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Abstract

Bifurcation theory deals with the change of qualitative behavior in a parameter dependent family of differential
equations. For one-dimensional equations the possible bifurcation scenarios are well understood. If the family of
differential equations can be controlled by admissible controls with compact range, the question arises, whether the
systems are controllable near a bifurcation point and whether stabilization around unstable bifurcation branches via
bounded feedback is possible. In this paper we show that controllability for parametrized families of one-dimensional
control systems can be characterized in terms of two parameters, the original bifurcation parameter and the size of the
control range. These results are used to construct (nonsmooth) stabilizing feedbacks and to describe the set of initial
values, from which stabilization is possible. Furthermore, robustness properties of the stabilizing feedback are discussed,
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1. Introduction

Recently, much attention has been devoted to
two areas in nonlinear control theory: the con-
struction of smooth and nonsmooth stabilizing
feedbacks, and the control of systems around
bifurcation points of the underlying, uncontrolled
dynamics. This paper is an attempt to characterize
controllability in parametrized control systems of
dimension one for systems with compact control
range, and to use the results for the design of (not
necessarily smooth) static feedback laws.

For one-dimensional control systems of the form
x = f(x,u(t)), with u € % = {u:R— U, measurable}
and U < R compact, connected, 0 eint U, the con-
trol sets (i.e. regions of complete controllability) are
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easily computed, see e.g. [2]. For a parametrized
family of control systems X = f,(x, u(t)) with a € [,
an open interval in R, the control sets need not
depend continuously on «, even if £, is analytic in .
The bifurcation behavior of the control sets for
these systems is actually characterized by two para-
meters: the original bifurcation parameter x, and
a parameter p 2 0, which determines the size of the
control range via U? = p- U. For common types of
bifurcation diagrams the bifurcation structure of
associated control systems is presented in Section 4.
Some background material together with a dis-
cussion of the domains of attraction for control sets
of a single control system can be found in Section 2.

The basic question when dealing with static feed-
back stabilization of nonlinear systems is: when
does (asymptotic) controllability imply stabilizabil-
ity? The answer to this question depends heavily on
the smoothness that one requires for the feedback
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law. Even for one-dimensional systems there may
exist piecewise constant feedbacks, when no
smooth feedback is available, see [6] and the
survey [5]. In this paper, we do not require
smoothness of the feedbacks (they will be piecewise
constant). This leads to the characterization that
a4 one-dimensional control system is (asymp-
totically) stabilizable via static state feedback at
a point x° iff x° is contained in some control set, see
Theorems 4 and 6. If dynamic feedback is con-
sidered, almost-smooth stabilization can be
guaranteed, see [3]. Since nonlinear systems, even
under the Lie algebra rank condition, need not be
completely controllable nor asymptotically con-
trollable to a point x° from all initial values, the
problem of characterizing the domain for a feed-
back law has to be addressed. We show that this set
coincides with the domain of attraction .o/ (D) of the
control set D with x° € D. The existence of smooth
‘semiglobal’ laws as compared to global ones was
analyzed in [8].

Section 5 is devoted to feedback stabilization
near bifurcation points: does there exist a feedback
law that will delay or advance the original bifurca-
tion point ay? The answer here depends on whether
the value of the bifurcation parameter is known (or
estimated, which leads to concepts of adaptive con-
trol), or a common feedback law for a range of
s-values is desired (robustness with respect to w).
For points x°, where the Lie algebra rank condition

is satisfied (regular systems), robust feedback laws

that stabilize at x° for a range of «-values do not
exist in general. If, however, x° is a common fixed
point for all u € U (singular systems), one obtains,
for fixed control range, a precise estimate for the
a-range where robust stabilization is possible, i.e.
for advance or delay of the original bifurcation
point a,. Ref. [9] uses washout filters, i.e. dynamic
feedback to preserve the original bifurcation dia-
gram even for regular systems.

