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Tail behaviour of a general family of control
charts
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Summary: In this paper we consider a general control scheme. The control statistic Zt is equal
to an arbitrary weighted sum of the past observations Xt, . . . , X1. This approach covers most of
the applied control schemes like for instance moving average, EWMA and ARMA(1,1) charts. The
process {Xt} is assumed to be a stationary Gaussian process. The aim of the work is to analyze the
behaviour of the tail probability of the run length N = inf { t ∈ N : Zt − E(Zt) > c

√
Var(Zt ) } with

respect to the autocorrelation of {Xt}. It is shown under which conditions on the weights and on
the autocorrelations of {Xt} the correlation between Zt and Zt−i is a nondecreasing function in the
autocorrelations of the observed process. Using this result it can be proved that the probability of a
false alarm is a nondecreasing function of the autocorrelations of {Xt}, too. The weight conditions
are verified for several well-known charts.

1 Introduction
Various control charts have been developed as tools of statistical process control (SPC).
Initially they rested on the assumption of independency of the underlying process {Xt}.
In the last years the methods of SPC are becoming of greater importance in many fields
like e.g. economics, medicine, etc. For that reason it was necessary to extend the control
chart technique to time series data. Nowadays, two possible solutions are available for
autocorrelated processes. The first, residual charts, suggests to transform the process to
achieve independency and afterwards classical charts are applied (e.g. [1, 2, 12]). Here we
deal with modified control charts. For mean charts the control statistic Zt can be regarded
as a predictor of Xt+1 given Xt , . . . , X1. This quantity is compared with the target value
of the mean. If the deviation is larger than a multiple c of the standard deviation of the
process it is concluded to be out-of-control. This means that there is a change in the
mean behaviour of the observed process. In practice, simple predictors are applied. The
Shewhart chart is based on Zt = Xt while the exponentially weighted moving average
(EWMA) chart makes use of Zt = (1 − λ)Zt−1 + λXt (see [6, 7]). The ARMA(1,1)
statistic Zt = α1 Zt−1 + β0 Xt + β1 Xt−1 is considered recently in [3].

A measure for the performance of a control chart is the run length. The run length
is equal to the first value at which it is concluded that the process is out-of-control. The
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80 Tail behaviour of control charts

most often used characteristic is the first moment of the run length – the average run
length (ARL). A ‘good’ control chart is characterized by a high in-control ARL and a
low out-of-control ARL. The impact of the strength of autocorrelation on the behaviour
of the ARL has to be analyzed. In [9] it is proved that the in-control ARL of the one-sided
EWMA chart for a series with positive autocorrelation is higher than for independent
observations. The practical consequence is, that if the process is falsely assumed to
be independent, then the actual ARL is underestimated and the process is uselessly
interrupted. In [10] this result is extended and it is shown that for a stationary Gaussian
process {Xt} the probability of no signal until a fixed time is a nondecreasing function in
the autocorrelations. What happens if the Shewhart chart is applied to a nonlinear time
series is investigated in [5]. They proved that for GARCH processes a similar property
only holds under an additional restriction on the control limits. Such a condition was not
necessary for Gaussian processes.

Many control charts have one important feature in common. Their control statistic
can be interpreted as a linear one step ahead predictor of the underlying process. Conse-
quently Zt is a weighted sum of the previous observations, i.e. Zt = ∑t

ν=1 wtν Xν, where
{Xt} is assumed to be a stationary Gaussian process (see [4]). For instance the weights
of the EWMA chart are given by wtν = λ(1 − λ)t−ν. Due to the starting problem {Zt}
is usually not a stationary process. The aim of this paper is to extend the results of [9]
and [10] to general control charts of the above described type. The paper is structured as
follows. Chapter 2 presents the main results. Theorem 2.1 establishes general conditions
for Corr(Zt, Zt−i) to be a nondecreasing function in the autocorrelations of the initial
process Xt . Theorem 2.3 provides corresponding restrictions on the autocorrelation func-
tion of {Xt} and on the weights. This result immediately implies that for a large family
of control charts the tail probability of the run length is a nondecreasing function in the
autocorrelations of {Xt}. This is an extension of the result in [10] to an arbitrary weighting
scheme. The restrictions on the weights are sometimes hard to check. In applications,
however, frequently we have that wtν = K(t − ν) with a kernel K . For this case the
verification of the weight conditions is much simpler (see Proposition 2.5). In Chapter 3
several examples are considered. It is shown how the above results can be applied to the
moving average chart with variable weights, the EWMA chart, and the ARMA(1,1) chart.
The appendix contains the proofs of all theorems and all propositions.

