
moments for all values of b. Because both terms in f ŵSR;i jl̂

are positive, it follows that
the same results hold for the moments of ŵSR;i.
2.4. Weights of the tangency portfolio

In this section we restrict ourselves to the case k ¼ 1. It seems difficult to
generalize the results for a portfolio with many stocks. Nevertheless, the problem of
allocation to risky and non-risky assets is in its own right of great importance. The
weight of the risky asset reduces in this case to the following expression:

wTP ¼ a�1
m� rf

s2
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and is estimated with ŵTP ¼ a�1ðm̂� rf Þ=ŝ2, where m and s2 are the parameters of the
returns distribution and m̂ and ŝ2 the corresponding sample estimates. The next
proposition provides the density of ŵTP.

Proposition 3. If X i�N1ðm;s2Þ for i ¼ 1; . . . ; n and nX2 then the density function of

ŵTP is given by

f ŵTP
ðxÞ ¼

a

2
ffiffiffiffiffiffi
2p
p

s=
ffiffiffi
n
p

n� 1

2s2

� �ðn�1Þ=2
1

Gðn�1
2
Þ
e�

nðm�rf Þ
2

2s2 a�ðnþ1Þ=4

�
ffiffiffi
a
p

Gððnþ 1Þ=4Þ1F 1
nþ 1

4
;
1

2
;
b2

4a

� ��

�bGððnþ 3Þ=4Þ1F1
nþ 3

4
;
3

2
;
b2

4a

� ��
,

with

a ¼
a2x2

2s2=n
; b ¼

n� 1

2s2
� na2wTP

and 1F1ð�; �; �Þ denotes the confluent hypergeometric function (see Muirhead (1982)).
Moreover, for nX4 it holds that

EðŵTPÞ ¼
n� 1

n� 3
wTP, (15)

and for nX6 that

VarðŵTPÞ ¼
a�2

s2
ðn� 1Þ2

nðn� 3Þðn� 5Þ
þ 2w2

TP

ðn� 1Þ2

ðn� 3Þ2ðn� 5Þ
. (16)

For x ¼ 0 the value of f ŵTP
is interpreted as the limit limx!0 f ŵTP

ðxÞ, which is given
by

f ŵTP
ð0Þ ¼

2
ffiffiffi
n
p

asffiffiffiffiffiffi
2p
p
ðn� 1Þ

Gððnþ 1Þ=2Þ

Gððn� 1Þ=2Þ
e�

nðm�rf Þ
2

2s2 .
3. Asymptotic behavior of the weights

Here we assume that the portfolio assets are serially correlated. Let fXtg be a k-
dimensional weakly stationary process with mean l ¼ fmig and cross-covariance
matrix

CðhÞ ¼ fgijðhÞg ¼ fEðX i;tþh � miÞðX j;t � mjÞgi;j¼1;...;k

at lag h. gijðhÞ is called cross-covariance at lag h. Note that in general gijðhÞagjiðhÞ but
gijðhÞ ¼ gjið�hÞ.

We define Cð0Þ ¼ R ¼ fsijg, h1 ¼ ðl
0; vechðRÞ0Þ0, h2 ¼ vechðRÞ with vechðRÞ ¼

ðs11; . . . ;sk1;s22; . . . ;sk2; . . . ;sk�1;k�1; sk;k�1;skkÞ
0. Then h1 and h2 have kðk þ 3Þ=2
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and kðk þ 1Þ=2 components, respectively. We estimate l and R by their empirical
counterparts l̂ and R̂ as defined in Section 2. The estimators of hi are denoted by ĥi

for i ¼ 1; 2. Several authors have shown under various conditions that ĥi ði ¼ 1; 2Þ
are asymptotically normal with mean hi and covariance matrix Xi. In this case, the
process must be strictly stationary, linear or Gaussian (see, e.g., Hannan, 1970, p.
228). If, e.g., fXtg is a Gaussian process, then it holds that

X1 ¼

P1
h¼�1

gijðhÞ

� �
i;j¼1...k

0k�kðkþ1Þ=2

0kðkþ1Þ=2�k

P1
h¼�1

ðgipðhÞgjsðhÞ þ gisðhÞgjpðhÞÞ

� �
j¼i;...;k
s¼p;...;k

8<
:

9=
;

i;p¼1;...;k

0
BBBBBB@

1
CCCCCCA

provided that all infinite sums are convergent. X2 contains only the lower block of
X1. For k ¼ 2 we get that

X2 ¼

P
g11ðhÞ

P
g12ðhÞ 0 0 0P

g21ðhÞ
P

g22ðhÞ 0 0 0

0 0 2
P

g211ðhÞ 2
P

g11ðhÞg12ðhÞ 2
P

g212ðhÞ

0 0 2
P

g11ðhÞg21ðhÞ
P
ðg11ðhÞg22ðhÞ þ g12ðhÞ

2
Þ 2

P
g22ðhÞg12ðhÞ

0 0 2
P

g21ðhÞ
2 2

P
g22ðhÞg21ðhÞ 2

P
g22ðhÞ

2

0
BBBBBB@

1
CCCCCCA
,

where h runs in all sums from �1 to 1.
The optimal weights discussed in Section 2 can be considered as functions of the

estimators ĥi ði ¼ 1; 2Þ. Let ŵ
0
EU ¼ g1ðĥ1Þ, ŵ

0
GMV ¼ g2ðĥ2Þ, ŵ

0
SR ¼ g3ðĥ1Þ and

ŵ
0
TP ¼ g4ðĥ1Þ. The components gj1; . . . ; gjk of gj, j 2 f1; 4g, are continuously

differentiable in a neighborhood of h1 and g21; . . . ; g2k of g2 are continuously
differentiable in a neighborhood of h2. g3 possesses the same property provided that
10R�1la0. Now for j 2 f1; 3; 4g let Gj be a k � kðk þ 3Þ=2 matrix with components
qgjv=qy1s for v ¼ 1; . . . ; k, s ¼ 1; . . . ; kðk þ 3Þ=2 and G2 be a k � kðk þ 1Þ=2 matrix
with components qg2v=qy2s for v ¼ 1; . . . ; k, s ¼ 1; . . . ; kðk þ 1Þ=2. If ĥi ði ¼ 1; 2Þ is
asymptotically normal with mean hi and covariance matrix Xi and if all diagonal
elements of G0jXiGj with j ¼ 1; 3; 4 for i ¼ 1 and j ¼ 2 for i ¼ 2 are non-zero, then
ŵEU, ŵGMV, ŵSR and ŵTP are asymptotically normal, too (e.g., Brockwell and Davis,
1991, p. 21)

ffiffiffi
n
p
ðgjðĥiÞ � gjðĥiÞÞ�!

d
Nkð0;G

0
jXiGjÞ,

with j ¼ 1; 3; 4 for i ¼ 1 and j ¼ 2 for i ¼ 2. The partial derivatives of Gj can
immediately be determined by using the rules for matrix differentiation. Let Dvt ¼

R�1ðEvt þ EtvÞR
�1 for vat and Dvv ¼ R�1EvvR

�1, where Evt ¼ fdvtg and dvt denotes
Kronecker’s delta. We get that

qw0EU
ql
¼ a�1R,
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qwEU

qsvt
¼ �a�1 Dvtl�

10Dvtl

10R�11
R�11

� �
þ

a�110R�1l� 1

10R�11
Dvt1�

10Dvt1

10R�11
R�11

� �
.

The Sharpe ratio optimal weights are

qw0SR
ql
¼

10R�1lR�1 � R�11l0R�1

ð10R�1lÞ2
;

qwSR

qsvt
¼ �

Dvtl

10R�1l
þ

10Dvtl

ð10R�1lÞ2
R�1l,

and the tangency portfolio weight is

qw0TP
ql
¼ a�1R�1;

qwTP

qsvt
¼ �a�1Dvtðl� rf 1Þ.

Now assume that returns are serially uncorrelated. In this case the next theorem
provides the variances of the asymptotic distribution for all types of weights. Note
that the variances of ŵEU, ŵGMV and ŵTP are equal to the limits of the finite sample
variances. However, for ŵSR this is not the case, since the finite sample variance does
not exist.