2. Global structure of one-dimensional control
systems

In this paper we consider single-input one-
dimensional systems of the form
X =f(x,u(t)) inR, (1)

where ue#% = {u:R— U, measurable} and U c R
compact, connected with 0 € int U. We assume that

[/ is a continuous function in both components,
such that for every u € U there are at most finitely
many zeros of f(-,u). The solutions of (1) are sup-
posed to exist for all times ¢ > 0. All results are also
valid for systems on compact, one-dimensional
manifolds, see {2].

The basic concept for understanding stabiliz-
ation of control systems of the form (1) is that of
control sets: A system can be stabilized via feedback
exactly at those points that are contained in control
sets (with one exception, see Theorem 6, below).
Denote by ¢(t, x, u) the solution of (1) at time t e R
with initial value x = (0, x,u) under the control
action u € %. The positive (forward in time) orbit of
a point x € R is defined as 0" (x):= {y € R; there are
ueq and t = 0 with ¢(z, x, u) = y}, similarly for the
negative orbit @0~ (x). A control set D < R satisfies
(@) /0" (x) > Dforall xeD, (b) for all x € D there
exists u € with @(t,x,u)eD for all t >0, and
(c) maximality with respect to set inclusion. (‘cf”
denotes the closure of a set.)

Two fundamentally different cases have to be
considered:

(1) regular systems, where the Lie algebra rank
condition is satisfied, i.e. for one-dimensional sys-
tems: for all x € R there exists u € U with f(x, u) > 0,
or fi(x,u) <0,

(2) singular systems, which contain common
fixed points of all f(-,u), ueU.

2.1. Regular systems

Under our assumptions, we consider all control
sets of regular systems that have nonvoid interior.
Then precise controllability holds in control sets,
ie. @*(x) > int D for all x e D. The order between
control sets is defined as

D<D’ if there exists x e D with o£/0"(x) n D" # .

Closed control sets are maximal sets with respect
to this order and they are invariant (ic.
/0 (x) = D for all x € D), open sets are minimal,
and sets between minimal and maximal sets are
neither open nor closed.

In general, control sets of (1) form around the
Morse sets (which are the fixed points for one-
dimensional systems) of X = f(x, 0) under the ‘inner
pair condition’, see [1]. For one-dimensional sys-
tems more is true: the control sets are the intervals
of fixed points of f(x,u), u e U, where the lower
boundary a belongs to D iff there exists u € U with
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f(a,u) >0, and similarly for the upper boundary,
see [2] for a precise statement. Note that several
stable and/or unstable fixed points for a constant
control u € U may be contained in one control set.
Closed control sets contain at least one stable fixed
point for each u e U, open control sets contain
unstable fixed points.

The set of initial values from which the system
can be asymptotically controlled to a point x e D is
given by the domain of attraction of D

A (D)= {yeR; £O*(y)n D # 6}
={yeR; ye® (x) for some x D}

For regular systems we have the following char-
acterization of o/(D),

Proposition 1. Let D = R be a control set with non-
void interior and bounded domain of attraction and
define A(Dy:= {x e R; x € B where B is a control set
with B<D}. Then /(D)= (inf A(D),sup A(D)), in
particular, o(D) is an open interval.

The proof of Proposition 1 follows directly from
the characterization of control sets, see [1].

According to Proposition 1, /(D) contains
D and the stable manifolds of all fixed points of
Sf(-,u), ue U that are in D. In general, &/(D) can be
larger than this set and it can be shown that /(D)
consists exactly of D and of the stable manifolds of
all periodic trajectories in D.

2.2. Singular systems

If x°¢R is a point, where the Lie algebra rank
condition is violated, then x° is a common fixed
point of the vector fields f( -,u), and hence of all
(time varying) vector fields f(x, u(t)}, u €%. In this
case, {x°} is a one point invariant control set of (1),
which we call a singular control set. We extend the
order between control sets by defining for a singu-
lar control set {x°} and an arbitrary control
set D with {x°} /D =0

{x%Y <D if for all ¢ > O there exists x € R with
Ix — x% < eand £ 0 (x)n D # 0.

