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Abstract: The utilisation of cell phone networks increases continuously, especially driven by the introduction of new
mobile services and smart phones. Network operators can follow two directions to deal with the problem:
either install new hardware or increase the efficiency of the existing infrastructure. This paper presents a novel
algorithm to improve the efficiency of current networks by allowing for a self-organised load-dependent recon-
figuration of antennas. The algorithm is capable of identifying hotspot traffic, assigning this to a neighbouring
cell, and learning the best strategy at runtime. This leads to a self-improving intelligent control mechanism.
The simulation-based evaluation results demonstrate the potential benefit, while simultaneously keeping the
hardware’s deterioration at a comparable level.

1 INTRODUCTION

Wireless cellular networks are growing rapidly. Cisco
estimates that the overall mobile traffic in 2017 will
reach 11.2 exabytes per month, which is 13 times
more than it was in the year 20121. As a result, net-
work operators have to increase the capacity of their
networks significantly. Since new hardware installa-
tions are costly, intelligent control mechanisms and
means to optimise the utilisation of existing infras-
tructure are necessary. Such an approach is investi-
gated by this paper.

Typically, the load within a cell phone network
such as LTE (Long Term Evolution) is not homo-
geneously distributed – instead, it is subject to spa-
tial and temporal variations (Willkomm et al., 2009).
While some cells are overloaded at one point of time,
they can be lightly loaded at some other point of time.
For instance, this can be observed in office areas,
where heavy traffic load appears at working hours
followed by light usage at other times. Such an un-
even loading can also be observed among neighbour-
ing cells at the same point in time. The approach pre-
sented in this paper provides a solution that balances
the load among neighbouring LTE cells without the
need of major hardware modifications of the antennas



collected2. The simulation-based evaluation showed
that employing a combination of antenna power and
tilt optimisation does not lead to significantly better
performance than just optimising the tilt.

Furthermore, the work in (Deruyck et al., 2013)
demonstrated that decreasing transceiver power re-
sults not necessarily in a significant decrease of the
antenna’s overall power consumption. Another at-
tempt to optimise the cell network’s efficiency has
been presented in (Du et al., 2002): A genetic algo-
rithm has been used to determine size and shape of
cells. Thereby, antenna gains are optimised in each
direction to find a trade-off between minimising the
overall base station power consumption and maximis-
ing the capacity. Besides cell shapes, so-called cell-
zooming has been investigated in (Niu et al., 2010).
The concept relies on switching inactive cells off,
which results in saving energy due to a concentration
among only few necessary cells. Simulations carried
out here show that about 30 to 50% of the base sta-
tions can be switched off without loss of functionality
– but a transfer to UMTS or LTE networks is missing.

More focussed towards the algorithm presented in
this paper, (Awada et al., 2011) investigates the usage
of Taguchi’s Method (Weng et al., 2007) for the op-
timisation of uplink power, antenna tilt and azimuth.
Simulation results showed that an offline optimisation
converges faster than approaches using simulated an-
nealing (Kirkpatrick et al., 1983) in most cases. Sim-
ilarly, (Razavi, 2012) focuses on the antenna tilt as
optimisation parameter by using the golden section
search algorithm to find an optimised angle, followed
by frequent explorations to fine-tune it. The results
for a homogeneous traffic distribution show that the
optimal antenna tilt is rather large, so this method con-
verges fast. In (Kim et al., 2012), the authors model
a mobile network as a M/G/1 queue and introduce
a distributed algorithm to optimise parameters such
as the throughput of the network. The algorithm is
shown to converge fast towards the searched optimum
but has not been applied to UMTS or LTE networks,
yet. Similarly, the authors in (Fehske et al., 2013)
model a LTE network as a M/M/1 queue and intro-
duce a centralised algorithm to optimise handover pa-
rameters and antenna tilts. A system-level simulation
shows that it is able to improve user throughput even
during low-traffic times. In further work, e.g. (Razavi
et al., 2010), reinforcement learning techniques are
applied to improve coverage and capacity aspects.

The approach presented in this paper is different



dio waves are influenced e.g. by obstacles and the
atmosphere. When a radio wave impinges an ob-
ject, it can pass through it, be absorbed, or it can
be reflected, scattered (i.e. reflection to multiple di-
rections) or diffracted (Dean, 2009). Wireless sig-
nals can follow multiple paths (multipath character-
istic) – it is therefore difficult to predict the exact
behaviour. However, this can be approximated by
combining pathloss, shadow fading, and fast fading
(Ghosh et al., 2010). Pathlossmeans the damping that
occurs in relation to the distance passed by the signal
and can be approximated (in dB) for macro cells in
urban area as follows (3GPP, 2012b):

L(R) = 40× (1− 4× 10−3×Dhb)× log10(R)
−18× log10(Dhb)+ 21× log10( f )+ 80 (1)

where R is the distance between the base station and
the UE (in km), f is the carrier frequency (in MHz),
and Dhb is the height of the base station above aver-
age rooftop level (in m).

