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Abstract In this paper we consider a general family of EWMA charts for an
arbitrary parameter of the target process. Our assumptions on the target process are
very weak and they are usually satisfied if it is stationary. We distinguish between
the EWMA chart based on the exact variance and the EWMA scheme based on
the asymptotic variance. In the case of the EWMA chart with exact variance the
in-control variance of the EWMA recursion at time 7 is used for the decision at
time ¢ while in the case of the asymptotic variance at each time point the limit
of the in-control variance of the EWMA chart for ¢ tending to infinity is applied.
It is analyzed how the distributions of the corresponding run lengths behave if the
smoothing parameter tends to zero. We show that the distribution of the run length of
the EWMA chart based on the exact variance converges to the distribution of the run
length of the repeated significance test while the limit of the EWMA scheme based
on the asymptotic variance is degenerate. It is either O or 1. This result underlines
the weakness of the schemes based on the asymptotic variance if the smoothing
parameter is small. Moreover, several properties of the limit chart, i.e. the chart
based on the repeated significance test, are presented as well.
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1 Introduction

Since the introduction of the exponentially weighted moving average (EWMA)
chart by Roberts (1959) this scheme has become one of the most discussed control
charts in the literature on statistical process control. Because its decision rule is quite
simple it has shown to be an attractive control chart for practitioners. Similar to the
CUSUM chart of Page (1954) it depends on a further parameter, the smoothing
parameter, which regulates the influence of past observations on the present deci-
sion. If the smoothing parameter is equal to 1 the chart coincides with the Shewhart
chart (cf. Shewhart 1931). The smaller the value of the smoothing parameter the
larger is the influence of the preceding observations. Recommendations about the
choice of the smoothing parameter were given by several authors. Montgomery
(2009) writes that values of A in the interval 0.05 <A <0.25 work well in practice.
The aim of Lucas and Saccucci (1990) was to find an optimal design procedure.
Fixing the desired in-control average run length (ARL) of the EWMA chart
they determined the value of the smoothing parameter which minimizes the out-
of-control ARL for a given value of the expected shift. In their paper the minimum
is determined for values of the smoothing parameter lying within the interval (0.03,
1.0). One reason why a lower bound for the smoothing parameter was chosen
probably lies in the fact that the calculation of the average run length of the EWMA
chart turns out to be quite complicate (see, e.g., Brook and Evans 1972; Crowder
1987) and numerically instable if the smoothing parameter is very small.

Most of the literature on EWMA charts is concerned with the monitoring of
the mean of an independent random sample. A further great advantage of the
EWMA approach consists in the fact that it can be easily extended to monitor
other parameters of a process and that the structure of the underlying process can be
quite general. EWMA charts for the standard deviation of an independent random
process have been introduced by Crowder and Hamilton (1992). The extension
of the EWMA chart to monitor the mean of a stationary time series process was
given by Schmid (1997). EWMA charts for the variance of a stationary process
were proposed in Schipper and Schmid (2001) while Rosotowski and Schmid
(2003) discussed simultaneous EWMA schemes for the mean, the variances, and
the autocovariances. These examples describe only a few applications of EWMA
charts.

Many researchers followed the proposal of Lucas and Saccucci (1990) about the
determination of the optimal smoothing parameter and they obtained it by minimiz-
ing the out-of-control ARL for a fixed in-control ARL. Due to the improvement of
the computer power in the last years it is nowadays possible to calculate the ARL
for smaller bounds than 0.03 as well. Doing this something interesting happens. It
has turned in some cases that the smaller the lower bound the smaller the ARL and
thus the optimal smoothing parameter is equal to the lower bound. This problem
was described by Chan and Zhang (2000) and it was analyzed in more detail by
Frisén and Sonesson (2006); both papers focus on the mean chart and independent
samples.
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A deeper analysis of the convergence of the distribution of the run length of the
one-sided EWMA chart for the mean was provided by Morais et al. (2010). They
proved that for a fixed control limit the in-control ARL of the EWMA scheme based
on the asymptotic variance is a decreasing function in the smoothing parameter.
Moreover, they analyzed the limit of the distribution of the run length as the
smoothing parameter turns to zero. The resulting limit chart turns out to be equal to
the repeated significance test. These authors also derived several properties of the
limit chart.