Analogously, we define D<{x°}. Note that with
this extension closed control sets need not be maxi-
mal, e.g. {x°}, where x° is an isolated unstable
common fixed point. The domain of attraction for
singular control sets is again defined as &#({x°}) =

{veR; «£ ®*(y)n D # 0}. Corresponding to Pro-
position 1 we obtain for singular systems:

Proposition 2. Let {x°} = R be a singular control
set and with bounded domain of attraction, and let
A({x°}):= {xeR;xeB where B is a control set with
B<{x°}}. Define I = [inf A({x°}), sup A({x°})].

(i) If {x°} N of D = @ for all control sets D of (1)
with {x°} # D, and

(a) if {x°} is maximal with respect to <, then
A({x°}) = int],

(b) if {x°} is minimal with respect to <,
A({x°}) = {x°},

(c) otherwise /({x°})=intIu {x°}.

(1) If {x°} = of D for some control set D of (1)
with {x°} # D, then o/({x°}) = {x°} U Y{A(D); D is
a control set with {x°} < ¢f D}.

For control sets D of a singular system with
int D # @, the characterization of &/(D) from Prop-
osition 1 remains true with the extended order as
defined above. The proof of Proposition 2 follows
again from the characterization of control sets for
regular and for singular systems in [1]. It can be
shown for singular systems that /(D) consists
again exactly of D and of the stable manifolds of all
periodic trajectories in D.

3. Feedback stabilization of one-dimensional
control systems

In this section we will use the results from
Section 2 to obtain precise feedback stabilization
results. We continue to work under the assump-
tions from Section 2.

Definition 3. The control system (1) is locally feed-
back stabilizable at xq€R, if there exists an open
neighborhood V of x, and a piecewise constant
feedback function F: V' — U such that x, is a fixed
point of X = f(x, F (x)) and this system, restricted to
V, has unique solutions for t > 0 and is asymp-
totically stable.

3.1. Regular systems

Theorem 4. The system (1) is locally feedback stabil-
izable at x,€R iff there exists a control set D — R
with int D # 0 and xqe€D. In this case, the set of
initial values from which the system can be stabilized
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at xq, agrees with o#(D); here the discontinuity points
of the stabilizing feedback can cluster only at d.4/(D).

Proof. If x,eR is not contained in a control set
with nonvoid interior then there exists ¢ > 0 such
that f(x,u) = 0 (or < 0) for all xe(x, — ¢, xo + &),
and all ue U (see [1, p. 219]). Hence there exists no
admissible feedback F that stabilizes the system (1)
at xo.

Conversely, let xoeD. Then there exists ugeU
with f(xo,uo)=0. If there is z; <x, with
f(x,up) >0 for all xe(zy,xp), choose x,€e(zy,Xo);
otherwise set x, = x,. In both cases, U, = {ueU,
f(x1,u) >0} is nonempty. For ueU, define Z,(u)
as the largest interval containing x, such that
f(y,u) >0 for all yeZ,(u), and z,(u) = inf Z,(u).
(Note that z,(u) may be — 0.} Let z, = inf{z,(u),
uelU,}.

If z, e d.o4(D), we stop, because for each x, e.o/(D),
x, < x; we have found u,eU; with [x,;,x,]
Z,(u;). Otherwise, z,es/(D), and hence
U, = {ueU; f(z;,u) > 0} is nonempty. For ueU,
define Z;(u) as the largest interval containing z,
such that f(y,u)>0 for all yeZ,(u), and
z3(u) = inf Z3(u). Let z; =inf{zy(u);, ueU,}. If
z3€09(D), we stop, otherwise we proceed recur-
sively. By construction we know that for every
yes/(D) with y < x, there exists neN with z, < y,
hence this procedure leads to d</(D) (in at most
countably many steps). Define x,:= 3(z, + z, ) for
n = 2. Then there exist x, > z, and u,, u,eU, such
tha‘t [X:,, Xn - 1:] < Zn(un—l) and [X,,, X;l] « Zn+1(u;l)
for n = 2. The desired feedback on /(D) {yeR,
y < xo} is defined by

Ug for xe[xy,Xg],
F(X) = Uy—1

’

u, for xe[x,x,), n=2.

for xel[xp, xp- 1), =2,

We proceed in an analogous fashion for 2/(D)n
{yeR, y 2 xo}. O

The construction of the feedback F in the proof
of Theorem 4 is aimed at achieving stabilization
with as few switches as possible. Often it is desirable
to have feedbacks that are robust with respect to
variations in the control, i.e. F(x) should be as close
as possible to the midpoint of U. In this case, the
selection of the z; has to be adjusted accordingly,
and optimally robust strategies may not exist, or

lead to unacceptably slow convergence towards the
point x,.