The pathloss model described above assumes that
the damping is constant for all paths. This assumption
does not hold for all cases: While some paths suf-
fer increased loss (e.g. due to buildings), others are
less obstructed. This effect is called shadow fading
(Dean, 2009) and can be critical on cell edges and
create coverage holes. Models for shadow fading use
a log-normal distribution (Ikuno et al., 2010). Hence,
the combined effect (L in dB) of pathloss and shadow
fading can be expressed as: L = L̄+ X , where L̄ is
the mean pathloss, and X is a normal distributed ran-
dom variable with a mean of 0 and a standard devia-
tion of 10 (3GPP, 2012b; Ikuno et al., 2010). Due to
changes in the topology and vegetation, shadow fad-
ing changes over time (Wang, 2007). Contrary to in-
tuition, rain, fog and snow have only a negligible ef-
fect on signal damping (Wang, 2007).

Antenna tilt and azimuth (i.e. the angle between
the antenna’s main beam and the vertical pane) have
also impact on the signal damping. Decreasing the
vertical angle between UE and the eNodeB (the par-
ticular E-UTRAN Node with the considered antenna)
– in comparison to the angle with maximum gain di-
rection – will also lead to a decrease in the signal
damping. The gain of antenna power in a given direc-
tion is contrary to an antenna that radiates equally in
all directions (isotropic radiator) (Hill, 1976). Taking
this into account, the received power can be estimated
as follows (3GPP, 2012a):

RXPWR = TXPWR−max(L−GTX −GRX ,MCL) (2)

where RXPWR is the received power, TXPWR the trans-
mitted power, L the pathloss, GTX the transmitter an-
tenna’s gain, GRX the receiver antenna’s gain, and

MCL the minimum coupling loss (which is defined
as 70dB for urban areas). Temporary anomalies that
may disturb the radio wave propagation (i.e. tropo-
spheric ducting) are neglected in the context of this
paper. The algorithm presented in the following con-
siders this physical model.

4 DYNAMIC ANTENNA
RECONFIGURATION

This section describes the distributed algorithm for
the optimisation of congested cells. It reconfigures
antenna tilts such that possible hotspots are shifted
from the coverage area of the congested cell to the
coverage area of a neighbouring (underutilised) cell.
Down-tilting should lead to a decrease in the covered
area and vice-versa – due to physical and weather
conditions, this is not always the case. Therefore, the
algorithm is based on estimating the achieved success.
This is combinedwith reinforcement learning concept
to improve this behaviour at runtime.

The basic idea of the algorithm is to deal with the
existing hardware and to operate without changes in
the LTE specifications. Important mechanisms are
already available: 1) antenna tilts can be changed
with Remote Electrical Tilt (RET), 2) the discovery of
neighbours can be done with Automated Neighbour
Relation (ANR) (3GPP, 2012b), 3) the communica-
tion between neighbours is implemented using the X2
interface (3GPP, 2012a), and the positioning of users
is supported by LTE (Iwamura et al., 2009).

The algorithm for online antenna tilt optimisation
consists of five parts: the basic algorithm is respon-
sible for optimising the mapping of UEs to eNodeBs
(Part 1: Optimisation). This requires further aspects:
the identification of hotspot traffic that fulfils the re-
quirements to be handled as a cluster by the algorithm
(Part 2: Identification), a method to select a neigh-
bouring cell to relieve the cluster to (Part 3: Neigh-
bour Policy), a mechanism to learn from previous ex-
periences (Part 4: Learning), and finally a measure to
quantify the similarity of two clusters (Part 5: Simi-
larity). The remainder of this section introduces these
five parts in detail and discusses the possibilities and
limitations of the approach.

4.1 Part 1: Optimisation

The optimisation part of the algorithm aims at reliev-
ing clusters. Therefore, it analyses data collected in
previous runs and data provided by the exploration
part (see Section 4.3). This analysis leads to a pre-
diction of which neighbour should be tilted up. If no
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such data exists for the analysis, the algorithm uses
heuristics to generate the prediction. In order to keep
the configuration chosen by the operator as static as
possible (i.e. apply as few changes simultaneously as
possible), only one neighbour is taken into consider-
ation in each step. The following Algorithm 1 is exe-
cuted for each eNodeB.

