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LOCAL AND GLOBAL NULL CONTROLLABILITY OF
TIME VARYING LINEAR CONTROL SYSTEMS

F. COLONIUS AND R. JOHNSON

ABSTRACT. For linear control systems with coefficients determined by
a dynamical system null controllability is discussed. If uniform local
null controllability holds, and if the Lyapounov exponents of the homo-
geneous equation are all non-positive, then the system is globally null
controllable for almost all paths of the dynamical system. Even if some
Lyapounov exponents are positive, an irreducibility assumption implies
that, for a dense set of paths, the system is globally null controllable.

1. INTRODUCTION

The purpose of this paper is to study the local and global null controlla-
bility of the family of linear control systems

' = A(Ty(w))z 4+ B(Ti(w))u (1)
r€R? welU CR™, U compact convex '
where the coefficients A(T;(w)) € R™*™ and B(Ti(w)) € R™*™ are deter-
mined by a dynamical system 7T; : Q@ — Q (¢ € R) on a compact metric
space 2. We assume that an ergodic measure y on 2 is given and that the
results of interest may only hold on a set {w} with p-probability 1. The
variables x and u represent, respectively, the state and control of the sys-
tem. The control function u(-) will be assumed to be a measurable map
of R into U. The linear control system is driven by the dynamical system
{T;} which is not influenced by the control system. It can be interpreted
in a variety of ways. For example, if the coefficients are almost periodic
functions of ¢, a classical construction in the theory of differential equations
yields the system {7}} as the shift on the closure  of the set of translates
of the coefficient functions in the space of continuous functions.

We devote special attention to control problems where only the ampli-
tudes of time varying perturbations in the coefficients are known:

@ = A(w(t))x + B(w(t))u
re€R” uweUCR™ weW CR~

Here U is a compact convex set containing the origin. In regard to the
values of the coefficients A and B, we assume that {(A(w), B(w)) | w € W}
is bounded in R™"*"xR™*". Systems of the form (1.2) can be reformulated as

(1.2)
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330 F. COLONIUS AND R. JOHNSON

systems of type (1.1); see Section 2 below. The quantity w can be interpreted
as a background noise which influences a reference control system

2’ = A{wg)x + B(wo)u

via the perturbation terms A{w) — A(wg) and B(w) — B(wg). We can re-
gard w(-) as a typical path of a stationary ergodic process {w;} with val-
ues in W. The stability properties of the homogeneous equations =’ =
A(w(t))z, w(-) € W, have been studied in [3], see also the survey [2]. Here
the sets of Lyapounov exponents and the corresponding initial points have
been characterized.

Our goal in the present paper is to prove local controllability results which
are uniform in the path w(-), then to prove global controllability statements
which hold for almost all paths w(-) (see § 2 for the definitions of local and
global null controllability). Such results have been proved previously by
Johnson and Nerurkar [7, 8] when the stationary ergodic process satisfies
a uniform recurrence assumption. The main point here is to relax this
assumption. We will instead impose the hypothesis that the hull (see § 2)
Q of the stationary ergodic process {w;} is the topological support of an
ergodic measure u. This hypothesis is very natural in the present context:
it leads to no restriction on the class of systems (1.2) which we can study,
and avoids the uniform recurrence assumption.

Under this hypothesis we will prove the following results.

(i) Uniform local null controllability holds over € if it holds for at least
one point in each minimal subset of €.

(ii) If uniform local null controllability holds, and if the Lyapounov expo-
nents of the homogeneous equation 2’ = A(w(t))z are all non-positive,
then (1.2) is globally null controllable for almost all paths w(-).

(i) Even if some Lyapounov exponents are positive, an “irreducibility”
assumption implies that, for a dense set of paths w(:), the process
(1.2) is globally null controllable.

The paper is organized as follows. In § 2 we repeat some basic definitions,
including those of local and global null controllability. We also review the
“randomization” procedure by which the stationary ergodic process {w(?)}
is identified with a topological dynamical system. This construction permits
the application to (1.2) of various techniques of topological dynamics. In
fact such tools will be applied in § 3, where we study (uniform) local null
controllability, and in § 4, where global null controllability is treated.

We wish to note that Baranova [1] has published a proof of our Theo-
rem 4.5 regarding the global null controllability of (1.2) when the Lyapounov
exponents of the homogeneous equation are non-positive.

