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ABSTRACT
A shared sense of humor can result in positive feelings associated
with amusement, laughter, and moments of bonding. If robotic com-
panions could acquire their human counterparts’ sense of humor in
an unobtrusive manner, they could improve their skills of engage-
ment. In order to explore this assumption, we have developed a
dynamic user modeling approach based on Reinforcement Learning,
which allows a robot to analyze a person’s reaction while it tells
jokes and continuously adapts its sense of humor. We evaluated our
approach in a test scenario with a Reeti robot acting as an enter-
tainer and telling different types of jokes. The exemplary adaptation
process is accomplished only by using the audience’s vocal laughs
and visual smiles, but no other form of explicit feedback. We report
on results of a user study with 24 participants, comparing our ap-
proach to a baseline condition (with a non-learning version of the
robot) and conclude by providing limitations and implications of
our approach in detail.
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1 INTRODUCTION
Embodied agents, such as robots who are capable of “mimicking”
social interaction, are envisioned to enrich many social situations.
In addition to addressing serious societal challenges, such as im-
proving the quality of elderly care, social robots have the potential
to satisfy people’s hedonic needs of enjoying everyday life. To
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demonstrate that robots can make an audience laugh, fellow re-
searchers went as far as sending robots into theaters and stand-up
comedy shows (e.g., [9, 11]). Laughing together with a robot may
not only be fun and possibly healthy, but it may also strengthen a
user’s relationship with the social robot and turn interactions more
enjoyable over a longer period of time.

Sjöbergh and Araki [21] found that jokes told by a robot are rated
significantly funnier than jokes presented by text only. Thus, not
only the content of a joke is important but also how it is delivered.
In fact, several factors need to be addressed, including “intonation,
posture, gaze, gesture, expression, and timing”, but also the com-
munication between speaker and audience. [9]. Receiving feedback,
such as smiles or raised eyebrows, can be very useful for the speaker,
and thus, it seems that robots who aim to become humorous also
need to learn how to elicit social signals, such as human laughter.

Developing humorously acting robots has been a research inter-
est for Japanese Manzai [8] and as aforementioned in the standup
comedy domain [9, 11] with a focus on entertaining larger audi-
ences. Thus, research has investigated how to adapt spoken contents
and presentation in a manner that optimizes a show for a larger
audience, based on the audiences’ explicit and implicit feedback.
However, adaptation is also important when a robot has to tell jokes
to a small group of listeners or even a single listener, as it would be
the case for a domestic companion with joke-telling abilities.

As an aggravating factor, there are individual and possibly con-
textual differences in joke preferences: people may enjoy different
types, such as gross-out, slapstick, or academic jokes. In order to
entertain a human partner, a social robot would need to quickly
acquire their human counterparts’ sense of humor and preferences
in non-verbal stimuli (e.g., mimics) to enrich the presentation of the
joke. Thus, human feedback from the user is essential to learn these
preferences. One way to gather user feedback is by directly asking
the user, but as it requires additional interactions for both the robot
and the user the flow of the conversation may suffer. Moreover,
people are critical towards providing explicit feedback and serving
as an “oracle” for a machine [1].

It seems unnatural to ask whether a joke was perceived as funny
or not because during interpersonal communication, humans can
easily interpret their conversation partner’s reactions, such as if
they react with a smile or a laugh. Laughter is used in different
contexts within social interaction and may be the result of “diverse
meanings and connotations” [3]. When making jokes, acoustic
laughs and facial smiles are obvious, contemporary human reactions
serving as an indication whether a joke is good or bad from the
perspective of the human listener. Consequently, joke-telling robots
should also be able to make use of their listeners’ reactions and
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(ideally) learn preferences implicitly by interpreting (non-verbal)
social signals.

In order to explore if a robot can effectively learn their listener’s
humor preferences solely by utilizing implicit feedback (i.e., facial
smiles and vocal laughs), we have implemented a machine learning
approach based on trial and error (i.e., Reinforcement Learning)
and evaluated with users the approach’s performance.

Before we present our approach in detail, we outline in the next
section research covering humor in human-robot interaction in
combination with adaptation, as well as Reinforcement Learning
based on social signals. An overview of the scenario, details of the
adaptation approach and the process of sensing social signals are
explained in Section 3. Finally, Section 4 presents the results of a
study with 24 participants, which we conducted to evaluate the
performance of our humor adaptation approach. The results of the
user study demonstrate that learning preferences by human laughs
and smiles help learn humor preferences in a joke telling scenario,
and will significantly improve a robot’s joke telling performance.
Furthermore, results also indicate the importance of “first impres-
sions” and that a joke-telling robot needs to quickly acquire their
listener’s sense of humor since it seems that users won’t change
their opinion (easily) once it is established.