2 Main results

Let �k and �k be k-dimensional covariance matrices. Let τ ∈ [0, 1], Ck(τ) = (1 −
τ)�k + τ�k. Furthermore let Xk = (X1, . . . , Xk)

′ be normally distributed with mean 0
and covariance matrix Ck(τ), briefly Xk ∼ N (0, Ck(τ)). Moreover let Zt = w′

t Xt
for t = 1, . . . , k with a weight vector wt = (wt1, . . . , wtt)

′ whose components are all
nonnegative. Our aim is to characterize the distribution of Zk = (Z1, . . . , Zk)

′ as a
function of τ . Such results are of importance in statistical process control. Because Zk
is again normally distributed Slepian’s inequality (cf. [11]) implies that it is sufficient to
study the behaviour of its correlation matrix. The main results of our paper are stated as
Theorem 2.1 and Theorem 2.3.
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Schmid -- Okhrin 81

We use the notation Varτ , Covτ , Corrτ , Pτ to refer to the situation that Xk ∼
N (0, Ck(τ)). Thus Covτ (Zt, Zt−i) = w′

t Ct(τ) w̃t with w̃′
t = (w′

t−i, 0, . . . , 0). Note
that w̃t depends on i, but for reasons of simplicity this subscript is suppressed. First, we
will deal with the question under which conditions on the autocorrelations and on the
weights it can be shown that the correlation of Zt and Zt−i is a nondecreasing function
in τ .

In the following the symbol A ≥ B used for quadratic matrices A = (ai j ) and
B = (bi j ) means that ai j ≥ bi j for all i, j .

Theorem 2.1 Let �t ≥ �t . Let i ∈ {0, . . . , t − 1} be fixed, Cov0(Zt, Zt−i) > 0, and

w′
t (�t − �t) w̃t > 0 if �t �= �t . (2.1)

Then Corrτ (Zt, Zt−i) is a nondecreasing function in τ if and only if

2
Corr1(Zt, Zt−i)

Corr0(Zt, Zt−i)
≥

√
Var1 Zt/ Var0 Zt

Var1 Zt−i/ Var0 Zt−i
+

√
Var1 Zt−i/ Var0 Zt−i

Var1 Zt/ Var0 Zt
. (2.2)

Since the right side of inequality (2.2) is always greater or equal to 2 it follows that
Corr1(Zt, Zt−i) ≥ Corr0(Zt , Zt−i). If the correlation is nondecreasing then inequality
(2.2) gives a stronger lower bound. In order to prove monotonicity it has to be shown
more.

Remarks 2.2 1. The inequality (2.2) can be written as

2
Cov1(Zt , Zt−i)

Cov0(Zt , Zt−i)
≥ Var1 Zt

Var0 Zt
+ Var1 Zt−i

Var0 Zt−i
. (2.3)

2. Condition (2.1) is very weak. Let � = (γνµ), � = (δνµ), and wt = (wtν). Suppose
that there is ν ∈ {1, . . . , t − i} and µ ∈ {1, . . . , t} such that γνµ > δνµ. Then (2.1) holds
if wtµ wt−i,ν > 0. Note that for �t = �t the theorem is trivial.

Next it is assumed that the covariance matrix of Xt is a Toeplitz matrix, i.e. it is of the
type Cov(Xt) = (γ|i− j|). Using the matrices Uνt = (I{ν}(| j − 
|)) j,
=1,...,t it follows
that Cov(Xt) = ∑t−1

ν=0 γν Uνt . In the following IA(t) denotes the indicator function of
a set A, e.g. it is equal to 1 if t ∈ A, else to 0. Furthermore we get

Var(Zt) = γ0

2
W0t +

t−1∑
ν=1

γν Wνt , Cov(Zt, Zt−i) = γ0

2
W0ti +

t−1∑
ν=1

γν Wνti with

Wνt = w′
tUνtwt, Wνti = w′

t Uνt w̃t for ν = 1, . . . , t − 1,

W0t = 2 w′
tU0twt, W0ti = 2 w′

t U0t w̃t .

Moreover, we define Wν,t−i = 0 for t − i ≤ ν ≤ t − 1. On the first view the use of the
factor 2 in the definitions of W0t and W0ti seems to be artificial. Nevertheless, this leads
to more elegant representations and simplifies distinguishing between special cases (see
(2.8), Sections 3.2.1, 4.2, 4.3).
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82 Tail behaviour of control charts

Theorem 2.3 Let �t = (δ|v− j|) and �t = (γ|v− j|) be covariance matrices of Toeplitz
type. Assume that

γ0 δ0 > 0, γh ≥ 0, δh ≥ 0 for 1 ≤ h ≤ t − 1, (2.4)

γ
 δ j ≥ γ j δ
 for all 0 ≤ j < 
 ≤ t − 1. (2.5)

Let i ∈ {0, . . . , t−1} be fixed. For the weights it is demanded that for all 0 ≤ j < 
 ≤ t−1
and all 0 ≤ ν ≤ t − 1

W
ti (W jt Wν,t−i + Wνt W j,t−i) − W jti (W
t Wν,t−i + Wνt W
,t−i) ≥ 0. (2.6)

Then the inequality (2.2) holds.

