Numerical computation of invariant densities of linear
control systems driven by multiplicative white noise
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For the 3-D linear oscillator with damping and disturbed by multiplicative white noise,
we numerically compute the unique invariant density of the associated system obtained by
projection onto the unit sphere. We show how varying feedback gains and noise intensities
affect the corresponding density and consequently the stability properties.

1. Introduction

This paper presents a numerical study of linear feedback
systems in R? with multiplicative white noise of the form

x=Ax+butoA\xodW() ()
y=¢Tx 2)

where x e RY, 4,4, e R, bceR?, oW is the
Wiener process with intensity o € R, and o means that
(1) is interpreted as a Stratonovich stochastic differential
equation. Output feedback

u=—ky, @3)

where k e R is a gain parameter, yields the feedback
system

de=(4~ kbeDxdt+ o Ajx o dW (7). )

It is well known that basic properties of this linear
stochastic differential equation can be described by con-
sidering its projection to the unit sphere (or, more pre-
cisely, to projective space ') and the corresponding
invariant measure. In particular, this is true for the
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Lyapunov exponents (given by Khasminskii's formula)
(Amnold et al. 1983, 1986a). The purpose of the present
paper is to present some results illustrating the influence
of the gain parameter k and the intensity o of the noise
on the invariant measure, For a two dimensional
system, Crauel et al. (2003) presented asymptotic results
for high gain, i.e., for k — co. For dimensions d > 2 the
used expansion is not readily available since it is based
on an analytical solution of the Fokker-Planck equation
{cp. Remark 3.3 in (Crauel et al. 2003). For d=3, we
will instead use a numerical approach for the computa-
tion of the invariant measure on P2, In particular, we
discuss the third order oscillators

gk —bx—ex=u+oxodW 5
and

O _gf — bt —ex=u+oxodW, (6)
with output feedback

u=—kx.

For the induced system on projective space P, thereis a
unique invariant measure x and it has support equal to
[P2. Using polar coordinates, we determine u by discre-

tization of this space and simulation of the resulting
Markov chain. This is done with the help of data



structures provided by GAIO (Glebal Analysis of
Invariant Objects), a program developed by Dellnitz
el al. (sce Dellnitz er al. (1997), Dellnitz and Junge
(2002)). Then the density of the invariant measure can
be visualized (using MATLAB).

For deterministic systems it is well known that
increasing the gain parameter k forces one, some, or
even all of the eigenvalues to decrease relatively to the
values of the gain. As a consequence the system will
be pushed towards the eigendirection associated with
the greatest positive eigenvalue (or least negative if all
the eigenvalues become negative). A natural invariant
measure for this system is a Dirac measure concentrated
in this eigendirection.

The numerical simulations show a similar behaviour
for small noise intensity. Here the induced system on
projective space will move faster and faster towards
the least stable (or most unstable) eigendirection,
hence the invariant measure will peak near this eigen-
direction. Increase of the noise intensity has an opposite
effect: The invariant measure spreads out on projective
space. Thus for higher noise intensity higher gains are
necessary in order to obtain peaking near the least
stable eigendirection (or, for smaller gains, less noise
intensity is necessary in order to spread out the invariant
measure).

The contents of the paper are as follows: In §2 we
recall results on the projected system on P¥~!, in partic-
ular, the relevant Lie algebraic conditions. We verify
that they are satisfied for (5) and (6) and indicate the
parametrisation by polar coordinates. Section 3
describes the numerical method. Section 4 illustrates
this by application to a simple second order oscillator,
and § 5 presents results for the third order oscillators.

2. Projecting onto the unit sphere

In this section, we first recall some general results on
Lyapunov exponents, that is, unique existence of invar-
iant measures for the induced system on projective space
and Lie algebraic conditions from Arnold et al. (1986).
Then we verify that these Lie algebraic conditions are
satisfied for the oscillators (5) and (6).