2 RELATED WORK
Related research can be separated in two streams; i.e., (i) research
exploring scenarios in which robots aim to (help) entertain users
and (ii) research on the application of Reinforcement Learning for
adaptation purposes (e.g., to personalize robots based on trial and
error). We summarize both streams, highlighting technical details
in terms of what kinds of interactions and signals are (typically)
measured and applied to adapt a robot’s behavior based on feedback.

2.1 Robots entertaining an audience
Japanese “Manzai” is a comedy dialog conversation, which is tra-
ditionally performed by two people. Hayashi et al. [8] have real-
ized Japanese “Manzai” with two robots. Their system utilizes two
Robovie robots capable of coordinating their communication with
each other and reacting to external stimuli from the audience, in-
cluding social signals in terms of laughter. Moreover, the audience’s
clapping and laughing are estimated using a sound level meter.
Sensor data are discretized in three levels to distinguish “burst out”,
“laugh” and “cool down” reactions to adjust speech and motion
timing of the robots’ performance depending on the audience.

Research by Knight et al. [11] uses a NAO robot which performs
standup comedy while adapting the contents and performance to
the audience. Both auditive and visual information are used to
estimate the audience’s current enjoyment level, including noise
caused by laughter or applause, as well as green or red cards held
up by the spectators. Furthermore, the NAO robot gets explicit
information on the audience’s valence based on direct prompts (i.e.,
likes or dislikes). In combination with several attributes associated
with each joke and online learning (convex programming), the robot
is able to select the best next joke to maximize audience enjoyment.

Katevas et al. [9] use the RoboThespian™ platform in the standup
comedy domain with focus on joke delivery in terms of non-verbal

behavior (gaze and gestures). The robot reacts in real-time to au-
dience responses by looking at peoples’ faces or responding to
them, based on social signals sensed via audio (laughter/applause
via directional microphone) and video (infrared HD camera, facial
expression with SHORE™). Every comedy text includes a list of
positive or negative responses, which can be used by the robot
when laughter has been observed or not.

Humor research states that the presence of another person posi-
tively influences the cognitive and emotional response to humorous
stimuli and inspired by this theory, Niewiadomski et al. [18] present
a laughter-aware virtual agent that is meant to enjoy amusing
videos together with the user. They present experiments, in which
human social signals are sensed by a Microsoft Kinect sensor to
detect the user’s voiced laughs. Based on the occurrence of laughter,
an automated intensity estimation and context information from
the given scenario, the agent adapts to the user’s amusement level
by selecting an appropriate audiovisual response.

While most of the aforementioned research in the context of
humor and robots addresses scenarios with a larger audience and
the need to adapt in a manner that fulfills the preferences of multiple
humans, our work focuses on an adaptation process for a single
person. Moreover, the goal of the adaptation process, which we
propose in this paper, is not only to adapt but more specifically to
learn preferences depending on the user’s current emotional state in
terms of amusement. This is where Reinforcement Learning comes
into play, which is a machine learning approach based on trial and
error and enables to learn appropriate behavior depending on the
human’s current social signals.

2.2 Reinforcement Learning Applications
In Human-Robot Interaction, the combination of Reinforcement
Learning with rewards based on social signals is used in a variety
of scenarios. For example, Leite et al. [12] use smile, gaze and task-
related information to learn empathic supportive strategies for
playing chess. Facial expression is also used by Gordon et al. [7] in
a student tutoring scenario. In the assistive domain, Liu et al. [13]
use physiological signals. To learn social behavior interaction and
feedback modalities, such as tactile [2] or prosodic [10] as well as
interaction distance, gaze meeting, motion speed and timing [17] are
used. Others have used engagement based on gesture and posture
a storytelling scenario [19].

The robot humor learning scenario, which we address in this
paper, also requires real-time adaptation based on human social
signals. However, table-based algorithms for discrete state space
approaches, such as Q-Learning or SARSA, suffer from the “curse of
dimensionality”, which means that the memory and time required
for learning increase exponentially when the amount of states
increases.

One potential way to address this issue is to discretize social
signals and include them in the state space; that is, for example, to
differentiate a finite set of levels of valence [7] or engagement [7, 19],
which then allows using social signals with table-based algorithms.
However, it causes an information loss, as these algorithms can-
not generalize knowledge across similar states. A second potential
way is to use algorithms based on function approximation, which
do not use a discrete set of states but parameters representing a



target function to learn and represent the state space. This second
approach was previously used in Human-Robot Interaction sce-
narios by, for example, Mitsunaga et al. [17] and Tapus et al. [23]
applying a Policy Gradient Reinforcement Learning. Following this
approach, social signals can be represented as continuous floating
point parameters without losing information.