The next result is an immediate consequence of Theorem 2.3 and Slepian’s inequality.

Corollary 2.4 Assume that the conditions of Theorem 2.1 and Theorem 2.3 are fulfilled
for all t ∈ {1, . . . , k} and for all i ∈ {0, . . . , t − 1} then it holds that for any real numbers
c1, . . . , ck

Pτ (w′
t Xt ≤ ct

√
w′

t Ck(τ) wt, t = 1, . . . , k) (2.7)

is a nondecreasing function in τ .

Now let Nτ = inf{t ∈ N : Zt > c
√

Varτ (Zt)} denote the run length of the control chart
based on Zt . It is equal to the first value at which the process is concluded to be out-of-
control. This means that its expectation is greater than zero. The Corollary 2.4 says that
the tail probability Pτ (Nτ > k) is nondecreasing in τ . This is an extension of the results
of [9] and [10]. In these papers the EWMA (exponentially weighted moving average)
chart is analyzed while here a very general family of control schemes is considered.

Next we want to discuss the conditions of Theorem 2.3. The assumptions (2.4) and
(2.5) are conditions on the autocovariances of the underlying process. These assumptions
are the same as in [10]. If δν > 0 for all 0 ≤ ν ≤ t − 1, they are equivalent to demanding
that {γν/δν} is nondecreasing in ν. It is proved in [10] that it is not sufficient to assume
that the autocorrelation of the target process is nondecreasing. Assumption (2.6) limits
the choice of the weights. Next, sufficient conditions for the validity of (2.6) are derived
which are fulfilled for most weight functions arising in practice.

In many cases of interest the weights w′
t = (wt1, . . . , wtt) are of the type wt j =

K(t − j), j = 1, . . . , t with a nonnegative function K . Thus Zt = ∑t
j=1 K(t − j)X j . We

denote the corresponding charts as kernel charts. Several examples will be discussed in
Section 3. We get with κνt = ∑t−|ν|

j=0 K( j) K( j + |ν|) that Wνt = 2 κν,t−1 and

Wνti = κi−ν,t−1−min{i,ν} + κi+ν,t−1 = (Wi−ν,t−min{i,ν} + Wi+ν,t )/2. (2.8)

Note that κνt is equal to the autocovariance at lag ν of an MA(t) process.
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Proposition 2.5 a) Suppose that there is m ∈ {1, . . . , t − i − 1} such that K(0) ≥ · · · ≥
K(m − 1) > K(m) = · · · = K(t − 1) = 0. Then the inequality (2.6) holds for all
0 ≤ j < 
 ≤ t − 1 and all 0 ≤ ν ≤ t − 1 if

W j+1,ti

W j+1,t
≥ W jti

W jt
for all 0 ≤ j ≤ m − 2.

b) Let ν ∈ {0, . . . , t − 1} be fixed. Then the inequality (2.6) is satisfied for all 0 ≤ j <


 ≤ t − 1 if the following conditions i) – iii) are fulfilled:

i) K(0) ≥ · · · ≥ K(t − 1) > 0
ii) K( j) K( j + 2) ≥ K( j + 1)2 for 0 ≤ j ≤ t − 3

iii) W j+1,ti

W j+1,t
≥ W jti

W jt
for all 0 ≤ j ≤ t − 2. (2.9)

c) Let i, ν ∈ {0, . . . , t − 1} be fixed. Suppose that condition i) of part b) holds. Then (2.6)
is satisfied for all 0 ≤ j < 
 ≤ t − 1 if

W jti

W jt Wν,t−i + Wνt W j,t−i
is nondecreasing in j ∈ {0, . . . , t − 1}.

3 Examples
In this section let Xt be normally distributed with mean 0 and with a covariance matrix
of Toeplitz type. All of the following charts can be considered as kernel charts. It is
shown that the conditions of Theorem 2.1 and Theorem 2.3 are fulfilled for many control
charts provided that the smoothing parameters satisfy certain restrictions. The proofs of
all results are given in the appendix.

3.1 The moving average chart with constant weights
This control scheme is based on the simple idea to smooth the last m observations by
averaging. If at least m observations are available then each value gets the same weight.
Else, the weight is equal to the number of observed data. Consequently we obtain that for
t ≥ 1

Zt =
t∑

j=max{t+1−m,1}
X j/ min{t, m}. (3.1)

Because the denominator can be neglected (see appendix) a kernel chart is presented with
K( j) = I{0,...,m−1}( j).