2. PRELIMINARIES

We begin by considering the control process (1.2) for a fixed measurable
function w : R — W, so that the coefficients A(w(t)) and B(w(t)) are
bounded measurable functions of ¢.

DEFINITION 2.1. (a) A point z¢ € R™ can be steered to zeroin time T > 0

by the process (1.2) if there is a measurable control function w : [0,7] = U
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NULL CONTROLLABILITY OF TIME VARYING LINEAR CONTROL SYSTEMS 331

such that the solution of the initial value problem
T Alw(t))z + B(w(t))u
33(0) = 2y

satisfies (T) = 0.

(b) The process (1.2) is said to be locally null controllable if there exists a
neighborhood V of zero in R™ such that each zg € V can be steered to zero
in some finite time 7" > 0.

REMARK 2.2. In Definition 2.1 (b) the time 7" may a priori be a function of
xg € V 1 T =T(2¢). However the convexity of U and the fact that 0 € U
can be used to show that, if 2.1 (b) holds, then there is a neighborhood V;
of 0in R™ and a fixed time 77 > 0 such that each zg € V| can be steered to
zero in some finite time T}. See, e.g., [7, Corollary 2.7].

Next we briefly discuss the randomization process; see e.g. [6] for more
details. For each path w(-) of the stationary ergodic process, consider the
pair

w = (A(w(")), B(w(:))) € L= (R, R™"™) x L= (R,R"*™).
Define
Q =cls{w | w(-) is a path of {W¢}},
where the closure is taken with respect to the product of the weak-* topolo-
gies on L(R,R™*™) resp. L>=(R,R"*™). It follows from our assumption
that {A(w), B(w) | w € W} is bounded in R"*" x R"*™ that € is compact.
Moreover € is invariant under shift flow defined by

(Tw)(s) =w(t+s5)  (w€tseR).

The pair (£2, {T}}) defines a topological flow, or continuous dynamical sys-
tem, because the map 7: Q@ x R — Q: (w,t) — Tw is continuous.

Next let W be the path space of the stationary ergodic process {W;},
and let 1 be the corresponding probability measure on W. Let 2 : W — :
w(-) = w be the natural map, and let & be the image measure on 2. Then u
is a Radon measure on € which is ergodic with respect to the flow (Q,{7}})
[6].

CONVENTION 2.3. We redefine 2 to be the topological support of the mea-
sure fi.

This convention clearly entails no loss of generality if one is interested in
properties of the control process (1.2) which are valid for almost all paths

w(-).

We now consider the family of control processes
' = A(Ty(w))z + B(Ty(w))u (2.1),
where w ranges over €2. Here we have abused notation and written
AT) = A(w(t),  BTi@)) = Blw(b)).

Of course one can write down bounded Borel functions A : © — R"*",
B : Q — R™™ ™ such that, for each w € Q, equation (2.1), coincides with
(1.1) with path w(-). However for present purposes we can simply identify
t — A(Ty(w)) resp. t — B(Ti(w)) with the first resp. the second component
of w € L (R,R™™) x L= (R, R™™).
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332 F. COLONIUS AND R. JOHNSON

We emphasize that, in what follows, the only hypotheses on €2 which

we will need are: (i) that it is weak*-compact and translation invariant in
L¥(R,R™™) x L>®(R,R™*™); (ii) that it is the topological support of the
ergodic measure f.
DEFINITION 2.4. The family of control processes {(2.1)_ | w € Q} is said to
be uniformly locally null controllable if there is a T' > 0 and a neighborhood
V of 0 € R™ such that each 29 € V can be steered to zero in time 7" by the
process (2.1), (w € Q).

In § 3 we will study the concept of uniform local null controllability. We
will use a theorem of [7] which we now recall.

DEFINITION 2.5. The flow (Q,{7}}) is called minimalor uniformly recurrent
if every orbit {T}(w) | t € R} is dense in Q (w € Q).

An equivalent definition is that the only nonempty compact invariant
subset of Q is Q itself. See [5] for a detailed discussion of the theory of
minimal sets. It is easy to see that, since €2 is the topological support of the
ergodic measure y, the orbit {T3(w) | t € R} is dense in Q for p-a.e. w € Q.
However minimality is a much more restrictive condition.

The result of [7] which we will use is the following (Theorem 2.10 of [7]).