In the present paper we consider a very general family of EWMA schemes which
can be used to monitor an arbitrary real-valued parameter. It is assumed that the
statistics to which the EWMA recursion is applied are governed by a stationary
process. Because of its generality this approach covers most of the EWMA schemes
discussed in literature. We distinguish between two types of decision rules. The
first rule is based on a comparison of the deviation of the EWMA statistic and
the target parameter with the in-control variance of the EWMA recursion. Because
at each time point the variance changes it must be calculated in each step. This
procedure is called the EWMA chart based on the exact variance has also been
considered by Morais et al. (2010) as well. Because in each step the variance must
be calculated most practitioners prefer to work with the asymptotic variance. In that
case the distance between the EWMA recursion and the target value is compared
with the asymptotic in-control variance of the EWMA recursion. This is our second
procedure. It turns out to be much simpler and is used in most papers on EWMA
charts.

In Section2 we introduce the EWMA charts based on the asymptotic and
exact variance. Moreover, we analyze the one-sided and the two-sided monitoring
problem.

Section 3 deals with the limit distributions of the run lengths of the EWMA
recursions. It is shown that the run lengths of the charts based on the exact variance
converge to the distribution of the run length of the repeated significance test. This
result holds for the in-control and out-of-control case as well. As special cases we
consider the monitoring of the mean and the variance of a stationary process. In the
second part of this section the limit of the charts based on the asymptotic variance
is determined. It is shown to be degenerate, i.e. it is either O or 1. This is a clear
hint that the charts based on the asymptotic variance should not be used with an
extremely small smoothing parameter. In the most realistic case the probability of a
signal up to a fixed time point converges to 1 as well in the in-control state as in the
out-of-control state. This is a very unpleasant property. Moreover, it shows that the
ARL converges to infinity if the smoothing parameter tends to zero.

Section 4 is devoted to the analysis of the limit scheme, i.e. the chart using the
repeated significance test. Here we restrict ourselves to independent samples and a
one-sided chart. Several properties of the limit scheme are presented which question
the usefulness of the ARL as a performance measure for EWMA schemes.

In Section 5 we summarize the main conclusions of our paper.
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2 EWMA Charts for Stationary Processes

In what follows {Y;} denotes the target process and {X,} stands for the observed
process. Both processes are assumed to be the same up to time point g — 1, i.e.
X, =Y, fort =1,...,q — 1. At the time point g it is assumed that X, # Y,. The
unknown position ¢ is assumed to be a deterministic quantity taking values within
the set N U {oo}. If ¢ < oo then a sustained shift has occurred at time ¢t = gq.
The process {X;} is called to be out-of-control. Needless to say, {X;} is said to be
in-control if ¢ = oo.

We are interested to monitor a parameter 6 of the target process by using the
statistic 7;, which we assume is a function of past and present values of the
observed process, i.e. T, = f;(X1,...,X;). The statistic 7; can be interpreted as
a point estimator for the parameter 6. Suppose that 7; is an unbiased estimator
of 6 in the in-control state. If 6 is equal to the mean p of the {Y;} then we
can choose, e.g., T; = X; (see Schmid 1997), T, = Zlv;] Xiyi—/kor T, =
cymed{X,y1—, .., X;}. In case 6 is the variance of {Y,} possible choices would be,
e.g.. T, = (X,—u)? (e.g., Schipper and Schmid 2001), T; = Y*_ (X, 11-,—p)?/ k
or Ty = ¢33y | Xi1—v — I/ k.

The EWMA recursion applied to 7; is given by

Z(), Z:O

7. =
! A=NZ_1 + AT, t=1,2,...,

(D

with an initial value Z,. The parameter A is a smoothing parameter taking values
within the set (0, 1] and it corresponds to the weight given to the most recent
observed value. Having in mind that Z; can be equivalently written as the following
moving average

t—1
Zo=2Y (1=0'Tii+(1-2)Z t =12...., (2)

i=0

whose weights fall off geometrically, we immediately conclude that a value of A
close to one leads to a short memory EWMA chart — in fact A = 1 leads to nothing
but a Shewhart chart —, whereas values of A close to zero lead to EWMA charts that
give little importance to the most recent observations.