Proposition 3.1 Let Nτ be the run length of the control scheme based on {Zt} given in
(3.1). Then Pτ (Nτ > k) is a nondecreasing function in τ .
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84 Tail behaviour of control charts

3.2 The ARMA chart
The ARMA control chart is a relatively new control scheme. It was introduced in [3]. The
idea of the chart is to transform the original time series to a new one such that a particular
shift can be detected faster.

Their control statistic Z∗
t is the causal solution of the ARMA process given by

P(B) Z∗
t = Q(B) Xt , where B stands for the backward shift operator, i.e. B Xt = Xt−1.

Furthermore let P(z) = 1−∑p
j=1 α j z j and Q(z) = ∑q

j=0 β j z j . In [3] recommendations
are given how the design parameters should be chosen. They focus on ARMA(1,1)
processes.

If the control statistic is applied in practice a starting problem arises because the
observations for t ≤ 0 are not known. This problem is not considered in [3]. This
simplification facilitates many things. Theoretical statements are easier to derive since
{Z∗

t } is a stationary process. However, we think that this is an unrealistic assumption. For
that reason we choose another way. Now {Z∗

t } can be written as Z∗
t = ∑∞

j=0 � j Xt− j .

Truncating the sum we get our control statistic Zt = ∑t−1
j=0 � j Xt− j . Therefore K( j) =

� j . Note that {Zt} is not stationary.

3.2.1 The moving average chart with variable weights

First, we deal with the case p = 0. Then the control statistic is equal to

Zt =
min{t−1,q}∑

j=0

β j Xt− j , t ≥ 1. (3.2)

The kernel is given by K( j) = β j I{0,...,q}( j). Since the weights are assumed to be
nonnegative we demand that β0 ≥ 0, . . . , βq ≥ 0. We get that (cf. (2.8))

Wνti =
min{t−1−min{i,ν},q}−|i−ν|∑

j=0

β jβ j+|i−ν| +
min{t−1,q}−i−ν∑

j=0

β jβ j+i+ν

= κi−ν,min{t−1−min{i,ν},q} + κi+ν,min{t−1,q}.

Consequently it follows that

Wνti =



κi−ν,t−1−min{i,ν} + κi+ν,t−1 for t ≤ q
κi−ν,t−1−min{i,ν} + κi+ν,q for q + 1 ≤ t ≤ q + min{i, ν}
κν−i,q + κν+i,q for t ≥ q + 1 + min{i, ν}.

Let t ≥ q + i +1 and let 0 < βq ≤ · · · ≤ β0. Then Proposition 2.5a) shows that condition
(2.6) is satisfied if

κ j+1,q (κi+ j,q + κ j−i,q) ≤ κ jq (κi+ j+1,q + κ j+1−i,q) (3.3)

for all 0 ≤ j ≤ q − 1. For small values of q condition (2.6) can be checked directly.

Proposition 3.2 Let Nτ be the run length of the control scheme based on {Zt} given
in (3.2). Suppose that q = 2, 0 ≤ √

β2/β0 ≤ β1/β0 ≤ 1 and that β2 ≤ β1. Then
Pτ (Nτ > k) is a nondecreasing function in τ .
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3.2.2 The EWMA chart

The well-known EWMA chart with starting value Z0 = 0 can be considered as an
ARMA(1,0) chart. It can be obtained by setting α1 = 1 − λ and β0 = λ. The weights are
given by wt j = λ (1 − λ)t− j , i.e. K( j) = λ (1 − λ) j . The Corollary 2.4 was proved for
the EWMA chart in [10]. They made use of a different type of proof which is completely
geared to exponential weights. It cannot be generalized to more general structures.

3.2.3 The ARMA(1,1) chart

Let p = q = 1 and |α1| < 1. A stationary ARMA(1,1) process can be written as

Z∗
t = β0 Xt +

∞∑
j=1

(α
j
1β0 + α

j−1
1 β1)Xt− j .

Our control statistic is obtained by truncating the series. This leads to

Zt =
t−1∑
j=0

� j Xt− j with �0 = β0,� j = α
j−1
1 (β0α1 + β1) for j ≥ 1. (3.4)

Proposition 3.3 Let Nτ be the run length of the control scheme based on {Zt} given in
(3.4). Suppose that 0 ≤ α1 < 1, β1 ≥ 0 and β0 ≥ β1/(1 − α1). Then Pτ (Nτ > k) is a
nondecreasing function in τ .