Theorem 3. Let X1; . . . ;Xn be independent random vectors and let Xi�Nkðl;RÞ for

i ¼ 1; . . . ; n. Then the asymptotic variances of ŵEU, ŵGMV, ŵTP and the variance of the

asymptotic distribution of ŵSR are given by

ðaÞ lim
n�!1

n VarðŵEUÞ ¼
1

10R�11
Rþ a�2Rþ a�2 l0RlRþ a�2 Rll0R,

ðbÞ lim
n�!1

n VarðŵGMVÞ ¼
1

10R�11
R,

ðcÞ If 10R�1la0 then

G03X1G3 ¼
1þ l0R�1l

ð10R�1lÞ4
½ð10R�11ÞR�1ll0R�1

þ ð10R�1lÞ2R�1 � ð10R�1lÞR�1ð1l0 þ l10ÞR�1�,

ðdÞ lim
n�!1

n VarðŵTPÞ ¼ a�2R�1 þ a�2ððl� rf 1Þ
0R�1ðl� rf 1ÞR

�1

þ R�1ðl� rf 1Þðl� rf 1Þ
0R�1Þ.

Let k ¼ 2. Then it holds for the weights based on expected quadratic utility that

lim
n!1

n VarðŵEU;2Þ

¼
1

ðg211 þ g222 � 2g12Þ
2
ða�2ðg211 þ g222 � 2g12Þ þ 2a�2ðm2 � m1Þ

2
þ g211g

2
22 � g212Þ.

The asymptotic variance of ŵGMV;2 can be determined by letting a increase to
infinity. It is of high importance that a similar result does not hold for the weights of
the Sharpe ratio optimal portfolio, because the moments of the exact distribution do
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not exist at all. Estimating the variance by the sample variance obtained from a
Monte-Carlo simulation would lead to misleading results.
4. Conclusion

This paper discusses the problem of the exact moments and the exact distribution
of optimal portfolio weights. We consider four of the most commonly used portfolio
allocation strategies. The first two moments are derived in multivariate setup for the
expected quadratic utility portfolio weights. The global minimum variance portfolio
weights have the most attractive statistical properties due to the standard exact
distribution. The density function is derived only in the univariate case for the
weights of the tangency portfolio. In the simulation study, which is not provided here
but is available in Okhrin (2004), we conclude that the exact moments can deviate
significantly from their asymptotic counterparts, and thus, relying on the asymptotic
results may be misleading. For example, this deviation can be very large for the
covariance matrix of the expected quadratic utility and global minimum variance
portfolio weights. This is of special importance for the Sharpe ratio optimal weights,
since we show that the first two moments do not exist, and consequently the use of
the common estimator leads to untractable results. Moreover, it appears that the
moments of the optimal portfolio weights are very sensitive to changes in the
moments of stock returns. The sensitivity of the mean appears to diminish for higher
risk aversion, but the sensitivity of the covariance matrix is substantial and robust.
In general, this paper stresses the drawbacks of the classical estimation procedures
for the family of mean–variances efficient portfolios and the need for more
sophisticated techniques.
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Appendix

Here, we denote the p-dimensional Wishart distribution with n degrees of freedom
and covariance matrix R by W pðn;RÞ.

Proof of Theorem 1. Because l̂ and R̂ are independent (see Muirhead, 1982,
Theorem 3.1.2) and ŵEU ¼ wEUðl̂; R̂Þ, the conditional distribution of ŵEU given l̂ ¼

l is equal to the distribution of the random vector

wEUðl; R̂Þ ¼
R̂
�1
1

10R̂
�1
1
þ a�1R̂l. (17)
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We consider the ith component of this random vector. This leads to

wEU;iðl; R̂Þ ¼
e0iR̂
�1
1

10R̂
�1
1
þ a�1e0iR̂l.

To simplify the notation, the indices are neglected and we briefly write ŵi instead of
ŵEU;i.

(a) Hence it follows that EðŵiÞ ¼ EðEðwEU;iðl̂; R̂Þjl̂ÞÞ. Let M0 ¼ ðei l̂ 1Þ with

rankðMÞ ¼ 3 and Ĥ
ð�Þ
¼MR̂

�1
M0 ¼ fĤ

ð�Þ

ij gi;j¼1;2, where Ĥ
ð�Þ

22 ¼ 10R̂
�1
1. Similarly we

define Ĥ ¼ ðĤ
ð�Þ
Þ
�1
¼ fĤijgi;j¼1;2. Matrices H and Hð�Þ are defined in the same way.