In summary, most previous Reinforcement Learning approaches
based on social signals in Human-Robot Interaction utilize a com-
bination of implicit and explicit feedback. However, for a robot
to acquire their human counterparts’ sense of humor in an unob-
trusive manner, the robot would need to learn to be humorous
solely by learning from implicit feedback [19]. In this paper, we
aim to address this open research question by exploring whether
implicit feedback alone suffices to enable a robot to learn humor
preferences.

In the next section, we present a social adaptation approach
based on Reinforcement Learning, which we believe can achieve
good performance results in having a robot learn to tell the right
jokes based only on implicit user feedback. We describe in detail
technical details, providing arguments for our design choices in
our approach, including how we address typical issues with Rein-
forcement Learning, such as how and if to discretize sensor data
related with social signals for the learning approach.

3 SOCIAL ADAPTATION PROCESS
As proposed by Ritschel et al. [19], we set following requirements
for the adaptation process: (1) The adaptation has to work in real-
time, i.e. it runs while the robot is interacting with users, (2) users
are not forced to provide any explicit feedback in order to enable
adaptation, e.g. the process utilizes non-verbal social signals, and
(3) continuous signals have to be used for learning, i.e. the signals
should not be discretized before being employed by the robot.

Ultimately, the social adaptation process is needed to enable the
robot to elicit laughter in users by performing the right kind of
actions (e.g., make funny grimaces, produce sounds, or tell the right
kind of jokes) considering a user’s preferences, which are continu-
ously learned during interactions with a user. Figure 2 shows some
examples of grimaces our robot is able to make. Figure 1 illustrates
the scenario: The robot selects an action depending on the learned
preference and presents it to the user who reacts by smiling and
laughing. These signals are sensed and processed to compute the
probabilities of laughter and smile, which are then used as reward
(see fig. 4) to update the user’s preferences based on RL.

We employ the Social-Signal-Interpretation framework (SSI) [27]
to capture and analyze the required audio-visual signals. Audio
signals are used for estimating the probability of the user’s vocal
laughter, whereas video signals are used to compute the estimated
probability of the user’s smile.

3.1 Problem definition
Due to our requirements, there are several problems that emerge.
Not relying on explicit feedback implies the robot’s need of getting
another form of feedback that is reliable enough to learn from it
and that can be sensed at any time. Although social signals can be
easily acquired, they are difficult to interpret. The robot’s goal is to
keep the amount of the user’s vocal laughs and facial smiles as high

Figure 1: Interaction scenario involving a robot learning
how to be funny from human social signals.

Figure 2: Some robot grimaces.

as possible. Therefore, both laughs and smiles are used to compute
a reward Rt ∈ [0, 1] at time t (as defined in 3.1.4), which gives the
robot a good indication about how well it is performing.

3.1.1 State space. Using the signals as state space S enables the
robot to adapt its behavior depending on the user’s current en-
joyment. E.g. the robot can learn how to react if the user is not
amused, which may be different to the behavior when the user
is already amused a lot. As we use two different kinds of social
signals, we employ a two-dimensional non-discretized vector ϕ as
state representation containing the probability of smiles and laughs
as follows:

ϕ =

( P(user ′s current f acial smile)
P(user ′s current vocal lauдhter )

)
(1)

3.1.2 Action space. We gave the robot different action categories
as action space A: sounds, grimaces and three types of jokes and
the combination of them as illustrated in Figure 3.

Within each category, we defined different instances that the
robot randomly selected from when having chosen an action. Thus,
we enabled the robot to learn what category the user finds the
funniest in order to not have the robot end up in telling the same
joke over and over again. Overall, we defined 108 jokes split into
the three joke categories, 19 grimaces and 23 sounds. Consequently,
there exist 437 grimace-sound and 2052 grimace-joke combinations.

3.1.3 Algorithm. At the beginning, without any knowledge, the
robot tries every of the aforementioned action categories once,
measures how funny this category is and calculates an action value
from it using RL before switching to an ϵ-greedy strategy with ϵ =
0.1. As we use continuous signals for our state space representation,



Figure 3: Robot learns the most efficient actions to make the
user laugh.

we use a linear function approximator with normally distributed
initialized weights based on Sutton et al. [22]

The main idea of linear function approximation is finding a
weight vector ω for every action a ∈ A in order to compute a
functionQ(s,a,ω) that gives an approximation of the optimal action
value function Q∗(s,a) for every state s ∈ S contemporaneously,
i.e. Q(s,a,ω) ≈ Q∗(s,a). This allows for even learning the correct
behavior for states not seen by the agent yet.