In Algorithm 1, the variableCelli is the particular
cell maintained by the antenna. The parameter Deg
defines the number of degrees an antenna is tilted and
can be adjusted by the operator – it should be small
to prevent large deviations from the initial configu-
ration. The policy PiCluster defines which cluster is
to be processed – a simple policy is to select a clus-
ter that is located as far as possible from the serv-
ing eNodeB. Thereby,CL is the currently investigated
cluster. CandNeighbour specifies the set of possible
neighbouring cells to apply hotspot traffic to and Ns
is the currently investigated neighbour out of this set.
Finally, Fiti estimates the performance (or fitness) of
the cell before tilting, Fits estimates the performance
after the last tilt change has been applied.



the algorithm selects a neighbour randomly or accord-
ing to heuristics. Afterwards, informationwhether the
tilt change led to a relief of a cluster or not (based on
the performance estimation) is collected. The more
UEs switched from the cluster to a non-congested
cell, the better is the quality of the tilt change. This
can be formalised as follows:

q= |Ub|− |Ua| (3)
with q being the performance function,Ua the set

of UEs served by the particular overloaded antenna
before the tilt changes have been applied, |Ua| the
number of UEs contained in this set, and Ub the set
of UEs served by the particular overloaded antenna
after the tilt change. While running, the algorithm
collects the qualities of tilt changes and stores them
as quadruples containing cluster information, neigh-
bour to cooperate with, quality of the tilt change and
time. To decide which neighbour should be tilted up
for a given cluster, the qualities of tilt changes for all
UEs are combined using the beta distribution density
function. Especially in the context of deriving repu-
tation values for participants in e-commerce systems,
the beta distribution density function is used due to its
simplicity as well as solid mathematical foundations
(Josang and Ismail, 2002).

In the context of this paper, the beta distribution
approach is used to predict to which extend tilting up
of an antenna will relief a cluster. Therefore, previ-
ous data about tilt changes has to exist. Assume we
want to determine whether tilting up of a neighbour
N j will relieve a cluster CLi. We already collected
historical data to what extend tilting up of N j relieved
a previously observed similar cluster CLi. First, we
set the two parameters as needed for the distribution
function α and β to a predefined constant value larger
than one. We know due to the properties of the beta
distribution PDF that the modus is at 0.5. So we as-
sume 0.5 to be a neutral value. Afterwards, we iterate
through the historical data. Each time an indication
occurs that a tilt change of N j relievedCLi, we incre-
ment α. In contrary, each time an indication occurs
that a tilt change of N j did not relieve CLi, we incre-
ment β. Due to the properties of the beta distribution
PDF, we know: When α is larger than β, the modus
increases (and vice-versa). Hence, if there are more
positive indications than negative ones, the modus is
larger than 0.5. For further improvements, the incre-
ments can also be weighted by the quality of the par-
ticular tilt changes. The larger the absolute difference
is, i.e. |α−β|, the larger is the absolute value of the
difference between the modus and 0.5. Hence, we can
estimate the probability p that tilting up of N j will re-
lieveCLi by calculating the absolute difference of the
x-coordinate of the maximum and 0.5.

We observe that the bell shaped curve becomes
broader with decreasing values of α and β and nar-
rower with increasing values of α and β. Hence, the
value of the p%-quantile is used with a small value for
p instead of the modus. If p is small enough, then the
p%-quantile is smaller than the modus – if the modus
is larger than or equal to 0.5. With larger values forα and β, the distance between p%-quantile and the
modus decreases.

By omitting the normalisation factor of the origi-
nal beta distribution function, the computability can
be improved. The result is given in the following
function:

f (p,α,β) = Pα−1× (1− p)β−1 (4)

for an interval [0;1] with 0≤ p≤ 1, α> 0 and β> 0.
Thereby, f is the distribution function, α and β the
weighting factors and p a constant.

4.5 Part 5: Similarity of Clusters

The approach as presented before relies on previous
experiences with similar clusters of hotspot traffic.
This implies the possibility to compare clusters and
to store information about clusters. In an ideal case,
two clusters will consist of users at exactly the same
positions at different points of time. In reality, this
will not happen.

Assume we have two clusters c and c0 occurring
at two different points of time. When the positions
of the UEs in c and c0 only slightly differ, we define c
and c0 as similar. Then e.g. experienceswith c0 can be
used to predict an eNodeB for tilting up to relieve c.
To compare two clusters we use a modified Fowlkes-
Mallows index (Fowlker and Mallows, 1983):

FM =

√



Table 1: Simulation parameters.



Table 2: Simulation results for the optimisation algorithm for 6 and 15 UEs per eNodeB additionally to the clusters.



homogeneously.
Furthermore, the presented algorithm does not

consider the demanded QCIs and throughputs of dif-
ferent users. Real user data is needed to verify
whether there are clusters of users who need a high
throughput (e.g. privileged users) and clusters of users
who do not need a high throughput. In combination
with handover parameters, the scheduling algorithm,
MIMO transmission techniques and other parameters,
the optimisation might be even more successful.
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