Using Ĥ
ð�Þ

22 ¼ ðĤ22 � Ĥ21Ĥ
�1

11 Ĥ12Þ
�1 and Ĥ

ð�Þ

12 ¼ �Ĥ
�1

11 Ĥ12ðĤ22 � Ĥ21Ĥ
�1

11 Ĥ12Þ
�1, it

can be shown that ŵijl̂ is equal to the first component of the vector

z ¼ �Ĥ
�1

11 ðĤ12 � ð0 a�1Þ0Þ. Note that ðn� 1ÞĤ�W 3ðn� k þ 2;HÞ and, therefore,

ðn� 1ÞĤ11�W 2ðn� k þ 2;H11Þ. For notational convenience, let a ¼ ð0 a�1ðn� 1ÞÞ0.
From Theorem 3.2.10 of Muirhead (1982), it follows that:

ðn� 1ÞĤ12jðn� 1ÞĤ11 ¼ X�N2ðX �H
�1
11 H12; ðH22 �H21H

�1
11 H12ÞXÞ,

ðn� 1ÞðĤ12 � ð0 a�1Þ0Þjðn� 1ÞĤ11

¼ X�N2ðX �H
�1
11 H12 � a0; ðH22 �H21H

�1
11 H12ÞXÞ,

Ĥ
�1

11 ðĤ12 � ð0 a�1Þ0Þjðn� 1ÞĤ11

¼ X�N2ðH
�1
11 H12 � X�1a0; ðH22 �H21H

�1
11 H12ÞX

�1Þ.

This implies

EðzÞ ¼ EðEðzjĤ11ÞÞ ¼ �EðH
�1
11 H12 � ððn� 1ÞĤ11Þ

�1a0Þ

¼ �H�111 H12 �
1

n� k � 1
a0

� �
.

Thus

Eðŵijl̂Þ ¼
e0iR
�11

10R�11
þ

n� 1

n� k � 1
a�1e0iRl̂.

Taking expectation over l̂ and an arbitrary component of ŵEU proves (a).
(b) Using the notation from (a) we can compute the second moment of z as

VarðzÞ ¼ EðVarðzjĤ11ÞÞ þ VarðEðzjĤ11ÞÞ,

with

EðVarðzjĤ11ÞÞ ¼ EððH22 �H21H
�1
11 H12Þððn� 1ÞĤ11Þ

�1
Þ

¼
1

n� k � 1
ðH22 �H21H

�1
11 H12ÞH

�1
11

¼
1

n� k � 1
ðH
ð�Þ

22 Þ
�1
ðH
ð�Þ

11 �H
ð�Þ

12 ðH
ð�Þ

22 Þ
�1H

ð�Þ

21 Þ,
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VarðEðzjĤ11ÞÞ ¼ VarðH�111 H12 � ððn� 1ÞĤ11Þ
�1a0Þ

¼ Eðððn� 1ÞĤ11Þ
�1aa0ððn� 1ÞĤ11Þ

�1
Þ �

1

ðn� k � 1Þ2
H�111 aa

0H�111 .

Using Corollary 14 of Styan (1989), it holds that

Eðððn� 1ÞĤ11Þ
�1aa0ððn� 1ÞĤ11Þ

�1
Þ ¼ ðd1 þ d2ÞH

�1
11 aa

0H�111 þ d2 trða0aH�111 ÞH
�1
11 ,

where d2 ¼ 1=ðn� kÞðn� k � 1Þðn� k � 3Þ and d1 ¼ ðn� k � 2Þd2. Finally,

VarðzÞ ¼
1

n� k � 1
ðH22 �H21H

�1
11 H12ÞH

�1
11

þ ðd1 þ d2 � 1=ðn� k � 1Þ2ÞH�111 aa
0H�111 þ d2 trða0aH�111 ÞH

�1
11 .

Taking the first element of VarðzÞ results in

Varðŵijl̂Þ ¼
1

n� k � 1

e0iRei

10R�11
þ a�2c1ðeiRl̂Þ2 þ a�2c2l̂

0Rl̂e0iRei.