Consider a linear stochastic differential equation in
R? given by

dx; = Ay dt + Dx, 0 dW(2)

with 4, D € R, Defining

s:%eg’d_l ={yeRy, | =1),
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this induces a (non-linear) stochastic differential equa-
tion on the sphere ! given by

ds = h4(s)dt + hp(s) o dW (1); )

here h4(s) = As — (5, As)s and hp(s) = Ds— (s, Ds)s.
We note that this also induces a stochastic differen-
tial equation on projective space P! which can be
obtained by identifying opposite points on the sphere.

We cite the following theorem from (Arnold et al.
1986); see also Arnold (1998), Theorem 6.2.16.

Theorem: Suppose the vector fields h 4 and hp induced by
(7) on st satisfy the following hypoellipticity condition

dim LA, hp)(s) =d — 1 forall s € §%\.

Then there exists a unique invariant medsure on P
has C* density and the maximal Lyapunov exponent
Jor (7) is constant a.s.

Thus for the analysis of the oscillators (5) and (6) we
have to verify the hypoellipticity condition. We first pass
to state space representation

001 0 [0 0 0
dx=|0 0 1 |xdi+a|0 0 0 |xodW(1),
la b c—k | [0 0 1]
(®)
[0 1 0 [0 0 0]
dx = 0 1 |xdt+a|0 0 0 |xodW().
| a b c—k [0 1 0]
®

Recall that a, b, ¢ and k, o are fixed real parameters.
Define

[0 1 0 000
A=]0 0 1 |, D;=[{0 0 0],
(a b c—k 00 1
[0 0 0
D,=|0 0 0].
(010

Then for j=1,2 the induced systems on §? are given by
ds = hA(S)dl-l'UhDj(s)OdI’V(l) (10)
and the hypoellipticity condition becomes

dim LA(h4, hp)(s) =2, forallseS%
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Moreover, the maximal Lyapunov exponent for (8)
and (9) is given by Kashminskii’s formula as

A= Jsz ((s,As) +% ((Dj + DjT)s, Djs) —(s, Dj.s)2) o(s)ds,
(1)

where p(s) denotes the invariant density on §? and ds the
Lebesgue measure on S°, and where D7 corresponds to
the transpose matrix of D;. A sufficient condition for
uniqueness of the invariant measure is that the subspace
generated by evaluating the corresponding linear vector
fields in R* have full dimensions. The following lemma
shows that this is indeed the case.

Lemma 2.1:  Suppose that for the systems (8) and (9) the
coefficient a # 0. Then for j=1,2 and every x € R*\{0}

dim LA{4x, Dix}(x) = 3.

Proof: We first treat the case LA4[{Ax, D;x} where the
vector fields Ax and D;x are given by

X2 0
Ax = X3 , Dix=]20
axy + bxy + (¢ — k)xs X3

(12)

We compute the Lie bracket

00 0
[Ax,Dix]= (Did—AD)x= |0 0 —1 |x
b 0
0
= —X3
axy + bx;

Thus for x; # 0 and x3 #£ 0 the span is equal to R>.
We further compute

[Ax,[Ax, Dyx]]

=[4,14, Dillx = ([4, D1}4 — A4, Di]}x

[ 0 0 l
= —2a -2b —(c—k) |x
—alc—k) a—b(c—k) 2b
( "3
= —2axy — 2bxy — (¢ — k)x3
—a(c — k)x; — (b(c — k) — a)xy + 2bx;3

If x; = x5 =0, then x3 # 0 since x € R*\{0}. Hence (12)
and the Lie bracket above yields three independent
directions. Analogously, the assertion follows if
x; = x3 = 0. It remains to discuss the case x2 =x3 =0
and hence x; # 0.