Note that Proposition 3.3 includes the EWMA chart. In Figure 1 the probability of no
signal up to time k is shown for the ARMA(1,1) chart Zt = 0.5Zt−1 + Xt + 0.4Xt−1.
The covariance matrices �k and �k of the {Xt} are covariance matrices of an AR(1)
process with parameter 0 and 0.99, respectively. Thus Ck(τ) = ((1 − τ)I{0}(|i − j|) +
τ 0.99|i− j|/(1 − 0.992))i, j=1,...,k. Here Pτ (Nτ > k) is estimated via a simulation study
based on 108 repetitions. The figure illustrates that the probability of no signal takes
the smallest value at τ = 0, e.g. if the variables {Xt} are independent. The probability
increases if τ increases.

4 Appendix

4.1 Proofs of Theorem 2.1 and Theorem 2.3

Proof of Theorem 2.1: We obtain that

∂ Corrτ (Zt, Zt−i)
2

∂τ

= Corrτ (Zt, Zt−i)

(Varτ Zt Varτ Zt−i)3/2

{
2 Varτ Zt Varτ Zt−i

∂ Covτ (Zt, Zt−i)

∂τ

− Covτ (Zt, Zt−i)

(
Varτ Zt

∂ Varτ Zt−i

∂τ
+ Varτ Zt−i

∂ Varτ Zt

∂τ

)}
. (4.1)
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Figure 1: Plot of Pτ (Nτ > k) as a function of τ and k for the ARMA(1,1) chart with α1 = 0.5,
β0 = 1, β1 = 0.4, c = 2.0 (δ0 = 1, δi = 0 for i ≥ 1 and γi = 0.99i/(1 − 0.992) for i ≥ 0).

Consequently Corrτ (Zt, Zt−i) is a nondecreasing function in τ if and only if

2
∂ Covτ (Zt,Zt−i )

∂τ

Covτ (Zt, Zt−i)
≥

∂ Varτ Zt
∂τ

Varτ Zt
+

∂ Varτ Zt−i
∂τ

Varτ Zt−i
. (4.2)

Note that Covτ (Zt, Zt−i) > 0 for any value of τ . Since Covτ (Zt, Zt−i) = w′
t ( (1 −

τ) �t + τ �t ) w̃t we get that the inequality (4.2) can be written as follows

2
1

τ + w′
t �t w̃t

w′
t (�t − �t ) w̃t

≥ 1

τ + w′
t �t wt

w′
t (�t − �t ) wt

+ 1

τ + w̃′
t �t w̃t

w̃′
t (�t − �t) w̃t

. (4.3)

(4.3) is of the type 2/(τ + c) − 1/(τ + a) − 1/(τ + b) ≥ 0 for all 0 ≤ τ ≤ 1 with
a > 0, b > 0 and c > 0. But this is valid if and only if it holds for τ = 0, i.e. if and only
if 2/c ≥ 1/a + 1/b. This implies that (4.3) is equivalent to

2
w′

t �t w̃t

w′
t �t w̃t

≥ w′
t �t wt

w′
t �t wt

+ w̃′
t �t w̃t

w̃′
t �t w̃t

.

But this is only another representation of (2.3). �
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Proof of Theorem 2.3: According to the definition of Uνt , the covariance matrices �t
and �t can we rewritten as �t = ∑t−1

ν=0 γνUνt and �t = ∑t−1
ν=0 δνUνt . Let γ ∗

j = γ j and
δ∗

j = δ j for j = 1, . . . , t − 1, γ ∗
0 = γ0/2, δ∗

0 = δ0/2. Using these presentations we see
that (2.3) is equivalent to

2

∑t−1
ν=0 γ ∗

ν Wνti∑t−1
ν=0 δ∗

νWνti
≥

∑t−1
ν=0 γ ∗

ν Wνt∑t−1
ν=0 δ∗

νWνt
+

∑t−1
ν=0 γ ∗

ν Wν,t−i∑t−1
ν=0 δ∗

νWν,t−i
.

Because all denominators are positive this is equivalent to

t−1∑
ν1,ν2,ν3=0

γ ∗
ν1

Wν1tiδ
∗
ν2

Wν2tδ
∗
ν3

Wν3,t−i −
t−1∑

ν1,ν2,ν3=0

δ∗
ν1

Wν1tiγ
∗
ν2

Wν2tδ
∗
ν3

Wν3,t−i

+
t−1∑

ν1,ν2,ν3=0

γ ∗
ν1

Wν1tiδ
∗
ν2

Wν2tδ
∗
ν3

Wν3,t−i −
t−1∑

ν1,ν2,ν3=0

δ∗
ν1

Wν1tiδ
∗
ν2

Wν2tγ
∗
ν3

Wν3,t−i ≥ 0.