Since T is an unbiased estimator of 6, we can assert that in the in-control state,

Ew(Z)=0+10-=1)[Zy—0].
The index “oc0” means, throughout the remainder of this paper, that the quantity (an

expectation, a variance, a covariance, a probability, etc.) is calculated with respect
to the in-control situation.
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Now suppose that in the in-control state {7;} is a (weakly) stationary process
with mean 6 and autocovariance function {y7}. Then

—1

Vareo(Z,) = 22 ) (1= )y 3)

i.j=0

A t—1
=55 [[1 — (= Tyro+2) (1= = (1 - A)ZU—V’]m] .

v=1

Upward shifts in 6 can be detected by upper one-sided EWMA charts which give
a signal at the sampling period ¢ > 1, suggesting that the parameter 6 increased, if

Z, >0+ c+/Vare(Z,),

for some fixed constant critical value ¢ that defines the range of these exact control
limits. Note that we make use of the asymptotic mean 6 instead of the exact one
Es(Z;). This signal is a valid one, in case the process is out-of-control, and it is
called a false alarm, otherwise.

In order to detect an upward or a downward shift, we have to make use of two-
sided EWMA charts which trigger a signal whenever

|Z, — 0| > ¢/ Vareo(Z,),

with ¢ > 0.
To address both types of EWMA charts, we define R as the rejection area and

thus a signal is given if
Z, —0

V Vareo (Z;)

where R = (c, 00) in the upper one-sided case, and R = (—o00,—c) U (¢, 00) in
the two-sided case.

In practice the asymptotic variance is frequently used instead of the exact one. In
that case a signal is given if

eR,

Z,—0 .
V1m0 Vare (Z;)

Note that .
tl_igloVaroo(Z,) =A? Z (I— A)H_j VT.li—jl
i.j=0

if {7}} has an absolutely summable autocovariance function {yr;}. Another repre-
sentation of the asymptotic variance based on the spectral density function is given
in Schmid (1997).
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In what follows, 8, Vars(Z;), and lim,_ o Vars,(Z,) are assumed to be known
quantities. We shall not discuss the influence of parameter estimation.

3 Limit Behavior for Stationary Processes

Let N(A,R) denote the run length of control chart based on the exact variance, i.e.

Z -0
ZENZI—GR},

v Vareo (Z;)

and Nygymp(A, R) be the run length of the scheme with the asymptotic variance

Z;,— 0
t e N: eR; .
VIim; S o0 Vareo (Z;)

N(A,R) = inf

N,(A,R) = inf

We denote the run length of the repeated significance test by

T, — 6
teEN: ———€e R, ,

vV Varso (T7)

where 7, = Y _, T,,/t. Itis worth mentioning that

N(R) = inf

—1

tVaroo(1;) = yr0 + 22(1 —v/1)Yry, “4)

v=1

whose limit, when 7 tends to infinity, exists as long as Y oo, |y7.,| < 0.

3.1 The EWMA Scheme Based on the Exact Variance

First, we consider the probability of getting no signal up to a fixed time point for
the present EWMA scheme if A tends to zero. It is shown that the limit is equal to
the probability of no false signal for the repeated significance test, i.e. the sequential
application of the corresponding significance test using the critical value c.

Theorem 1. Assume that the k-dimensional random vector (X1, ..., Xy) is contin-
uous or discrete and that its distribution does not depend on A. If Zy = 0 then

lim P[NQ.R) > k] = P[N(R) > k]

forany fixedk = 1,2, ... and any set R C IR which does not depend on A.
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Proof. The run length of the EWMA scheme with exact variance exceeds k with
probability

PINAR) >kl =P [ Zi —

V Vareo(Z,)

:/ .../fxl,___yxk(xl,...,xk)dxl...a’xk,
A(X)

where A(X) = N*_, A,(1) with

R Vt:l,...,k}

A,j A, == s e e gAY L R .
( ) {(xl -x) \/m QI }
Because
Zi—0  _ YiS( - (T - 0) )
SVareo(Z) VVaroo(Z1) /A
and
i Varoo(zt)
x—1>0+ A2
L (= =P 20T A= 20 = (= 22y
- 2 Al—l>r(§l+ A
= 1*Varoo(T))

the use of Eq. 4 leads to

. T (X1,...,x)—6

lim A,(A) = ¢ (x1,..,x) : = R
a0+ % t v Vareo (T7)
and

k k

. Ti(x1,....x))— 6
1 A[ A. — sy X ) o — R . 6
A—1>I(I)I+D @) D { (10 %1) v/ Varoo(T;) # } ©

Moreover, if we define the set on the right side of Eq. 6 by A, then

A—>0+

lim/ ---/fxl ,,,,, X, (X1, xp)dxy . dxg
AL

:[---/fX1 ..... xp (X1, x)dxy . dxy,
A

thus proving the result.
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Remarkably, the theorem holds both in the in-control and in the out-of-control
states. In addition, if we combine the fact that E[N] = Y 72, P[N > k] and
Theorem 1, we can conclude that

Jm E[NA.R)] = E[N(R)].