Every action value Q(, ,a,ω) can be computed by using the fol-
lowing equation 2 [22]:

Q (s,a,ω) := ϕ(s) ◦ ω,∀s ∈ S,∀a ∈ A (2)

To find the optimal weight vector, it is iteratively updated by
using gradient descent. The easiest and conventional way uses the
mean-squared-error (MSE) as objective function J , the derivative
of which is defined as follows (see Sutton et al. [22]):

∆ω = α
∑
s

Ps
(
Q∗(s,a) −Q(s,a,ω))ϕ(s) (3)

3.1.4 Reward function. It is important for every Reinforcement
Learning problem that a suitable reward function is used. Yet, how
can the robot finally use the social signals (see Section 3.2) to com-
pute an appropriate reward that enables him to learn the expected
behavior?

Wiewiora [28] indicated that most problems provide intuitive
rewards. While executing an action, smile and laughter change
continuously. These continuous signals occurring between the start
state st and the new state st+1, which we reach after finishing the
action, indicate whether or not the user finds the action funny.
Thus, they could now be sampled and used for the reward function.
Findings by Katevas et al. [9] indicate that people’s response to
a joke usually peaks out just after the punchline. For actions not
having a punchline, such as grimaces and sounds, Katevas et al.
also showed that the best time for measurement is during and right
after the action, but not before either.

Thus, we decided to compute an average reward based on all
samples from the punchline to the end (Definition 3.1, for actions
not having any punchline, the begin of the action is considered as
punchline). In our work, we predefined the punchline for every joke
in advance. Moreover, using an average based reward function also
prevents the robot from learning a wrong behavior by occurring
outliers. For the reward calculation, we used both smile and laughter

as visualized in Figure 4, which mathematically translates to the
following definition.

Definition 3.1. Let st ∈ S be the state in which action a ∈ A
has been chosen and st+1 ∈ S the succeeding state. In addition let
set F1 contain all relevant occurring smile events and set F2 all
relevant laughter events between st and st+1 by omitting all events
before the punchline. The reward function Rt is then defined as:

R(st ,a, st+1) = 1
2E[F1] + 1

2E[F2]

The set F2 is different to F1 because laughter events are sent as
they occur, which means, as long as the user is not laughing, the
events are 0. In order to give the occurring laughter events a higher
weight, we decided to not use them as long as the laughter event
has not been detected.

Figure 4: Reward calculation based on social signals.

3.2 Sensing social signals
Laughter has for years been identified as a crucial part of social in-
teraction by traditional conversation analysis [6]. When modeling
natural interactions between robots and humans, this key element
should consequently not be neglected. The automated recognition
of human laughs has been applied to a number of conversational
interfaces in order to generate an engaging and pleasant user ex-
perience [18, 25]. Furthermore, efforts have been made to collect
audio-visual data of human conversational laughter [16] that can
be used to build automatic laughter recognition systems.

Given the presented joke telling scenario, a reliable recognition
of voiced laughs and visible smiles of the human user is very impor-
tant to provide social feedback to the robot. Therefore, we capture
the human social signals during interactions with audio and video
sensors and analyze them with the Social Signals Interpretation
(SSI) framework [27] in real-time. In detail, we detect bursts of
laugh in the audio signal with framewise recognition approach:
The signal is analyzed within a one-second sliding window that is
shifted every 400 milliseconds, resulting in a decision rate of 2.5
Hz. The overall activity is monitored by applying a voice activity
transformation to the signals via hamming windowing and inten-
sity calculation. We look for coherent signal parts (i.e. frames) in
which the mean of squared input values - multiplied by a Hamming
window - exceed predefined thresholds for intensity. If we identify



Figure 5: Sensing smile and laughter with SSI framework.

a voiced frame, Support Vector Machine (SVM) classification based
on paralinguistic features is applied to decide if the contained vocal
activity is more likely to be spoken words or laughter:

In our previous studies on the recognition of laughs [Anonymous
reference], Mel Frequency Cepstral Coefficients (MFCC) spectral,
pitch, energy, duration, voicing and voice quality features (extracted
using the EmoVoice toolbox [26]) were successfully employed to de-
scribe the paralinguistic content of voice. These features were used
within an SVM model trained on excerpts of the Belfast Storytelling
Database [16], which contains spontaneous social interactions and
dialogues with a laughter focused annotation. Person independent
evaluation of the model on the training database showed an un-
weighted accuracy of 84% for the recognition of laughter frames.