The feedback law, constructed in the proof of
Theorem 4, is piecewise constant. We obtain
the following result on the existence of smooth
feedbacks.

Proposition 5. Consider the system (1) and define
Z°={wu,x); fx,uy=0}cUxR, Z* ={(u,x),
f(x;u)20}. Let ng:UxR—> R be the projection
onto the second component. Then the system is stabil-
izable at x,€D via continuous feedback in /(D) iff
there exist

(i) a continuous path y*:[0,1)> Z* with

nxy *(0) = inf A (D) (or ngy*(s)— — oo for s]0,
if inf A (D) = — o0)
gy (1) = xo, Ry * (51) < MRy *(s,y) for 5; < s,, and
(1) a continuous path y~ :[0,1)—> Z~ with
ngy (0) = sup (D) (or gy (s)— oo fors|0,
if sup (D) = co)
ey (1) = X0, Ty (51) > gy (s2) for s, < 55, and

(iii) y*(1) =y (1)eZ® and y*,y~ are continuous
ats=1.

Proof. If there exists a continuous stabilizing feed-
back F(x) in #(D), then (F(x), x) defines y* and y~
as desired, after possibly a reparametrization.

Conversely, if y* and y~ are given as above,
define a function F:./(D)— U by

for x 0

u with (u,x)egraphy* > x
for x = x,.

F =
> { v with (v,x)egraphy”

F(x) is well defined and continuous, the solutions
o(t, x) of x = f(x, F(x))} exist uniquely for all ¢t > 0
by our general assumptions, and x, is a fixed
point of f(x, F(x)) by construction. Furthermore,
if there exists an initial value xesf(D) with
lim, - , @(t, X) = y # X0, then f(y,F(y)) # 0 yields
a contradiction, hence the point x° is the only limit
point in /(D) and the system is asymptotically
stable. O3

3.2. Singular systems
Theorem 6. Let xo be a common fixed point of all

f(-,u), ucU. The system (1) is locally feedback stabil-
izable at x, iff either
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(i) xoeef D for all control sets D of (1) with
{xo} # D, and {x,} is maximal with respect to <, or

(i) xo€ef D for some control set D, and
xo€int o ({xo}).

The proof of Theorem 6 uses Proposition 2 and
a similar construction as in the proof of Theorem 4.
Corollary 5 remains valid in this case. Note that
one cannot stabilize the system (1) at points in
control sets that are characterized in Proposition
2(i), (b) and (c).

4. Bifurcation of control sets

In order to understand control and stabilization
of systems near bifurcation points, we have to gen-
eralize the results from the previous sections to
control systems depending on a parameter. We will
first consider the global bifurcation structure of
one-dimensional control systems. In general, these
systems are of the form

X =fi{x,u) in R, wael cR,

with ue#* = {u:R~- U’, measurable} and U® =
p-U for p > 0, where U = R is compact and con-
nected. For each « and p the control sets of the
system can be computed as described in Section 2,
and their dependence on these parameters can be
studied. Here we will only hint at some interesting
effects that can occur around bifurcation points. It
turns out that the structurally simpler case

X = X{(x) + fl(o + u(t) Y (x),
el <R, p=20, ue#* 29

covers all the interesting phenomena, and the re-
sults are casy to visualize. Here X, Y, and f are
continuous so that the system satisfies the existence
and uniqueness conditions stated above. We con-
tinue to work under the assumptions from Section
2, and consider only regular systems in this section.
The extension to singular systems is discussed in
Section 5.