This means that if A converges to zero then the ARL of the EWMA chart for
monitoring 6 converges to the ARL of the repeated significance test. We ought to
mention that in some cases E[N(R)] = oo; this point is analyzed in more detail in
the next section.

Note that the above result is quite general and valid for any EWMA chart whose
input statistics {7} } are governed by a stationary process.

Example 1. (a) Monitoring the mean of a stationary process

In this case we have § = u. Following Schmid (1997) we choose 7; = X,.
If {Y,} is stationary then in the in-control state {7;} is stationary as well. In the
special case that {Y;} is a causal ARMA process (cf. Brockwell and Davis 1991)
the autocovariances of {Y,} can be determined recursively by making use of the
Yule-Walker equations (e.g., Brockwell and Davis 1991, Chap. 3). If {Y;} is a
stationary GARCH process (cf. Tsay 2005, Chap. 3) then the determination of
the variance of the EWMA recursion is easier and it holds that

Vare (Z,) = Lu —(1=2)"1yro
2—A
(b) Monitoring the variance of a stationary process
Suppose that © = 0, 0 = yp, T; = th (e.g., Schipper and Schmid 2001)
and Y, = Z;’i_oo a;e—;, where {a;} is absolutely summable. Let {g,} be
independent and normally distributed with E(g;) = 0 and Var(s,) = o2 then
VT.h = )/g + 2)/,3 (cf. Brockwell and Davis 1991, p.227), where y;, stands for

the autocovariance function of {Y;}. Thus, we get

A 2 2t
o [ pa—a -

2(1—1)
)

Vareo(Z;) =

; L= (1= )]l = (1 — A)"I]]

—1
+2) A=1)[1—(1- A)ZU-Z')]%?} .

i=l1

This quantity can be calculated recursively for a stationary ARMA process as
described in (a). For the special case of an ARMA(1,1) process Y; = oY,—; + & +
Bei—1, we get
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A
Vareo(Z;) = T I:)/g |:[3(1 —(1=21)"]

L 24

t r—1
(BRI REP]

1 — [az(l_)b)]t—l , (1 _ A)t—l _ a2(t—1)
ey TN T e H

+ 2(1=-A)y} [

since y; = o'y, fori > 1, with

L, 142up+p?
Yo = O, and

_ 2 (1 +aB)(x+ B)
1 —o? ¢ ’

1 —a?

Note that a stronger result for the mean chart for independent normal variables
was shown by Morais et al. (2010). They proved that in the in-control state the
probability of a false signal is a decreasing function in A € (0, 1]. This result was
obtained by using monotonicity results for the multivariate normal distribution (cf.
Tong 1990).

3.2 The EWMA Scheme Based on the Asymptotic Variance

Next we analyze the run length of the scheme based on the asymptotic variance in
the in-control state.

Theorem 2. Assume that the k-dimensional random vector (X1, ..., X) is contin-
uous or discrete and that its distribution does not depend on A. Let R be an arbitrary
subset of IR which does not depend on A and suppose that Zy = 6.

(a) If 0 € R then
Alir(r)l_i_ P[Nusymp(A,R) > k] =1, k € N.

(b) If 0 € R then
A1_1>r(§1+ P[Nusymp(A,R) > k] =0, k € N.

Proof. We only prove part (a). The proof of part (b) follows immediately.
First, note that

Z,—0
\/limz—>oo Vareo(Z;)

:/ .../fX,_“,Xk(xl,...,xk)dxl...dxk,
Aq (1)

P[Nasymp()L,R)>k]:P|: ¢ R, Vz:l,...,k]
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where A, (1) = Nk_ A, (L) with

Z,—0
Ay A) ={(xq, ..., x0) RY.
((A) = {(x 0) SV (Z) ¢ R}
Because
Zi—0 Yo - (T —0) -
Vim0 Vars (Z,) VIim, 0 Vareo (Z,) /A
and
im0 Vare(Z) 1 [yro+2>02,(1 = A1) yr, ]
lim = - lim — o,
A—0+ A2 2 A—>0+ A

we successively get, for case (a),

lim 4,(1) = 2
A—04+

k
li A(A) = 2
A—1>I(I)1+Q () ’
and

lim/ .../fxl,,__,Xk(xl,...,xk)dx]...dxk
A(X)

A—>0+

thus proving the result for case (a).