In the same studies, we used a Microsoft Kinect™ to track 100 fa-
cial points, which were used as input for a visual smile classification
model with an accuracy of 79%. To enhance performance further
and forego the addition of a Kinect™ device in favour of a simple
webcam, we chose to base smile recognition on commercial facial
recognition software (Sophisticated High-speed Object Recogni-
tion Engine (SHORE) [20]) developed by the Fraunhofer Institute
for Integrated Circuits IIS. The software has been integrated into
the SSI framework. In addition to real-time face tracking, SHORE
features a robust emotional analysis component based on facial
expression. Using the probabilistic output of the SHORE analysis
for each video frame and the same sliding window as used for the
audio channel, we calculate a mean probability for user smiles at
2.5 Hz.

As we are interested in the intensity of recognized laughs and
smiles as fundamental information for the social adaption process
(state space + reward), we chose to provide continuous scores as
final output of the recognition system. McKeown [15] states the
strong connection of high intensity laughs with perceived humor,
a continuous relation that has already been proposed by Darwin
mentioning a range "from violent to moderate laughter, to a broad
smile, to a gentle smile" [4]. Following these guidelines, it makes
sense to incorporate an intensity assessment. To this end, we inter-
pret the confidence scores given by our audio (audible laughs) and
video (visual smiles) classifiers as intensity measurements. Though,
there are of course other sophisticated approaches to quantify the
intensity of vocal laughs [24] and facial smiles [14], we need to
take into account the restrictions of real-time capability, and the

probabilistic output of the implemented classification systems turns
out to be a good intensity measure that can be computed efficiently.

4 USER STUDY
In order to explore the performance of our social adaptation ap-
proach, we conducted a within-subjects user study, comparing our
approach’s effect (i.e., the performance of a learning robot, which
chooses jokes by learning from users’ reactions) against a baseline
condition (i.e., the performance of a robot, which chooses a ran-
dom function to choose the next joke). Consequently, the study
explored (i) if users laugh more when being entertained by a learn-
ing robot and (ii) if users perceive a learning robot as more or less
entertaining than a non-learning robot.

Figure 6: Overview of evaluation setup with Reeti robot.

4.1 Participants, apparatus, and procedure
We recruited 24 participants (12 male and 12 female, 18-29 years old)
from a university campus. All participants were students. The study
started with welcoming participants and providing an introduction
to the user study. To this end, participants were handed out a short
description, which informed them about the general study proce-
dure, and a short questionnaire to report their self-perceived sense
of humor. Moreover, participants were informed that there would
be two sessions, one after the other, in which they would be asked
to listen to a Reeti robot telling jokes and after each session, they
would be asked to provide feedback about their general experience
based on a questionnaire. Figure 6 depicts the general study setup,
showing the robot, a participant with headphones, and a standard
webcam, which was used in combination with the headphone’s
inbuilt microphone to analyze in real-time participants’ visual and
auditive reactions. The same setup was used in both sessions.

Participants were told that the two sessions were different in
terms of the program version uploaded to the Reeti robot, but
participants were not informed that they would experience the
Reeti robot once telling random jokes and once telling jokes based
on their reactions. At the end of all sessions, participants were
asked which version of the Reeti robot they preferred overall.

In both sessions, 25 actions were executed, which took around
10-15 minutes, and the Reeti robot measured the reward of every
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Figure 7: Average reward of both sessions/ amusement level of participants. Error bars denote 95% confidence interval.

performed action during interaction, although it was only used by
the learning version (i.e., learner condition) to get a comparable
value. The order of the sessions was counter-balanced with half of
the participants starting with the learner version of the robot, and
the other half starting with the non-learner version of the robot.
The aforementioned questionnaire revealed an almost equal rated
sense of humor as depicted in Figure 8.

1 2 3 4 5
Starting with non-learner Starting with learner

Figure 8: Participants’ self-rated sense of humor from non-
humorous (1) to humorous (5). Error bars denote 95% confi-
dence interval.

4.2 Results
In the following, we first plot collected data to explore trends in the
data and afterward present statistical tests, clarifying the signifi-
cance of possible trends and systematic differences in user feedback.

4.2.1 General trends. Figure 7 presents a frequency plot of partici-
pants amusement levels separated by condition, which shows no
obvious difference over all collected output measures (i.e., amuse-
ment level/reward). However, when frequencies are separated by
round it seems that in round one, participants were more amused
by the learning version of the robot and in round two, participants
were more amused by the non-learning version of the robot.