Assume that the Lie algebra rank condition
holds for (2¢) for all aecl, p > 0. We consider the
basic bifurcation types in R! (see e.g. [7 or 4])
— results for systems with more complicated bifur-
cation diagrams are obtained by combining the
ideas described below.

u_zﬁ__u
@ 2, % o

Fig. 1. Control sets around a saddle-node bifurcation point
(x°, ao). The original bifurcation branches are contained in
control sets which are indicated, for each «, by the region drawn
around the bifurcation branches: For « < «,, there are no con-
trol sets; for a; < o < «, one variant control set exists in region
D containing both of the bifurcation branches; for « > a, the
control set has split up into two sets, an invariant control set in
region A and a variant control set in region B.

4.1. Saddle-node bifurcation

The typical example is X = — x? + a, acl. We
assume the following behavior for a saddle-node
bifurcation:

There exists an open interval I « R and agel
such that the uncontrolled system x = X(x)+
fl@)Y(x) shows

for o < ag: no fixed point,

for o = ay: one fixed point x°,

for « > ay: two branches of fixed points x *(«),
x~(x), depending continuously on a > %, x () is
(strictly) monotone increasing, x () is strictly
monotone decreasing for a = a,.

Without loss of generality, we assume that the
points x * () are stable and the x («) are unstable.
In this situation one obtains for regular systems of
the form (25):

Theorem 7. The bifurcation structure of the control
sets of (22) around (x°, ao) (see Fig. 1) is as follows:
— For o < ay there is p(a) = a9 — a such that one

has for
p < p(a): no control set of (25),
p = p(o): one control set with void interior,
namely {x°},
p > p(a): one control set (x (a + p), x (2 + p)].

For o = ay there is one control set (x ™ (ap + p),
x* (oo + )]
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— For o > aqy there exists p(a) = o — %o such that
there are for
p < ple):.  two control sets, [x (& — p), x " (x + p)]
and (x” (& + p), x (o — p)),
p > pla):  one control set, (x (x + p), x (x + p)].

The proof of Theorem 7 simply uses the charac-
terization of control sets in [1]. Note that in the
case of two control sets we have (x (x + p),
x (= p)=<[x*(@—p) x"(a+ p)].

4.2. Transcritical bifurcation

The typical example in this case is
x = — x* 4 ax, ael, but this leads to a singular
system, because x° is a common fixed point. The
differential equations x = (x — a®)(x — x) = — x* +
of — ax + x + ax), ael, can serve as an example for
systems with transcritical bifurcations that lead to
regular control systems. Note that for a =0 we
obtain the singular system above. It turns out that
the control sets of the corresponding control sys-
tem are quite different, depending on whether a > 0
or a < 0 holds. We consider the following two cases
of transcritical bifurcations:

Case 1. There exists an open interval I < R and
ao€l such that the uncontrolled system has two
fixed points x "(«), x () for all ael, o # ay, and one
fixed point x° at « = a,. Assume that both branches
xT = {x"(0),ael} and x~ = {x (), acl} are dif-
ferentiable in o with, both derivatives are positive
(or negative) in I.

Without loss of generality we assume that the
points {x"(a),x < ae} and {x7(x),x >0} are
stable, the other fixed points are unstable, and that
(d/do)x *(2) < (d/da)x () for ael. In this situation
we obtain for regular control systems:

Theorem 8. In Case 1 the bifurcation structure of the
control sets of (28) around (x°, ao) (see Fig. 2) is as
Sfollows: For ael define p (o) to be the (unique)
p such that x*(x — p) = x (x + p), and p™ (e} to be
the (unigue) p with x (¢ — p) = x*(« + p). Then we
have
— for o < oy and

p < p () twocontrol sets (x (x — p), x (o + p))

<[x*(@—p) x"(x+ p)},
p > p (a) one control set (x (o — p), x*(a + p)],

Fig. 2. Control sets around transcritical bifurcation points
{(x° ao). The top figure illustrates Theorem 8, where for
o, < o < o, the invariant (region 4) and the variant (region B)
control set merge into one variant control set in region C. In the
bottom figure, where the slopes of the original bifurcation
branches have opposite sign, no region C occurs. For a; <
o < o, the regions A and B touch.