We again make use of the fact that VarðŵEUÞ ¼ EðVarðŵEUjl̂ÞÞ þ VarðEðŵEUjl̂ÞÞ.
Because l̂�Nkðl;R=nÞ, RRR ¼ R, and trðRRÞ ¼ k � 1, it follows that (see Theorem
3.2b.3 of Mathai and Provost, 1992)

Eðe0iRl̂Þ2 ¼ ðe0iRlÞ2 þ e0iRei=n and Eðl̂0Rl̂Þ ¼ l0Rlþ ðk � 1Þ=n.

Substitution proves part b (ii) of the theorem.
Consider now the two arbitrary components of ŵEU. Let M0 ¼ ðei ej l̂ 1Þ with

rankðMÞ ¼ 4. Other notation introduced in (a) is changed correspondingly. Similarly
we can show that ðŵi; ŵjÞjl̂ is equal to the first two components of the vector
z ¼ �Ĥ

�1

11 ðĤ12 � ð0 0 a�1Þ0Þ.
Note that ðn� 1ÞĤ�W 4ðn� k þ 3;HÞ and, therefore, ðn� 1ÞĤ11�W 3

ðn� k þ 3;H11Þ. Let a ¼ ð0 0 a�1ðn� 1ÞÞ0. Then from Theorem 3.2.10 of Muirhead
(1982), it follows that

Ĥ
�1

11 ðĤ12 � ð0 0 a�1Þ0Þjðn� 1ÞĤ11

¼ X�N3ðH
�1
11 H12 � X�1a0; ðH22 �H21H

�1
11 H12ÞX

�1Þ.

As we showed in (b)

VarðzÞ ¼
1

n� k � 1
ðH22 �H21H

�1
11 H12ÞH

�1
11

þ ðd1 þ d2 � 1=ðn� k � 1Þ2ÞH�111 aa
0H�111 þ d2 trða0aH�111 ÞH

�1
11 .

Note that Covðŵi; ŵjÞ is equal to the second element in the first row of VarðzÞ.
Extracting this element from the last equation shows that

Covðŵi; ŵjjl̂Þ ¼
1

n� k � 1

e0iRej

10R�11
þ a�2c1eiRl̂l̂0Rej þ a�2c2l̂

0Rl̂e0iRej.



              
                                                       250
The unconditional variance is computed using

Eðe0iRl̂l̂0RejÞ ¼ ðe
0
iRll0RejÞ þ e0iRej=n and Eðl̂0Rl̂Þ ¼ l0Rlþ ðk � 1Þ=n.

Substitution completes the proof of the theorem. &

Proof of Proposition 1. Let M0 ¼ ðe1 e2 . . . em�1 1Þ, Ĥ ¼ ðMR̂
�1
M0Þ�1 ¼ fĤijgi;j¼1;2

and Ĥ
�1
¼MR̂

�1
M0 ¼ fĤ

ð�Þ

ij gi;j¼1;2, with Ĥ
ð�Þ

22 ¼ 10R̂
�1
1, etc. The matrices H�1 and

H are partitioned in the same way. Since ðn� 1ÞR̂�W kðn� 1;RÞ, it follows that
ðn� 1ÞĤ�W mðn� k þm� 1; ðMR�1M0Þ�1Þ. Then

~̂wGMV ¼
Ĥ
ð�Þ

12

Ĥ
ð�Þ

22

¼
�Ĥ

�1

11 Ĥ12ðĤ22 � Ĥ21Ĥ
�1

11 Ĥ12Þ
�1

ðĤ22 � Ĥ21Ĥ
�1

11 Ĥ12Þ
�1

¼ �Ĥ
�1

11 Ĥ12.

From the properties of the Wishart distribution we get

� ðn� 1ÞĤ12jðn� 1ÞĤ11

�Nm�1ð�ðn� 1ÞĤ11H
�1
11 H12; ðH22 �H21H

�1
11 H12Þðn� 1ÞĤ11Þ,

ðn� 1ÞĤ11�W m�1ðn� k þm� 1;H11Þ.