THEOREM 2.6. Suppose that the flow (Q,{T}}) is minimal. Suppose that the
process (2.1),, is locally null controllable for a single point wy € Q. Then
the family {(2.1) | w € Q} is uniformly locally null controllable.

3. LocAL NULL CONTROLLABILITY

We study the family of control processes (2.1),, where € is the topological
support of an ergodic measure . Our goal is to generalize Theorem 2.6 to
this situation.

Our starting point is a result of Barmish-Schmitendorf, which also began
developments in [7]. For asubset U of R™ the support function Hyy : R™ — R
is defined by

Hy(a) = sup{<a,u>|u e U},

where <, > denotes the Euclidean inner product on R™. Let A : R — R"*"
and B : R — R"*™ be locally integrable matrix functions, and consider the
control process

' = A(t)x + B(l)u. (3.1)

Here the control function w : R — U is any measurable U-valued function.
The set U is assumed to be compact and to contain 0 € R™.

THEOREM 3.1. [13] The following are equivalent.

(a) The process (3.1) is locally null controllable.
(b) There exists € > 0 such that

/Ooo Hu(B*(s)2"(s)) ds > ¢,

where B* is the transpose of B and z*(t) is any solution of the adjoint
system z' = —A*(t)z such that || z*(0) || = 1.
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NULL CONTROLLABILITY OF TIME VARYING LINEAR CONTROL SYSTEMS 333

REMARK 3.2. It follows from the Barmish-Schmitendorf proof of Theorem
3.1 that, if € > 0 is a number for which 3.1 (b) holds, then each zo € R”
with || zg || < €/2 can be steered to zero by the process (3.1).

Now we can state and prove the main result of this section. Asin the first

two sections of the paper, U C R™ is a compact convex subset containing
the origin. We consider the family of control processes

o' = A(Ty(w))x + B(Ti(w))u (3.2)y
where w ranges over (2.
THEOREM 3.3. Suppose that each minimal subset M C Q contains a point

wo such that the process (3.2),, is locally null controllable. Then the family
{(3.2) | w € Q} of control processes is uniformly locally null controllable.

Proof. First note that, by Theorem 2.8, the conclusion of Theorem 3.3 holds
over every minimal subset M C Q.

Suppose now for contradiction that there exists w € Q such that (3.2),
is not locally null controllable . By Theorem 3.1 there exists a sequence
{z(0)} of vectors of norm 1 in R" such that the corresponding solutions
zn(t) of the adjoint equation 2/ = —A*(T}(w))z satisfy:

/Ooo Hy(B*(Ty{w))z; (1)) dt < %

Passing to a subsequence and using Fatou’s Lemma (note that Hyy > 0 since
0 € U), we conclude that there exists z*(0) € R™ of norm 1 such that, if
z*(t) is the corresponding solution of the adjoint equation:

/000 Hu (B*(Ty(w))2* (1)) dt = 0.

Next let t, — oo be a sequence such that 7}, (w) converges to a point &
in a minimal subset of €2. Elementary arguments of topological dynamics
[5] show that such a sequence exists. We have

0 = [ @e)s o)
0
tn o0

= Hy(B*(Ty(w))=" (1) dt + [ Hu(B*(Ty(w))="(1)) dt

> /O  H (B (T, ()25 + 1)) dt.

Hence writing w,, = T}, (w):

0= / Hor(B*(Ty{wn))Za (1)) dt (3.3)
0
where Z,(t) is the solution of the adjoint system 2z’ = —A*(T4(w,))z which
satisfies z,,(0) = M
[[2=(t)l

Passing to a subsequence, we can assume that z,, (O) converges to a point
(0) € R”™ of norm 1. Let Z(t) be the solution of the adjoint equation
"= —A*(T;(®))z with initial condition z(0). We cannot apply Fubini’s

[o.@]

theorem directly to (3.3) to conclude that / Hy (B*(Ty(@))z(t)) dt =0

0
Esaim: Cocv, NOVEMBER 1997, VoL. 2, PpP. 329-341

Z
Z



334 F. COLONIUS AND R. JOHNSON

because it is not clear that Hy(B*(Ti(w,))z.(t)) converges pointwise to
Hy(B*(T4(@))z(t)). However we can apply the theory of measurable selec-

tions [4]. Write b, (1) = B(Ty(wy)), b(t) = B(Ty(&)), and choose T > 0. We
have first of all:

0 = / Hy (b5 (1)3, (1)) dt = /OTsup <a, b (O)Za(t) > dt

aclU

> sup/ u(t), b (OZ(1) > di

wu€U JO
where U is the set of all measurable mappings u : [0,7] — U. Hence

/T W), 0 (0F()> dE <0 (ueld),

Now use the compactness of U, the uniform convergence of z,(t) to z(t)
on [0,T], the uniform boundedness of {7}, and the weak-* convergence of
b> to b* to obtain

02/T ()b*()zn()>dt—>/ <u(t), b (1)Z(t) > dt

for each u € U. Hence using measurable selection theory [4]:

T T
0 > Sup/ W), ()F () > di = /Osup<ab*()()>dt

uEU acl
= / Hy (b*(t)3(t)) dt > 0,

and since this holds for every T' > 0 we get

/OOO Ho (B (Ty(@))3(1)) dt = 0.

This contradicts Theorem 3.1 and the Theorem 2.10 of [7] referred to above.
Hence (3.2),, is locally null controllable for each w € €.

We remark that the proof of Theorem 2.10 in [7] tacitly assumes that
B is continuous as a function of w. To generalize the proof to the case of
the measurable B considered here requires only the use of the measurable
selection theorem as just illustrated.

We finish the proof of Theorem 3.3 by proving the wuniform local null
controllability. For this we use Remarks 2.2 and 3.2: it suffices to find ¢ > 0
such that, for each w € Q and each solution z*(¢) of the adjoint system

= —A*(Ty(w))z with [|z*(0)]] = 1, there holds

/000 Hy(B*(Ty(w))z™(t)) dt > e.

Assume for contradiction that there are sequences {z:(0)} C R™ of norm
1 and {w,} C Q such that [° Hy(B*(Ti{wn))z*(t))dt < 1/n. Passing
to convergent subsequences and using the measurable selection theorem as
above, we can find & € Q and zZ(0) € R™ of norm 1 such that, if Z(¢) is the
corresponding solution of 2/ = —A*(T}(&))z, then

/0 " Hy (B (TE)E) de = 0.
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NULL CONTROLLABILITY OF TIME VARYING LINEAR CONTROL SYSTEMS 335

But then (3.2)g is not locally null controllable, and this contradicts the first
part of the proof. So Theorem 3.3 is verified. O

4. GLOBAL NULL CONTROLLABILITY

Consider for a moment the initial value problem
¢ = All)x 2z eR”

where A(t) is a locally-integrable matrix function defined on R. Letting
x(t, zg) be the corresponding solution, the Lyapounov exponent is given by

—1
Aro) = T 7 n [ (t, o) |
Of course this definition can be applied to each equation in the ergodic
family
' = ATy (w))z (4.1)
where w ranges over €. The well-known theorem of Oseledec [10] states that,
for pra.e. w € €2, there are finitely many Lyapounov exponents Ay,..., Ar

where & < n and the exponents do not depend on w. Furthermore there is
a measurable decomposition of the product bundle € x R"”

AQxR"=Vig-- Vg

into invariant measurable subbundles Vi, ...V} where (w,zg) € V, if and
only if either zg = 0 or limy 1o ¢t~ n || 2(¢; 2o, w) || = A, See [10, 9] for
details.

Next we review a basic construction which will be useful in developing
our theory. Write ®(w,t) for the n x n matrix solution of (4.1) which is the
n X n identity at ¢t = 0. We note that, by a convenient smoothing trick due
to Ellis [5], there is a change of variables z = Py (T}(w))y with continuous
invertible coefficient function P : @ — R™*"™ such that the transformed
coefficient matrix

dP;