There seems to exist a (somewhat unexpected) interaction be-
tween round/session (i.e., first and second) and condition (i.e.,
learner and non-learner). It seems that on the one hand that par-
ticipants who experienced the learning version of the robot kept
being amused even when in the second session the same robot kept
telling randomly chosen jokes. On the other hand, participants who
started to experience the robot telling randomly chosen jokes kept
feeling less amused in the second session when the robot started
to adapt its joke preferences to the user’s reaction. Thus, the data
seems to show a carryover effect, which we will address in the
following statistical analysis and thoroughly discuss it Section 5.
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would be two sessions, one after the other, in which they would be
asked to listen to a Reeti robot telling jokes and after each session,
they would be asked to provide feedback about their general expe-
rience based on a questionnaire. Figure 6 depicts the general study
setup, showing a Reeti robot, a participant with headphones, and a
standard webcam, which was used in combination with the head-
phone’s inbuilt microphone to analyze in real-time participants’
visual and auditive reactions. The same setup was used in both
sessions.

Participants were told that the two sessions were di�erent in
terms of the program version uploaded to the Reeti robot, but
participants were not informed that they would experience the
Reeti robot once telling random jokes and once telling jokes based
on their reactions. At the end of all sessions, participants were
asked which version of the Reeti robot they preferred overall.

In both sessions, the Reeti robot measured the reward of the
performed action during interaction, although it was only used by
the learning version (i.e., learner condition) to get a comparable
value. The order of the sessions was counter-balanced with half of
the participants starting with the learner version of the Reeti robot,
and the other half starting with the non-learner version of the Reeti
robot.

4.2 Results
In the following, we �rst plot collected data to explore trends in the
data and afterward present statistical tests, clarifying the signi�-
cance of possible trends and systematic di�erences in user feedback.

4.2.1 General trends. Figure 7 presents a frequency plot of par-
ticipants amusement levels separated by condition, which shows no
obvious di�erence over all collected output measures (i.e., amuse-
ment level/reward). However, when frequencies are separated by
round it seems that in round one, participants were more amused
by the learning version of the robot and in round two, participants
were more amused by the non-learning version of the robot.

There seems to exist a (somewhat unexpected) interaction be-
tween round/session (i.e., �rst and second) and condition (i.e.,
learner and non-learner). It seems that on the one hand that par-
ticipants who experienced the learning version of the robot kept
being amused even when in the second session the same robot kept
telling randomly chosen jokes. On the other hand, participants who
started to experience the robot telling randomly chosen jokes kept

feeling less amused in the second session when the robot started
to adapt its joke preferences to the user’s reaction. Thus, the data
seems to show a carryover e�ect, which we will address in the
following statistical analysis and thoroughly discuss it Section 5.
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Figure 8: Participants’ amusement level (reward) averaged
over both rounds (error bars denote 95% con�dence interval)

4.2.2 Statistical analysis. Since repeated measurements were
collected from each participant, we performed a paired Student’s
t-test, which shows (as expected after exploring the data plot in
Figure 7) that condition (i.e., learner vs. non-learner) does not e�ect
participants amusement level over all collected data (M = 0.0123,
SE = 0.0157), t(23) = 1.714, p = .022 [5].

However, when we focus on the evaluation of round one only
without including the results of round two to avoid the ordering
e�ect, i.e. we divide our group in one control group (users hav-
ing watched the non-learning version �rst) and an experimental
group (users having watched the learning version �rst) with 12
participants each. Using the independent Student’s t-test shows a
signi�cant e�ect that is also substantial (p = .02, d = 0.87, see
�g. 7) with regard to the gained reward. Comparing the averaged
amusement level over both rounds (see �g. 8) also shows an overall
signi�cant di�erence (p = .03, d = 0.83) between those two groups
including the second round. We veri�ed the variances to be ho-
mogeneous to satisfy the conditions for applying the independent
t-test.

4.2.3 User preferences. At the end of the study, we had explicitly
asked participants which version of the robot they preferred overall.
(Please note, that participants didn’t explicitly know how the two
versions di�ered). Surprisingly, most participants preferred the
version they experienced last (i.e., 54% preferred the robot they

Figure 9: Participants’ amusement level (reward) averaged
over both rounds. Error bars denote 95% confidence interval.