— for a=uay one control set (x (ag— p),
X (a0 + )],
— for o > oy and
p < pt(a):  two control sets (x* (o — p), x (& + p))
<[x (@ —p) x"(x + p)],

p > pt(a)  one control set (x*(x — p), x (x + p)].

Case 2. The derivative (d/da)x*(x) is negative
and (d/da)x ~(x) is positive on I, alt other assump-
tions listed under Case | remain valid.

Theorem 9. In Case 2 the bifurcation structure of the
control sets of (22) around (x°, ao) is as follows: For
ael define p~(a) to be the (unique) p such that
x o+ p) = x (o + p), and p™(a) to be the (unique)
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p with x* (e — p) = x " (« — p). Then one has
~ for a < ay and
p < p () two control sets (x (a — p), x (o + p))
<[x*(x+ p) x" (2 — p)],
two control sets (x (o — p),x%)<
[x09x+(a - P)],
— for a = ag: two control sets (x (ag — p), x°)<
[x% x" (2o — p)1,
~ for a > ay and
p>pt@): two control sets (x*(ox+ p), x°
<[x% x7(a + p)],
p < pta): two control sets (x* (o + p), x* (@ — p))
<[x7(x—p) x @+ p)].

p>p(a)

4.3. Pitchfork bifurcation

The bifurcation structure of control sets around
bifurcation points for a pitchfork bifurcation can be
analyzed similarly to B for regular systems. How-
ever, bistabilities can occur, ie. there may exist
control sets that, with respect to the order <, are
smaller than two different maximal control sets. We
have indicated the situation in Fig. 3(a), where for
oy < a < og the minimal control sets in region
B are smaller than the maximal (invariant) control
sets in either region A.

For all three types of bifurcations the domains of
attraction are computed according to the results in
Section 2. The discussions above show that the
bifurcation behavior of control sets for systems
with bounded control range depends on two para-
meters, namely on o and on p, where p indicates,
how the global dynamics of the system affect con-
trollability. The fact is illustrated again when com-
paring Figs. 3(a) and 3(b): For increasing p the two
regions A (of maximal control sets) and B (of min-
imal control sets) in Fig. 3(a) have merged into one
region C (of minimal control sets) in Fig. 3(b). In
particular, the control sets do not vary continu-
ously with « nor p. It can be shown, however, that
for bifurcation diagrams with only finitely many
bifurcation branches, there are at most finitely
many points of discontinuity, and these points can
be computed similarly to the determination of p~
and p* in Theorems 8 and 9.

5. Feedback stabilization near bifurcation points

In a family of one-dimensional differential equa-
tions x = X,(x), a€l, bifurcation means change of

Fig. 3. Control sets for a system with pitchfork bifurcation
{x°, @) and transcritical bifurcation (x!, «,) for two different
control ranges p. Comparison between Fig. 3(a) and Fig. 3(b)
shows how controllability around bifurcation points is affected
by the size p of the control range: While the lower region of
invariant control sets varies continuously with p, the entire
upper region in Fig. 3(a) has merged into one variant control set
in region C for Fig. 3(b). This is due to the fact that with
increasing p more of the global dynamics determines the con-
trollability behavior, while the original bifurcation parameter
o describes the situation locally.

stability behavior for a branch of fixed points. If the
differential equations are controlled (via bounded
inputs), the question arises, whether there exist ad-
missible feedbacks that stabilize the system around
a bifurcation point. This question can be made
more precise in various ways:

(a) The stabilizing feedback can depend on the
bifurcation parameter «, i.e. « is. known, and

(b} the stabilizing feedback should work for
a wide range of the parameter a, i.e. one looks for
robust stabilization with respect to «, while the
stabilizing feedback does not depend on a.