Swapping the indices ν2 and ν3 in the third and fourth terms we get

t−1∑
ν1,ν2,ν3=0

δ∗
ν3

(γ ∗
ν1

δ∗
ν2

− γ ∗
ν2

δ∗
ν1

)Wν1ti Wν2t Wν3,t−i

+
t−1∑

ν1,ν2,ν3=0

γ ∗
ν1

Wν1tiδ
∗
ν3

Wν3tδ
∗
ν2

Wν2,t−i −
t−1∑

ν1,ν2,ν3=0

δ∗
ν1

Wν1tiδ
∗
ν3

Wν3tγ
∗
ν2

Wν2,t−i ≥ 0.

Consequently (2.3) can be rewritten in the form

t−1∑
ν1,ν2,ν3=0

(γ ∗
ν1

δ∗
ν2

− γ ∗
ν2

δ∗
ν1

) δ∗
ν3

(Wν1ti Wν2t Wν3,t−i + Wν1ti Wν3t Wν2,t−i) ≥ 0. (4.4)

According to the assumptions of the theoremγ ∗
ν1

δ∗
ν2

−γ ∗
ν2

δ∗
ν1

≥ 0 and γ ∗
ν2

δ∗
ν1

−γ ∗
ν1

δ∗
ν2

≤ 0
for 0 ≤ ν2 < ν1 ≤ t − 1. Since both terms are present in (4.4) a sufficient condition for
the sum to be nonnegative is that for all 0 ≤ j < 
 ≤ t − 1 and all 0 ≤ ν ≤ t − 1

W
ti(W jt Wν,t−i + Wνt W j,t−i) − W jti(W
t Wν,t−i + Wνt W
,t−i) (4.5)

= Wν,t−i(W
ti W jt − W jtiW
t) + Wνt(W
ti W j,t−i − W jtiW
,t−i) ≥ 0. �

Proof of Proposition 2.5: a) We get that W jt = W j,t−i > 0 for all j ∈ {0, . . . , m − 1}
and W jt = W j,t−i = 0 for all j ∈ {m, . . . , t − 1}. Then the inequality (2.6) holds for all
0 ≤ j < 
 ≤ t − 1 and all 0 ≤ ν ≤ t − 1 if

W jti

W jt
≤ W j+1,ti

W j+1,t
for all 0 ≤ j ≤ m − 2.
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b) First we observe that wt j ≤ wt, j+1 for 1 ≤ j ≤ t − 1 and W jt ≥ W j,t−i > 0. Then
(2.6) holds if

W j+1,ti (W jt + W j,t−i) ≥ W jti (W j+1,t + W j+1,t−i) (4.6)

for all 0 ≤ j ≤ t − 2, and

W j+1,ti W j,t−i ≥ W jti W j+1,t−i for all 0 ≤ j ≤ t − i − 1. (4.7)

We shall show that (4.6) and (4.7) are valid. This will prove part c) of the proposition. We
obtain for 0 ≤ j ≤ t − i − 1

(W j+1,t W j,t−i − W j+1,t−i W jt)/4 = I + II with

I :=
t− j−2∑

v=t−i− j−1

t−i− j−2∑
µ=0

K(v) K(µ) (K(v + j + 1) K(µ + j) − K(µ + j + 1) K(v + j)),

II :=
t− j−2∑
µ=0

K(µ) K(µ + j + 1) K(t − i − j − 1) K(t − i − 1)

−
t−i− j−2∑

µ=0

K(µ) K(µ + j + 1) K(t − 1 − j) K(t − 1).

Since K(ν) is decreasing it follows that II ≥ 0. Using condition ii) we get that K(v +
j + 1)/K(v + j) ≥ K(µ + j + 1)/K(µ + j) for v > µ. Consequently it holds that

W j+1,t

W jt
≥ W j+1,t−i

W j,t−i
for all 0 ≤ j ≤ t − i − 1. (4.8)

If condition iii) and (4.8) are valid then (4.7) follows because

W j+1,ti

W jti
≥ W j+1,t

W jt
≥ W j+1,t−i

W j,t−i
.

Because of iii) and (4.7) the condition (4.6) is fulfilled, too. �

4.2 Proofs of Proposition 3.1 and Proposition 3.3

Proof of Proposition 3.1: Let Z̃t = ∑t
j=max{t+1−m,1} X j then

Pτ (Zt ≤ ct
√

Varτ (Zt), t = 1, . . . , k) = Pτ (Z̃t ≤ ct

√
Varτ (Z̃t), t = 1, . . . , k).

Therefore we work with Z̃t instead of Zt .