4.2.2 Statistical analysis. Since repeated measurements were col-
lected from each participant, we performed a paired Student’s t-test,
which shows (as expected after exploring the data plot in Figure
7) that condition (i.e., learner vs. non-learner) does not effect par-
ticipants amusement level over all collected data (M = 0.0123,
SE = 0.0157), t(23) = 1.714, p = .022 [5].

However, when we focus on the evaluation of round one only
without including the results of round two to avoid the ordering
effect, i.e. we divide our group in one control group (users hav-
ing watched the non-learning version first) and an experimental
group (users having watched the learning version first) with 12
participants each. Using the independent Student’s t-test shows a
significant effect that is also substantial (p = .02, d = 0.87, see
fig. 7) with regard to the gained reward. Comparing the averaged
amusement level over both rounds (see fig. 9) also shows an overall
significant difference (p = .03, d = 0.83) between those two groups
including the second round. We verified the variances to be ho-
mogeneous to satisfy the conditions for applying the independent
t-test.

4.2.3 User preferences. At the end of the study, we had explicitly
asked participants which version of the robot they preferred overall.
(Please note, that participants didn’t explicitly know how the two
versions differed). Surprisingly, most participants preferred the
version they experienced last (i.e., 54% preferred the robot they
experienced in the second round, 25% preferred the robot they
experienced in the first round, and the rest couldn’t tell which
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Figure 10: Overview of participants’ self-reports, ranging
from strongly disagree (1) to strongly agree (5). Error bars
denote 95% confidence interval.

version they really preferred). Figure 10 provides an overview of self-
reported data; i.e., results of the questionnaire, which we utilized
after each of both sessions to collect subjective data about how
participants perceived the robot’s performance.

In the next section, we discuss implications of the results, includ-
ing limitations our results may face.

5 DISCUSSION
In the beginning, we have argued that a shared sense of humor can
result in positive feelings and moments of bonding, and thus, social
robots would benefit from acquiring their human counterparts’

humor. We have also argued that robots should ideally acquire
user preferences in an unobtrusive manner through observing and
interpreting implicit user feedback, such as smiles. Despite being
a challenging task, if social robots were able to shape their own
humor and presentation style (e.g., how to include sounds and faces)
according to their users’ contextual requirements and moods, they
would ultimately improve their skills of engagement and possibly
also satisfy people’s hedonic needs of enjoying everyday life.

To this end, we have presented a social adaptation process based
on Reinforcement Learning and conducted a user study to explore
how our social adaptation process performs in a joke telling sce-
nario against a baseline condition in which a robot’s output (selec-
tion of jokes) is based on a random function. We have measured
amusement levels and asked for users’ preferences in order to asses
differences between both conditions. As a study setup, we have
chosen a within-subjects study, which would allow us to collect
repeated measurements from each participant.

Considering users’ preferences, we found that many of the study
participants preferred the robot they listened to in the last of two
subsequent sessions. The result was somewhat unexpected since
we counterbalanced the order of the two different robot conditions
(i.e., learner and non-learner) to prevent ordering and carry-over
effects. The data presenting amusement level/reward, which is a
non-subjective measure, provides some explanation for why partici-
pants started to prefer the second version of the robot. Considering
participants’ amusement level in each round and condition, Figure
7 shows clearly that participants’ amusement level did not change
across rounds.

This observation suggests, in retrospective, that choosing a re-
peated measurement setup might have been naive since the inter-
actions (i.e., telling jokes) and effects (i.e., positive emotions and
amusement) that we are targeting may have been of slow nature
and difficult to change in short periods of time.

Consequently, we addressed the carry-over effect, first by drop-
ping the data collected in the second round and analyzing the
remaining data as between-subjects data. Doing this, we were able
to show that robot condition (i.e., learner vs. non-learner) had a
main effect on amusement level and that the learning version of
the (same) robot achieved significantly higher levels in amusement
than one that doesn’t learn from its user’s implicit feedback. In
summary, this procedure allows to clearly eliminate any carry-over
effects and demonstrates that a robot can, based on our social adap-
tation approach, successfully acquire a users’ humor (in a joke
telling scenario) to such a degree that results in amusement level
will significantly increase compared to a baseline condition.

5.1 Lessons learned
5.1.1 The importance of first impressions. While collecting repeated
measurements have been problematic, there are still additional in-
sights and lessons learned to take away. For example, Figure 7 also
shows that amusement level was not only significantly influenced
by the starting condition (learner vs. non-learner) (see Figure 9)
but that the level stayed stable even when the robot changed its
behavior/strategy of selecting and presenting jokes, indicating that
in joke telling scenario the“first impression” of a robot is more
important than having a robot adapt later on. It seems, that the



good impression in the first session left by the learning version
of the robot made the users like the robot and the following non-
learning version was found almost equally good because of the
first perceived impression. On the other hand, when participants
experienced the non-learning version in the first session, it seems
to have left a worse first impression and, although in the second
session the robot changed its behavior and started to adapt to the
users’ preferences, the first impression seems to have dominated
participants’ opinion about the robot. This hypothesis is in line
with our study data, which show that in two out of three cases
the learning version made users laugh less when being the second
session (compared to only one out of six cases when being the first
session).