Consequently it holds that

�Ĥ
�1

11 Ĥ12jðn� 1ÞĤ11�Nm�1ð�H
�1
11 H12; ðH22 �H21H

�1
11 H12Þððn� 1ÞĤ11Þ

�1
Þ.

f ~̂wGMV
ðxÞ ¼

Z
Y40

f
Ĥ
�1

11 Ĥ12jðn�1ÞĤ11
ðxjYÞ f

ðn�1ÞĤ11
ðYÞdY

¼
2�ðn�kþmÞðm�1Þ=2ðdetðH11ÞÞ

�ðn�kþm�1Þ=2

pðm�1Þ=2ðH22 �H21H
�1
11 H12Þ

ðm�1Þ=2Gm�1ððn� k þm� 1Þ=2Þ

�

Z
Y40

ðdetðYÞÞðn�kÞ=2

�etr �
1

2

ðxþH�111 H12ÞðxþH�111 H12Þ
0

H22 �H21H
�1
11 H12

þH�111

!
Y

" #
dY,

where etrðAÞ denotes etrðAÞ. Using the definition of the multivariate gamma function

GpðaÞ ¼ ðdetðQÞÞa
Z
Y40

ðdetðYÞÞa�ðpþ1Þ=2etrð�QYÞdY,

where p denotes the dimension of Y, and applying the properties of the inverse of a
partitioned matrix, the statement of the theorem naturally follows. &

Proof of Proposition 2. Let H ¼ ðMR�1M0Þ�1 ¼ fhijgi;j¼1;...;3 and Ĥ ¼ ðMR̂M0Þ�1

¼ fĥijgi;j¼1;...;3. We observe that

ŵSR;ijðl̂ ¼ yÞ ¼
ĥ31ĥ22 � ĥ21ĥ32

ĥ11ĥ32 � ĥ31ĥ12

¼
ðĥ31ĥ22 � ĥ21ĥ32Þ=ðĥ11ĥ22 � ĥ

2

12Þ

ðĥ11ĥ32 � ĥ31ĥ12Þ=ðĥ11ĥ22 � ĥ
2

12Þ

¼
Z

N
.
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Now we split H and Ĥ into block matrices. Let Ĥ11 ¼ fĥijgi;j¼1;2, Ĥ12 ¼ ðĥ13; ĥ23Þ
0 and

Ĥ22 ¼ ĥ33. The matrix H is split in the same way. Then ðZ;NÞ0 ¼ Ĥ
�1

11 Ĥ12. Applying
Theorem 3.2.10 (ii) of Muirhead (1982) and using the fact that
ðn� 1ÞĤ�W 3ðn� k þ 2;HÞ, it follows that

ðn� 1ÞĤ12 j ðn� 1ÞĤ11 ¼ X�N2ððH21H
�1
11 XÞ

0; ðH22 �H21H
�1
11 H12ÞXÞ.

Consequently,

Ĥ
�1

11 Ĥ12 j ðn� 1ÞĤ11 ¼ X�N2ðH
�1
11 H12; ðH22 �H21H

�1
11 H12ÞX

�1Þ.

We denote a ¼ ða1; a2Þ
0
¼ H�111 H12 and b ¼ H22 �H21H

�1
11 H12 ¼ 1=h

ð�Þ

33 . Because
ðn� 1ÞĤ11�W 2ðn� k þ 2;H11Þ, the joint density of ðn� 1ÞZ and ðn� 1ÞN is
equal to

f ðn�1ÞZ;ðn�1ÞN ðzÞ ¼

Z
� � �

Z
f
Ĥ
�1

11 Ĥ12 j ðn�1ÞĤ11
ðzjXÞf

ðn�1ÞĤ11
ð2; n� k þ 2;H11ÞðXÞdX

¼
1

2n�kþ3pbG2ððn� k þ 2Þ=2Þ

1

ðdet H11Þ
ðn�kþ2Þ=2

�

Z
� � �

Z
ðdetXÞðn�kÞ=2 expð�trððH�111 þ ðz� aÞðz� aÞ0=bÞX=2ÞÞdX

¼
ðn� k þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH11

p

2pb
1þ
ðz� aÞ0H11ðz� aÞ

b

� ��ðn�kþ3Þ=2

using Theorem 2.1.11 of Muirhead (1982). This is the density of the two-dimensional
t-distribution with mean a, covariance matrix ððn� k þ 1ÞH11=bÞ�1 and n� k þ 1
degrees of freedom. Then the density function of the ratio Z=N is given by

f Z=NðxÞ ¼

Z 1
0

zðf Z;Nðxz; zÞ þ f Z;N ð�xz;�zÞÞdz

¼
ðn� k þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH11

p
bðn�kþ1Þ=2

2p
ðI1 þ I2Þ.