The answer to (a) is obtained through a combina-
tion of the techniques presented in Sections 3 and 4.
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In the regular case, let (x°, xo) be a bifurcation point
of the uncontrolled equation such that the bifurca-
tion branches emanating from x° are continuously
increasing and decreasing, respectively, around x°.
Then x° lies in the interior of a control set of (25,)
for all p > 0, and hence the system can be stabilized
at x° via bounded feedback with values in U?. For
o # 2y there exists p*(x) (which may be <o), such
that for p > p*(«) the corresponding control system
is stabilizable at x°, while for p < p*(x) this may
not be possible. Here p* is defined by p*(o) =
inf{p > 0; x°¢ int D2}, where D is the control set of
(2) containing x°. (If no such control set exists for
some acl and all p > 0, then p*(x) = (.) Note that
p*(o) need not be equal to the bifurcation point p(x)
of control sets as introduced in Section 4. Consider,
for example, the bifurcation point (x',«,) in Fig.
3(a). For the given p, the bifurcation points of the
control sets are a5 and ag, while the system is
stabilizable at x! only for a smaller a-range. For
singular systems, however, the quantities p(a) and
p*(«) agree for bifurcations from the common fixed
point x° The set of initial values, from which the
system can be stabilized at the fixed point x° is
given by the domain of attraction as described in
Section 2.

The solution to Problem (b) is treated here in the
context of static state feedback, i.e. we do not as-
sume that o can be estimated (which would lead to
adaptive control) nor do we introduce feedback
dynamics (leading e.g. to washout filters, see [9] for
an example). Then feedback stabilization under un-
certainty in « takes different forms for reguiar and
for singular systems. For regular systems, one can-
not guarantee that one feedback law will stabilize
the system at the same point x* for various values
of a. However, if for a given control range p > 0 one
has a connected family D? of control sets (i.e. there
exists a continuous function f:I— |, D4 with
f(weint D) such that int ), D2 # 0, then there
exists a nonempty, open set B of initial values and
a common feedback law u: B — U? such that for
each ael the system (2£) is stabilized at some point
in D =1, D In particular, if «:R— [ is time
varying, then there is 7 > 0 such that the solution
of X = X(x) + f(x(t} + u(x)) ¥(x) lies in D for all
t 2 T. This result follows directly from the feedback
construction in the proof of Theorem 4. Note that
the set B of initial values can be strictly contained in
MNaes &/(D%). This is for instance the case if for each
ael the domain of attraction /(D% contains

Fig. 4. Control sets around a pitchfork bifurcation (x°, o) in
a singular system. In this situation no variant control sets exist,
but the fixed point x® becomes unstable at a, However, the
control system is stabilizable at x° as long as p > « — «, see
Theorem 10. Hence the bifurcation can be delayed to a, > .

a (with respect to < smallest) control set D?, such
that D¢ forms a connected family, but ., D2 = 0.

For singular systems (see Fig. 4) we are interested
in a common feedback law u(x) such that the sys-
tem is stabilized at the common fixed point x° for
all xe 1. The bifurcation behavior of control sets for
all singular systems is quite similar, so we will
discuss only the case of a pitchfork bifurcation. The
typical example in this case is x = — x* + ax,
ael < R. Let us assume the following structure of
a pitchfork bifurcation: there exists an open inter-
val I < R and ay€l such that the controlled system
% = X(x) + f(®) Y (x) has a common fixed point x°
for all #€l, and for o > o, there are two branches
x"(x), x («) of fixed points such that x*(x)
and x (x) depend continuously on o > «g, x*(a)
is (strictly) increasing, x (x) is decreasing.
Without loss of generality we assume that both
branches contain stable points. In this situation we
obtain:

Theorem 10. Consider a system with a pitchfork
bifurcation as described above. Let p > 0 be given,
and let (x°, ao) be the bifurcation point. Then there
exists a common feedback u(x) such that the systems
(28) are (asymptotically) stable at x° for all xel with
ageint I, iff a<ag+ p for all acl, ie. iff p=
x — g = p(a).

For a proof just notice that if p > a — o, then
there exists ue U’ such that x° is asymptotically
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stable for the system (2%) using the constant
feedback u.

Conversely, if p <o — oy then we have three
control sets, of which {x°} is the smallest one with
respect to <. Hence the system is not stabilizable at
x° for such an « according to Theorem 6.

Note that the condition on « in Theorem 10 is
one-sided because the additional bifurcation
branches exist only for a« > 4. In case of a trans-
critical bifurcation an analogous two-sided condi-
tion characterizes robust stabilization at x°.
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