PrYAP, — P;ld—tl
is a continuous function of w. The introduction of such a change of variables
clearly has no effect on the local or global controllability properties of the
processes (3.2),. So we can and will assume WLOG that A : Q — R"*"is a
continuous function. (However B cannot be made continuous in this way).
Turning to the promised construction, let ¢ be an element of the orthog-

onal group O(n). We can use the Gram-Schmidt procedure to write
P(w,t) =Gw, g, 1) Fw,g,t)

where G'(w, g,t) € O(n) and F(w, g,t) is a triangular matrix with zeros above
the main diagonal and positive diagonal entries. Write z = (w, g) € QxO(n).
Using the “cocycle identity” ®(w,t,s) = ®(T;(w), s)P(w, ), one checks that
the maps T} : z = (w,9) = (Ty(w),G(w, g.1)) define a flow on Q x O(n).
Furthermore the continuous matrix function
d

e(z) = %E(z,t) .
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336 F. COLONIUS AND R. JOHNSON

is lower triangular, and F/(z,t) is the n X n matrix solution of

= e(Ty(2))x (4.2)

which satisfies F/(z,0) = I. See [9, 8].
Next let 7 : 2 x O(n) — Q: (w,g) — w be the natural projection. Let
wo € Q be a point whose orbit {Ti(wg) | t € R} is dense in Q, and let

go € O(n). Then the orbit closure Z; = cls {T¢(wo,g0) | t € R} has the
property that 7(7;) = €. Let v be a Radon probability measure on 7,

which is ergodic with respect to {Tt} and whose image 7(v) = pu; such a
measure always exists. Define 7 to be the topological support of v.
We can lift the family (3.2), to a family of processes on Z by simply

defining A(z) = A(n(2)), B(2) = B(x(z)). Define P: Z — O(n): P(z) =g
if z= (w,g). Introduce the orthogonal change of variables

r=P(T(z))y
in the family (3.2), lifted to Z. The result is

y' = e(Ty(=)y + b(T(2))u (13)
where e(+) is the function introduced above and b(z) = P~1(z )é(z) Clearly
the local/global null controllability properties of the process (4.3) are the

same as those of the process (3.2), with w = 7 (2).
We proceed to analyze the family of processes (4.3). The first step is to
state the following ergodic theoretic result, proved by Schneiberg [14].

THEOREM 4.1. Let f € LY(Z,v) be a function such that J; fdv =10 and let
€ > 0. Then for v-a.e. z € Z, there is a sequence ty, — oo (which depends

on z) such that
te
‘/ f(Ts(2)) ds| < ¢
0

We will use the following variant of Theorem 4.1.
PROPOSITION 4.2. Let [ € L'(Z,v) be a function such that [, fdv < 0.

Let 7 be the set of z € Z such that given ¢ > 0, T'> 0, and k > 1, there are
J

numbers (Q; > T such that, if So =0 and S; = ZQ“ then
1=1

Q.
[ @< nsish
Thenv(g)zl.

Proof. The statement of the Proposition follows from the Birkhoff ergodic
theorem if [, fdv < 0. If [, fdv = 0, we fix ¢, T and k, and we use

Theorem 4.1 to choose (); > T such that ‘fo ds‘ < €/2 for all
1 <5 <k; here z € Z and S;i=i+--+Q;. ThlS 1mphes the statement
of Proposition 4.2 for each z € 7 and completes the proof. Il

Now we return to the family of processes (3.2), and to the Lyapounov
exponents Ay, ..., Ar of the ergodic family (4.1); recall that these exponents
are constant p-a.e. We will show that, if these exponents are all non-positive,
Esaim: Cocv, NOVEMBER 1997, VoL. 2, pPp. 329-341
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and if the family (3.2),, is uniformly locally null controllable, then (3.2),, is
globally null controllable for p-a.e. w € Q. That is, we will find a set Q. C Q
with £1(€2.) = 1 such that, if w € €., then each vector 2y € R™ can be steered
to zero by (3.2),. (The time 7" which it takes to steer z¢ to zero may depend
on w and zq.)

First let e;; (1 < 4,7 < n) be the entries of the matrix function e : 7 —
R™*™, thus ¢;; = 0 if ¢ < j. It is known (e.g., [9]) that the Lyapounov
exponents Ay, ..., A, are given by the mean values of the diagonal elements
e;; of e with respect to v; therefore

/ eii(z)dv(z) <0 (1 <i<n).
Z

Let Z be the set of z € Z for which the conclusion of Proposition 4.2 holds
foreach 1 <i < m,andlet 7, = ﬂ{fn(Z) |n=1,2,3,...}. Thenv(Z,) =1,
and therefore Q. = 7(Z,) is py-measurable and p(2.) = 1. We will show
that (3.2), is globally null controllable for each w € Q..