Case I: Suppose that t ≥ m + i. Then we get that for i ≥ m

Wνti =
{

m − |i − ν| for i − m + 1 ≤ ν ≤ i + m − 1
0 for 0 ≤ ν ≤ i − m or i + m ≤ ν ≤ t − 1
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while for i ≤ m − 1 it holds that

Wνti =



2 (m − max{i, ν}) for 0 ≤ ν ≤ m − i − 1
m − |i − ν| for m − i ≤ ν ≤ m + i − 1

0 for m + i ≤ ν ≤ t − 1.

Putting i = 0 we get that Wνt = 2 (m − ν) I{0,...,m−1}(ν) for t ≥ m. Because of Propo-
sition 2.5a) condition (2.6) is satisfied if

W j+1,ti W jt − W jti W j+1,t ≥ 0 for 0 ≤ j ≤ m − 2. (4.9)

First we deal with the case i ≥ m. Since W jti is not equal to zero for i − m + 1 ≤ j ≤
i + m − 1 it is sufficient to discuss the behaviour for i − m + 1 ≤ j ≤ m − 2. Then
W jti = m − i + j . Since (m − i + j + 1)(m − j) − (m − i + j)(m − j − 1) ≥ 0 the
condition (2.6) is satisfied.

Next let i ≤ m − 1. For i ≤ m − i − 1 we obtain

W jti =



2(m − i) for 0 ≤ j ≤ i
2(m − j) for i + 1 ≤ j ≤ m − i − 1
m − j + i for m − i ≤ j ≤ m + i − 1

while for i > m − i − 1

W jti =



2(m − i) for 0 ≤ j ≤ m − i − 1
m − i + j for m − i ≤ j ≤ i
m − j + i for i < j ≤ m + i − 1.

Distinguishing between these cases it can easily be proved that (4.9) holds.

Case II: The cases m ≤ t ≤ m + i − 1 and 1 ≤ t ≤ m − 1 are treated by analogy. �

Proof of Proposition 3.3: Because the proof is based on long and tedious calculations
we only sketch the main ideas. The complete proof is given in [8].

Let γ = β0α1
α1β0+β1

and X̃t = (α1β0 + β1)Xt/α1. This shows that Zt = γ X̃t +∑t−1
j=1 α

j
1 X̃t− j . Here it is assumed that α1 > 0. This is no restriction since the case α1 = 0

was already discussed in Section 3.2.1. Because X̃t is again a stationary process we can
restrict ourselves to this representation. Consequently K(0) = γ and K( j) = α

j
1 for

1 ≤ j ≤ t − 1. K is nonincreasing since β0 ≥ β1/(1 − α1). For the reasons of simplicity
we make use of the easier notation Zt = γXt + ∑t−1

j=1 α
j
1 Xt− j with α1 > 0 and γ > 0.

We get for 0 ≤ ν ≤ t

κνt = γ K(ν) + αν+2
1

1 − α
2(t−ν)
1

1 − α2
1

= A αν
1 (K∗(ν) − α

2(t−ν)
1 )

with K∗( j) = γ
A + 1 =: γ1 for j ≥ 1, K∗(0) = γ 2

A + 1 =: γ2 and A = α2
1/(1 − α2

1).
Using (2.8) it follows that for t − i ≤ ν ≤ t − 1

Wνti = A α
|i−ν|
1

(
K∗(|i − ν|) − α

2(t−1−max{i,ν})
1

) =
{

α
− min{ν,i}
1 κmax{ν,i},t−1 for i �= ν

κ0,t−i−1 for i = ν

Bereitgestellt von | Universitaetsbibliothek Augsburg
Angemeldet

Heruntergeladen am | 22.02.19 10:22



90 Tail behaviour of control charts

and that for 0 ≤ ν ≤ t − i − 1

Wνti =
{

α
− min{ν,i}
1 κmax{ν,i},t−1 + αi

1κν,t−i−1 for i �= ν

κ0,t−i−1 + αi
1κi,t−i−1 for i = ν.

Furthermore Wνt = 2κν,t−1.
For further verification we need some properties of κνt . It can immediately be seen

that α−1
1 κ j,t − κ j+1,t ≥ 0 for j ≥ 0 and

κ0,t−i−1 = α−i
1 κi,t−1 + A (K∗(0) − K∗(i)) for i ≥ 0. (4.10)

It is necessary to distinguish between several cases. We describe the more complicate
case I in more detail while the proof of the remaining parts is omitted. The interested
reader is referred to [8].