Note that case (a) is the one we usually deal with. It arises if we choose ¢ > 0
and take R = (c, 00), in the one-sided case, or consider R = (—o0, —¢) U (¢, 00),
in the two-sided case. Choosing ¢ < 0 means that 0 € R and that we are dealing
with a negative control limit, in the one-sided case, which is rather strange to most
practitioners. However, we shall address this case later on.

The result of part (a) is highly desirable in the in-control state because it means
that the probability of a false alarm converges to zero as A tends to zero. However,
the result also holds in the out-of-control state, that is, the probability of a signal
within the first k& samples converges to 1. As a consequence the EWMA scheme
with asymptotic variance behaves quite chaotically if A reaches 0. It also implies
that limy 0+ E[Nugmp(A, ¢)] = oo, therefore the behavior of the EWMA control
charts with different values of A cannot be compared by means of the average run
length. Let us remind the reader that the in-control ARL is used to determine the
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control limits but in the present case this cannot be done since this quantity does not
exist if A converges to zero.

For case (b) the scheme shows similar undesirable properties. For instance, the
probability of a correct signal converges to 0 in the in-control state when A converges
to zero.

In sum, if A takes values close to zero the control chart based on the exact
variance must be favored: it has at least a reasonable limit behavior — the repeated
significance test. For a better understanding of this limit behavior, it is necessary,
however, to analyze the properties of the repeated significance test.

4 Some Properties of the Limit Chart

In this section we present some results of the limit chart. We focus on the detection
of a change in the mean and choose 7; = X,. Moreover, we restrict ourselves to
the one-sided problem, i.e. we choose R = (c, 00). Then the limit chart, i.e. the
repeated significance test, has run length given by

ZE:I(XI' — )

N(c) =inf{t e N :
Vil + 25025 —i/n]

> c}.

In order to illustrate how the limit scheme may behave, we focus on the case of
independent random variables. A detailed analysis of the repeated significance test
is given in Morais et al. (2010). In that case we have that

t

N(c) = inf{t e N : 3.
Yo

We make use of the following change point model

|y fort <gq

X, =
! Y +a,/yofort > gq.

®)

In what follows we use the symbols P, ,, E, 4, etc. to denote a probability,
expectation, etc. taken with respect to model Eq. 8.

First, we discuss the behavior of the limit scheme in the in-control state.

Theorem 3. Assume that the random variables {Y,} are independent and identi-
cally distributed with mean (. and variance Y.

(a) If ¢ > 0then Ex[N(c)] = oc.
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Table 1 The fraction (in %) of the run lengths falling into the respective interval as a function
of ¢. The computations are based on 10° replications of iid Gaussian observations

N(c) <10 10 < N(c) < 10* 10* < N(c) < 107 107 < N(c)
c E[N(c)] (in %) (in %) (in %) (in %)
—1.5 1.266 99.64 0.36 3.84e—05 0
—14 1.406 99.50 0.51 8.97e—05 0
—1.3 1.614 99.28 0.71 2.05e—04 le—07
—1.2 2.078 99.02 0.98 4.35¢e—04 Te—07
—1.1 2.707 98.66 1.34 8.74e—04 4e—07
—1.0 4.342 98.20 1.80 1.83e—03 1.5e—06
—0.9 8.284 97.61 2.38 3.62e—03 6.7e—06
—0.8 21.81 96.87 3.12 7.05e—03 1.53e—05
—0.7 59.14 95.95 4.03 1.34e—02 4.27e—05
—0.6 140.9 94.84 5.15 2.47e—02 1.16e—04

(b) Suppose that P[Y, = 0] < 1 and that the variables {Y,} are symmetric around
w. If ¢ < 0 then Ex[N(c)] < o0 and Varso[N(c)] < oc.

This result is remarkable. It implies that the in-control ARL of the limit chart is
equal to infinity if the control limit is nonnegative. Thus, together with the results
of Section 3, it follows that limy_ o+ Eco[N(A,c)] = oo. Note that practitioners
choose a positive control limit and thus the in-control ARL is not finite in the most
popular case. Theorem 3 also has an important consequence on the comparison
of EWMA charts because it states that EWMA charts should not be compared by
means of the average run length, at least when A is very small.