We prove a preliminary steering lemma. Let us say that a vector xg € R”
can be w-steered to another vector 1 € R™in time 7" if there is a measurable
control u : [0,7] — U so that the solution z(t) of

v = A(Tyw))x + B(Ty(w))u
CL’(O) = T,
satisfies 2 (7T') = z,.
LEMMA 4.3. Let w € Q. If a vector xg € R™ can be w-steered to a vector

xy, in time Ty, and if x1 can be Ty, (w)-steered to x4 in time Ty, then xy can
be w-steered to x4 in time Ty + T5.

Proof. Let uy and uy be admissible controls which steer zg to x7 and z to
x9 respectively. Then the control

'u,(t) _ ul(t) 0<t<T,
up(t —=Ty) Ty <t <Ti+Ty,

will w-steer zg to x5 in time T + T5. O

We now prove

LEMMA 4.4. Suppose that the family of control processes {(3.2), | w € Q} is
uniformly locally null controllable (see § 3). Let z € Z.. There exists ¢ > 0
such that, for each a,vys, ..., y, € R with |a| > 2¢, the vector (a,yz, ..., yn)"
can be z-steered to a vector (b, vy, ..., v,)" with |b] < |a| — €.

Proof. 1t is clear that the family of control processes (4.3) is uniformly locally
null controllable. Choose € > 0 such that each vector y of length ||y|| < 3¢
can be z-steered to 0 for each z € 7.

Fix z € Z., and let W,(t) be the matrix solution of the homogeneous
system (4.2)

~

en(Ti(z))
Y =e(Ty(z)y = % 0 y
enn(T4(2))
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338 F. COLONIUS AND R. JOHNSON

satisfying W.(0) = I = n X n identity matrix. The solution of (4.2) with

initial condition (a,yz,...,¥y,)" has the form
aexp fg ell(fs(z')) ds

y2(t)

Yn(?)
Using Proposition 4.2, we can find a time 7% > 0 such that

n o
(|a| — 2¢) exp/ e11(Ts(2)) ds < |a| — e. (%)
0

Consider the control problem (4.3) with initial condition (£2e¢,0,...,0)"
where the sign is the negative of sgn a. There is a time 7} > 0 and a control
uy : [0, T] — U such that the solution y(t) of (4.3) with this initial condition
satisfies y(77) = 0. We can assume that T < T5.

Next we write

a a+ 2e +2¢
Y2 Y2 0
) = ) + :
Yn Yn 0
where again the sign is the negative of the sgna. If y(t) is the solution of the
problem (4.3) with initial condition (a, ya,...,y,)" and control u(t) defined

by

. ul(t) OgtSTl
=99 7
1< t S T27

then y(7%) has the form
(a £ 2¢) exp f0T2 e1(T5(2)) ds

g(TQ) — gQ (T2) 3

gn (T2)
where we have used the variation of parameters formula. Using (x), we see

that the first component of y(73) has magnitude less than |a| — e. This
completes the proof of Lemma 4.4. L

We now prove

THEOREM 4.5. Suppose that the Lyapounov exponents of the process (3.2),
are non-positive and that the process is uniformly locally null controllable.
Then for every w € Q., the process (3.2), is globally null controllable.

Proof. 1t suffices to prove that, if z € 7, is a point such that 7(z) = w, then
the process (4.3) is globally null controllable.

As in the proof of Lemma 4.4, choose ¢ > 0 such that each vector y €
R"™ of length less than 3¢ can be z-steered to zero. Fix an initial vector
¥ = (a,*,...,*)" € R", and assume that a # 0. Applying Proposition 4.2,
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Lemma 4.3, and Lemma 4.4 at most [a/€] times, we can find a time S; > 0
and a control uy : [0,.51] — U such that, if y;(¢) is the solution of (4.3) with
control uy and initial condition y(0) = ¥, then y(51) has first component
equal to zero. Increasing 5 if necessary, we can assume that S is an integer.

Now T, (z) € Z. by construction of Z,.. Using the triangular form of the
equations (4.2), and arguing as we did in the proof of Lemma 4.4 and in
the initial step of the present proof, we can find an integer S; > 0 and a
control uy : [0,.52] — U which will T’s, (z)-steer the vector y;(S1) to a vector
y2(S2) whose second component is zero. Repeating this reasoning n times,
and applying Lemma 4.3 at the end, we obtain a control u with values in U
which z-steers iy to zero. We have proved Theorem 4.5. O

REMARK 4.6. (1) Theorem 4.5 generalizes Theorem 3.2 of [7] in that we do
not assume that the flow (Q,{7}}) is minimal. On the other hand, our proof
by triangularization is a direct generalization of the proof of the aforemen-
tioned [7, Theorem 3.2].