Now let w1 ¼ ðx 1ÞH11ðx 1Þ0, w2 ¼ ðx 1ÞH12, w3 ¼ H22 and xðxÞ ¼ jw2j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1w3 � w2

2

q
.

Straightforward calculations show that

I1 ¼

Z 1
0

zðw1z2 � 2w2zþ w3Þ
�ðn�kþ3Þ=2 dz

¼
1

w1ðn� k þ 1Þ
w
�ðn�kþ1Þ=2
3 þ

w2

w
3=2
1

w3 �
w2
2

w1

� ��ðn�kþ2Þ=2

�

Z 1
�x
ðv2 þ 1Þ�ðn�kþ3Þ=2 dv
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and

I2 ¼
1

w1ðn� k þ 1Þ
w
�ðn�kþ1Þ=2
3 �

w2

w
3=2
1

w3 �
w2
2

w1

� ��ðn�kþ2Þ=2

�

Z 1
x
ðv2 þ 1Þ�ðn�kþ3Þ=2 dv.

Hence

f Z=NðxÞ ¼
ðn� k þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detH11

p
bðn�kþ1Þ=2

2p

�
2w
�ðn�kþ1Þ=2
3

w1ðn� k þ 1Þ
þ 2

w2

w
3=2
1

w3 �
w2
2

w1

� ��ðn�kþ2Þ=2

�

Z x

0

ðv2 þ 1Þ�ðn�kþ3Þ=2 dv

!
.

Substitution of w1, w2 and w3 proves the proposition. &

Proof of Proposition 3. Taking into account the independence of m̂ and ŝ2, it holds
that

f ŵTP
ðxÞ ¼

Z 1
0

f ŵTPjŝ
2 ðxjyÞf ŝ2 ðyÞdy; with

ŵTPjŝ2 ¼ y�N1 a�1
m� rf

y
;
a�2

n

s2

y2

� �
and ðn� 1Þ

ŝ2

s2
�w2n�1.

Substitution of the densities of the last two distributions into the integral for f ŵTP
ðxÞ

results in the expression

f ŵTP
ðxÞ ¼

ffiffiffi
n
p

aðn�1
2s2 Þ

ðn�1Þ=2

ð2pÞ1=2Gðn�1
2
Þs

exp �
n

2

ðm� rf Þ
2

s2

" #

�

Z 1
0

yðn�1Þ=2 exp �
na2

2

x2

s2
y2 �

1

2

n� 1� 2naxðm� rf Þ

s2
y

� �
dy.

Note that the integral in the last expression is equal to the Laplace transform of
sp�1e�as2 and b can be of both signs. Let p ¼ ðnþ 1Þ=2, and a40, i.e. xa0, thenZ 1

0

sp�1e�as2�bs ds

¼

Z 1
0

sp�1e�as2
X1
i¼0

ð�1Þibisi

i!
ds
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¼
X1
i¼0

ð�1Þibi

i!

Z 1
0

spþi�1e�as2 ds ¼
1

2
a�p=2

X1
i¼0

ð�1Þi
ðb=

ffiffiffi
a
p
Þ
iGððpþ iÞ=2Þ

i!

¼
1

2
a�p=2

X1
i¼0

ðb=
ffiffiffi
a
p
Þ
2iGððpþ 2iÞ=2Þ

ð2iÞ!
�
ðb=

ffiffiffi
a
p
Þ
2iþ1Gððpþ 2i þ 1Þ=2Þ

ð2i þ 1Þ!

� �

¼
1

2
a�p=2

X1
i¼0

ðb2=4aÞi22iGðp=2þ iÞ

ð2iÞ!
�

bffiffiffi
a
p
ðb2=4aÞi22iGððpþ 1Þ=2þ iÞ

ð2i þ 1Þ!

� �
.

Noting that 22i=ð2iÞ! ¼ Gð1=2Þ=Gði þ 1=2Þi! and using the series representation of
confluent hypergeometric function (see Gradshteyn and Ryzhik, 2000), the
expression for the integral follows:

Z 1
0

sp�1e�as2�bs ds ¼
1

2
a�ðpþ1Þ=2

ffiffiffi
a
p

Gðp=2Þ1F 1
p

2
;
1

2
;
b2

4a

� �
� bGððpþ 1Þ=2Þ1F1

�

�
pþ 1

2
;
3

2
;
b2

4a

� ��
.