Table 1 illustrates the divergence of the run length if the critical value tends to
zero from the left. Despite of a small in-control ARL, there is a substantial number
of run lengths exceeding 107. It is assumed for simplicity that the observations are
1id and follow Gaussian distribution.

Now let us assume that the control limit ¢ is chosen as a solution of
Ex[N(A,c)] = &, with & > 1, denote ¢ = ¢(A,§) and discuss the behavior
of ¢c(A,§) as A tends to 0.

Theorem 4. Assume that the random variables {Y,} are independent and identi-
cally distributed to N' (i, vo). Then limy o+ c¢(A,§) < 0.

The control limit of the upper one-sided EWMA chart is, by definition, positive.
Theorem 4 shows, however, that there is no positive solution for the limit chart.
Thus, it is impossible to compare the behavior of the EWMA chart with that of the
limit chart if the control limit is chosen to be equal to a specified constant. Figure 1
shows the behaviour of the control limit ¢ with & = 50 both for the asymptotic and
the exact variances as a function of A.

Now we investigate the out-of-control behavior of the limit scheme. We ought to
begin by noting that contrary to the in-control ARL, the out-of-control ARL is
always finite, as stated in the next theorem.
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Fig. 1 The critical value ¢ as a function of A for the EWMA schemes with exact and asymptotic
variance, for £ = 50 and iid Gaussian observations. The results are based on a Monte-Carlo study
with 10? replications

Theorem 5. Assume that the random variables {Y,} are independent and identi-
cally distributed to N (1, yo). Then E,4[N(c)] < oo, forall ¢ € IR, q € N, and
shifts with magnitude a > 0.

Figure 2 illustrates this result. In fact, it shows that the out-of-control ARL
converges to a finite value as A — 0+ for several upward shifts with magnitude a.

We shall now discuss the average delay of the limit scheme, another frequently
used performance measure. Recall that, when dealing with control chart with run
length N, the average delay is given by

. Puy[N(c) = k]
Eiq(N(©) =q +1|N(c) = q) = q '
AN@ =g IN@ 20 =3 F Ny

Note that Theorem 5 allows us to assert that the average delay exists for g < oo
and a > 0. The next theorem refers to the behavior of the average delay when the
magnitude of the shift, ¢, tends to zero.

Theorem 6. Assume that the random variables {Y,} are independent and identi-
cally distributed to N (i, o) and let ¢ € N.

(a) If ¢ > 0 then lim,—o4 E, 4[N(c) —q + 1|N(c) > q] = oo.
(b) If c <0 thenlimyso4 E,4[N(c) —q + 1|N(c) > q] < oo.

Part (a) from Theorem 6 reads as follows: the average delay of the limit chart has
an undesirable behavior when a positive control limit is at use. Moreover, since this
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Fig. 2 The out-of-control ARL as a function of A for the EWMA schemes based on the exact and
the asymptotic variance, for & = 50 and iid Gaussian observations. The results are based on a
Monte-Carlo study with 10° replications

result implies that the EWMA scheme behaves similar as A tends to zero, we can
conclude that all criteria based on the first moment of the run length are not suitable
to assess or compare the performance EWMA charts with small values of A.

5 Concluding Remarks

This paper essentially provides a thorough study on the behaviour of the run length
of EWMA charts with exact and asymptotic control limits when A converges to zero.
We ought to stress that the results are quite general and refer to the control of any
parameter of a stationary process. For instance, we proved that, when the smoothing
parameter A tends to zero:

e The run length of EWMA charts based on the exact variance has the same
behavior as the run length of a chart based on a repeated significance test, what
we called the limit chart;

* The out-of-control run length of EWMA charts based on the asymptotic variance
is infinite if the rejection area R includes the origin.

Finally, this study also brought to light a few useful results concerning the run
length of the limit chart, namely for the mean independent and identically distributed
processes:

 Its in-control ARL is not finite if the control limit ¢ in nonnegative.
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In summary, our results permit the following conclusions:

1. The EWMA scheme with exact variance must be preferred over the EWMA
scheme with asymptotic variance.

2. The EWMA scheme with asymptotic variance should not be applied if the
smoothing parameter is small (about A < 0.1).

3. The average run length is no suitable performance measure for EWMA charts if
the smoothing parameter is very small.

4. One-sided EWMA charts should make use of a reflecting boundary.
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