(2) Baranova [1] has give a proof of Theorem 4.5 which also uses the
triangularization technique. She does not use the Schneiberg recurrence
result quoted in Theorem 4.1.

We wish now to consider the situation when one or more of the Lya-
pounov exponents Aq,...,Ar with respect to p is positive. In this case,
global null controllability definitely does not hold if {w;} = 0, i.e. if the
background noise is not present. However, in the random case it may well
happen that a dense set of processes (3.2),, is globally null controllable (al-
ways assuming uniform local null controllability ...). This phenomenon was
studied in [8] when €2 is the topological support of the ergodic measure pu.
We will give a general sufficient condition for the existence of such a dense
set (Theorem 4.8). It should be pointed out, however, that the verification
of the sufficient condition has only been efficiently carried out when pu is the
unique ergodic measure on €2 (see [8]). But the uniqueness of p implies that
(Q,{T}}) is minimal since we set = supp p.

We need the following

LEMMA 4.7. Let f:Q — R be a continuous function such that fﬂ fdu <0.
Let Q. = {w € Q| to each € > 0 there corresponds a sequence t, — oo such
that .
J(Ts(w)) ds < e.
0
Then Q. is residual in €, i.e. contains a countable intersection of open
dense sets.

Proof. For integers n > 1, N > 1 consider the set Q, v = {w € Q |
f(f f(Ts(w)) ds > % fort > N}. The set Q, v is closed and one has

[ee] [ee]
Q-9.=J | 2w
n=1 N=1
So it suffices to show that no €, x contains an open set.

Suppose for contradiction that some Q, v does contain an open set V.
Then p(V) > 0 since Q is the topological support of p. Soif [, fdu =0, we
obtain a contradiction with Schneiberg’s result (Theorem 4.1). Hence €, is
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residual in this case. On the other hand if fQ fdu < 0, then by the Birkhoff

ergodic theorem:
lim / f(Ts(w))ds = —o0
t—00

for almost all w € Q. Thus p(V) = 0 in this case as well, a contradiction.
So €, is indeed residual in 2. O

Now we state and prove our topological result on global null controlla-
bility. As before, let Z C Q x O(n) be a compact invariant set such that
7 is the topological support of an ergodic lift v of u. We will again make
reference to the equations (4.2) and the processes (4.3).

THEOREM 4.8. Suppose that, for each diagonal element e;;(-) of the matriz
function e, there is an ergodic lift v; of p with topological support Z such
that fZ@ii dv; <0 (1 <i<n) Let Q. = {w € Q| the process (3.2), is
globally null controllable}. Then €, is dense in ).

Proof. Apply Lemma 4.6 to conclude that 7; = {z € 7 | for each ¢ > 0
there is a sequence t,, — oo with the property that fo eii T ( ) ds < €} is

a residual subset of Z. Hence so is Z = Ni—q Z;. Let Q= ﬂ'(Z) Repeating
the proof of Theorem 4.5, we~c0nclude that the process (3.2), is globally

null controllable for each w € 2. This completes the proof since {2 is dense
in € and € C Q.. O

REMARK 4.9. (a) It is proved in [8] that, if € is minimal, then €, is residual
in €. This is because Z may then be chosen to be minimal, and the image
7(Z) of the residual set 7 is residual in  [5].

(b) In [8], certain situations are considered in which the hypothesis of
Theorem 4.8 can be verified. In general, if at least one Lyapounov exponent
is < 0 and if the flow (Z,{7}}) is a “proximal extension” [5] of (2, {T}}),
then one might conjecture that the hypothesis holds.

(c) If the hypothesis of Theorem 4.8 holds, and if at least one Lyapounov
exponent A, is strictly positive, then a well-known result of Pandolfi [11]
implies that p(€.) = 0. Thus Q. is measure-theoretically invisible. On the
other hand, €, is topologically quite large; for example if Q; C Q is any
residual set then Q, N Q; # 0. Thus for example ©, must contain points
w € Q with dense orbit.
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