The interchange of the integral and infinite sum is justified due to absolute
convergence of both. Applying this result to f ŵTP

ðxÞ proves the proposition. &

Proof of Theorem 3. We will give only the proofs of (c) and (d). For (a) and (b) a
similar technique can be applied.

(c) Let Dk denote a k2
� kðk þ 1Þ=2 duplication matrix of (see Rogers, 1980;

Magnus and Neudecker, 1999) such that DkvechðXÞ ¼ vecðXÞ for an arbitrary k � k-
matrix X and vecðXÞ ¼ ðx11; . . . ;x1k;x21; . . . ;x2k; . . . ;xkkÞ

0. Moreover, let Dþk ¼

ðD0kDkÞ
�1D0k with the property that Dþk vecðXÞ ¼ vechðXÞ. Then the asymptotic

covariance matrix of ĥ1 is given by

lim
n�!1

n Varðĥ1Þ ¼
R 0k�k2

0k2
�k Dþk ðIk2 þ KkÞðR� RÞDþ 0k

!
,

where Kk is a commutation matrix (see Magnus and Neudecker, 1999).
Consequently the asymptotic covariance matrix of the Sharpe ratio optimal weights
can be split as follows

G03X1G3 ¼
qw0SR
ql

� �0
R
qw0SR
ql
þ

qw0SR
q vechðRÞ

� �0
Dþk ðIk2 þ KkÞðR� RÞDþ0k

qw0SR
qvechðRÞ

.

(18)

Note that

qw0SR
ql
¼

10R�1lR�1 � R�11l0R�1

ð10R�1lÞ2
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and

qw0SR
q vechðRÞ

¼
ql0R�1

q vechðRÞ
1

10R�1l
�

q10R�1l
q vechðRÞ

l0R�1

ð10R�1lÞ2

¼
1

ð10R�1lÞ2
qðvecðR�1ÞÞ0

q vechðRÞ
½ð10R�1lÞðl� IkÞ � ðl� 1Þl0R�1�,

where

qðvecðR�1ÞÞ0

q vechðRÞ
¼

q ðvechðR�1ÞÞ0

q vechðRÞ
D0k ¼ �D

0
kðR
�1 � R�1ÞDþ0k D0k (19)

(see Harville, 1997, p. 368). The following properties of duplication and
commutation matrices are important in the remainder of the proof: (i)
DkD

þ
k ¼

1
2
ðIk2 þ KkÞ; (ii) K0k ¼ Kk ¼ K�1k ; (iii) if X is a m� n matrix and x is a

m� 1 vector, then KmðX� xÞ ¼ ðx� XÞ. Using these properties, the second term of
(18) can be evaluated as

qw0SR
q vechðRÞ

� �0
Dþk ðIk2 þ KkÞðR� RÞDþ0k

qw0SR
q vechðRÞ

¼
1

ð10R�1lÞ4
½ð10R�1lÞðl0 � IkÞ � R�1lðl0 � 10Þ�

�ðIk2 þ KkÞðR
�1 � R�1Þ½ð10R�1lÞðl� IkÞ � ðl� 1Þl0R�1�

¼
1

ð10R�1lÞ4
½ð10R�11Þðl0R�1lÞR�1ll0R�1 þ ð10R�1lÞ2ðl0R�1lÞR�1

� ð10R�1lÞðl0R�1lÞR�1ð1l0 þ l10ÞR�1�.

Note that substitution of 1 instead of l proves part (b) of the theorem. Adding
ðqw0SR=qlÞ

0R
qw0

SR

ql to the last expression proves (c).
(d) In this case a modification of the equation (18) can be used as well. The

derivatives of the vector of weights with respect to l and R are given by

qw0TP
ql
¼ a�1R�1,

qw0TP
q vech ðRÞ

¼ a�1
q ðvechðR�1ÞÞ0

qvechðRÞ
D0kððl� rf 1Þ � IkÞ.

Substitution into (18) and use of (19) complete the proof. &
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