Case I: Let ν ≤ t − i − 1 and j + 1 ≤ t − i − 1
We make use of Proposition 2.5c). It is sufficient to prove that

III := (W j+1,ti(W jt Wν,t−i + Wνt W j,t−i) −W jti(W j+1,tWν,t−i + Wνt W j+1,t−i))/4 ≥ 0.

a) Let j + 1 �= i and j �= i. Then

III = α
− min{ j+1, i}
1 κmax{ j+1, i}, t−1(κ j, t−1κν, t−i−1 + κν, t−1κ j, t−i−1)

− α
− min{ j, i}
1 κmax{ j, i}, t−1(κ j+1, t−1κν, t−i−1 + κν, t−1κ j+1, t−i−1)

+ αi
1κν, t−i−1(κ j+1, t−i−1κ j, t−1 − κ j, t−i−1κ j+1, t−1).

a1) Let i < j then we get using |α1| < 1 and γ ≥ α1

III = (κ j, t−i−1κ j+1, t−1 − κ j+1, t−i−1κ j, t−1)(κν, t−1α
−i
1 − κν, t−i−1α

i
1) (4.11)

= A3 (1 − α2i
1 )2 α

2(t−1)−3i+ν
1 K∗(ν) (K∗( j) − γ1α

2
1) ≥ 0.

a2)Let i > j+1. Then III = κν, t−i−1 IV+κν, t−1κi, t−1α
− j−1
1 (κ j, t−i−1−α1κ j+1, t−i−1)

with

IV := α
− j−1
1 κi, t−1κ j, t−1 − α

− j
1 κi, t−1κ j+1, t−1

+ αi
1κ j+1, t−i−1κ j, t−1 − αi

1κ j, t−i−1κ j+1, t−1

= A α−1
1 κi, t−1 (K∗( j) − α2

1γ1) + αi
1(κ j+1, t−i−1κ j, t−1 − κ j, t−i−1κ j+1, t−1).

Using the presentation for the second parentheses from a1) we obtain for j ≥ 1 that
IV = A2 γ1 (1 − α2

1) αi−1
1 (γ1 − α

2(t−1−i)
1 (2 − α2i

1 )). Inserting IV into III and assuming
that ν ≥ 1 we get that

III/
(

A3 γ1 (1 − α2
1) αi+ν−1

1

)
= C3

(
C2

2C3
− α

2(t−i−ν−1)
1

)2

+ C1 − C2
2

4C3
(4.12)
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with C1 = 2γ 2
1 , C2 = γ1 (1 + α2i

1 + 3α2ν
1 − α

2(i+ν)
1 ) and C3 = 2 α2ν

1 . Because C2 ≥ 2C3
and t−i−ν−1 ≥ 0 a lower nonnegativebound of (4.12) is obtained if we put t = i+ν+1.

b) Let i = j + 1 ≥ 2 and ν ≥ 1. Using (4.10) it follows that III = III1 + III2 with

III1 := (α−i
1 κi,t−1 + αi

1 κi,t−i−1) (κi−1,t−1κν,t−i−1 + κi−1,t−i−1κν,t−1)

− (α
−(i−1)
1 κi,t−1 + αi

1κi−1,t−i−1) (κi,t−1κν,t−i−1 + κi,t−i−1κν,t−1),

III2 := −A (K∗(i) − K∗(0)) (κi−1,t−1κν,t−i−1 + κi−1,t−i−1κν,t−1)

= αi+ν−1
1

(
−C4 + C5α

2(t−i−ν−1)
1 − C6α

4(t−i−ν−1)
1

)
and C4 = 2 γ (1 − γ)(γ + A)2, C5 = γ (1 − γ) A(γ + A) (1 + α2i

1 ) (1 + α
2(ν−i+1)
1 ) and

C6 = 2A2α
2(ν+1)
1 γ(1 − γ). Now III1 is equal to the quantity III of case a) obtained by

putting i = j + 1 there. The calculations for case a2) show that

III1/α
i+ν−1
1 = (γ (1 − α2

1) + α2
1)

(
C1 − C2α

2(t−i−ν−1)
1 + C3α

4(t−i−ν−1)
1

)
.

Consequently III/αi+ν−1
1 = C7 − C8 α

2(t−i−ν−1)
1 + C9 α

4(t−i−ν−1)
1 with C7 = 2 (γ +

A)2 (γ(γ − α2
1) + α2

1), C9 = 2A2α2ν
1 ( γ + α2

1 (1 − γ)2 ) and

C8 = A(γ + A)
(

( γ(1 − α2
1) + α2

1 ) (1 + α2i
1 + 3α2ν

1 − α
2(i+ν)
1 )

− γ(1 − γ)(1 + α2i
1 )(1 + α

2(ν−i+1)
1 )

)
.

Note that neither C7 nor C9 depend on i. Then the maximum value of C8 with respect to
i ≥ 1 is obtained for i = 1. Because C8(i = 1) ≥ 2C9 the lower bound of III/αi+ν−1

1 is
given by C7 − C8(i = 1) + C9 ≥ 0. �
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