Consequently, applying the ability to adapt to the human prefer-
ences can be vain if users have already had a bad first impression of
the robot as mentioned above. This also shows that when trying to
adapt to humans’ preferences, the robot should not make too many
mistakes and find out their preferences as quickly as possible.

5.1.2 Learning and Reward Function. Our (average-based) reward
function, which uses both users’ smile and vocal laughter, was
successful, which we verified based on the data collected during
the study, showing that the learning robot developed a tendency
towards a specific action in contrast to the non-learning version. For
example, the percentage of action categories that were frequently
chosen (more than 7 times) was much higher for the learning robot
(see fig. 11).

During the study we perceived some additional findings that
are worth mentioning. The recognition of laughs and smiles was
very reliable (see Section 3.2, ∼ 80%). A crucial point is, however,
to determine when to take measurements as an indicator of the
user’s level of amusement. As seen in Figure 4, the interval that
was used for collecting the frames required for assessing the user’s
amusement, was statically predefined by the punchline as suggested
by Katevas et al. [9]. However, this interval sometimes turned out
not to optimally fit the user’s reactions to a particular joke, i.e. some
users also reacted before the interval, or right after the interval,
which resulted in a lower reward than it could actually have been.
In the worst case, they only reacted after the interval, where the
new action was already in progress because e.g. it took them a
while to understand the joke. Nevertheless, such shifts in expected
reactions did not happen often and this noise is likely overwritten
in subsequent learning steps.
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Figure 11: Percentage of frequently chosen action categories

5.1.3 Benefits of variation. As also indicated by participants’ pref-
erences and self-reports (see Figure 10; e.g., items The Reeti was
sympathetic and Robot’s faces were funny) the non-learning version
of the robot was sometimes perceived as funnier. We believe it is
because it varies its actions more drastically, which of course was
not the goal of the learning version of the robot. In contrast. the
learning version aims to continuously figure out, which action the
user prefers most, which may result in less variation in shorter
periods of time.

In a scenario that aims to entertain listeners, it seems that there
are benefits to plan additional moments of surprise and variety. The
data we collected has shown us that, a robot should leave a good
first impression by adapting to users’ sense of humor, but it also
indicated that later on there is no harm in integrating variations.

5.2 Limitations and future work
Our work faces some limitations and fellow researchers should
interpret results with some care. We have explored our social adap-
tation process utilizing a simple and predefined test scenario inside
a lab, and participants couldn’t, for example, explicitly interact with
the robot and some participants mentioned this lack of interaction
possibilities with the robot as a negative. The monotonous voice of
the robot was also mentioned as a reason for turning potentially
funny jokes unfunny and participants mentioned that some words
were not pronounced correctly, which made it harder for them to
perceive the robot as entertaining since participants felt that they
had to put more effort into understanding some jokes.

In our future work we aim to build on our results and explore
how we need to adapt our social adaption approach to address
requirements of more natural and interactive settings in which the
interaction space is not completely predefined and the robot has to
consider and react to interaction dynamics, including changes in
interaction possibilities and user needs over time.

6 CONCLUSION
In this paper, we presented a fully autonomous, real-time adaptation
approach solely based on social signals (smile and laughter) and
Reinforcement Learning in order to have a robot adapt to a single
user’s humor preferences without requiring him or her to give
explicit feedback.

We have demonstrated the feasibility of the proposed adapta-
tion approach utilizing a user study with a Reeti robot and 24
participants, in which we explored in an exemplary joke telling sce-
nario the adaptation approach’s performance. To this end, we have
collected (subjective) self-reported data and measured (objective)
amusement level of the study participants based on an advanced
social signal interpretation setup. Results of the user study have
shown that the proposed real-time adaptation approach performs
significantly better, considering achieved amusement level against
a baseline condition in which jokes were presented in a random
fashion. We have described in detail lessons learned, including the
importance of a robot to leave a good first impression by learn-
ing a user’s humor preferences in the beginning. We hope the
insights we provided, considering multiple dimensions will help fel-
low researchers in addressing future challenges in building humor
adaptive robots and human-robot interactions.
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