Since a#0, Ax and the Lie bracket above provide two
independent directions. In order to find a third indepen-
dent direction, we compute

[A,[A’[AaDl]]]
3a 3b 2Ac—k)
0 —3a —4b—(c—k)*

4h* —2a(c—k) ]

4ab+a(c—k)? I
+b(e—k)?

and hence

[A’ [A’ [A’ DII]]x
~3ax; — 3bx; — 2(6‘ - k)X3
= 3axy + (45 + (¢ — B))xs
—dabx; + {—46% + 2a(c — k) — b(c — k))x2

This provides a direction independent of Ax and
[4,[4, D1]]x. Therefore the first part of the lemma is

proved.
We proceed in exactly the same manner for the second

case involving the diffusion matrix D,. Here

X2 0
Ax = X3 , Dix=1]20
axy +bxy +(c—k)xs X2

We compute the first bracket of 4 and D, as

0
[4, Dalx = (D24 ~ ADy)x = —X2
: —(c —K)xz2 +x3

These three vectors provide us with three independent
directions, as long as x; #0. If x,=0 and x3 #0, we
have two independent directions

0 0
X3 N 0
ax; +(c— k)x3 X3



If x, = x3 =0, we only have the direction

0
Ax=1 0
axy
We further compute
x2
[4,[4, Da]lx = (c ~k)x2 —2x3

axy + (20 + (¢ = k)P)xz — (c — k)x3
and

[4,[4,14, D2]llx
—(¢ — k)x2+ 3x3
—3ax; — (b + (c— k))x,
—2a(c — k)x; — (4b(c — k)
+(e = kY)xz + (@b + (e — b)) x3} ) ’
(13)

and, finally,

[4,[4,[4,[4, D:]ll]x

6axy + (76 + (¢ — k) )x2 4+ 2(c — k)x3
Z1X1 + 22x3 — 23x3 , (14
X1+ yaxa — y3x3

where z; = 2a(c — k), z2 =(@db(c—k)+ (c - k)’ - 3a),
z=08b+2c—k?), yi=(ab+3alc—k?), y=
(—a(c— k) + 86 + 6b(c — kY + (c— k"), y3=(a+
4b(c — k) + (c — k).

If x, = x3 =0, then, in addition to Ax, we obtain the
two independent directions (13) and (14).

The case x, =0, x3 # 0 is covered from the directions
given by Ax, [4,D:]x, and [A4,[4,[4,D:]]]x. This
completes the proof. O

This lemma, together with the theorem cited above
shows that the induced equations on projective space
possess unique invariant measures. The C* densities
associated with these measures can be obtained as suita-
bly normalized solutions of the corresponding Fokker—
Planck equations in projective space. In some cases
(for d=2) this even admits an analytical description,
see (Crauel et al. 2003; Arnold et al. 1996). In general,
cne may use numerical procedures for partial differen-
tial equations to solve the Fokker-Planck equation.

Below we follow another numerical approach based
on discretizing the state space and then wusing a
Monte-Carlo approach. It will be convenient to
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introduce angular coordinates for the considered
systems in §' and §? (see §6 for some comments on
this choice).

For the stochastic differential equations (10} we get

52 — 31(s, As)
33— SZ(S, AS) s
asy + bsy + (¢ — k)s3 — 53(s, AS)

hA(s) =

and

—s1(s, D15)
—s2(s5,D18) |
53 — 53(5, D15)
—s1(s, D2s)
—52(s, Das) ,

52 — 53(5, D28)

hp (=0

hp(s)=0

with
(s, As) = 5152 + 5353 + as3sy + bsysz + (¢ — k)52,
(D15) =5

and
(s, Da5) = s352.

On the unit sphere the Cartesian coordinates are
s=(51,%,53)7 and changing to angular coordinates
s = (cos¢sind, sin¢sind, cos 67 with ¢ €[0,27) and
6 € [0,m/2) (where 0 € [0,7/2) since the density is peri-
odic; the lower half of the unit sphere can be recovered
by multiplying with —1) gives

dS3 dSz

= —cotft de.
sinB’d¢ sinfcos ¢ cotftang

df = —

These equations produce the final transformation with
respect to the angles 6 and ¢, of equations (10) with
Jj=1,2. Abbreviate

M 4 = sin® @cos ¢sin ¢ + asin@cos ¢ cos ¢
+ (1 + b)sin@sin ¢ cos B+ (¢ — k) cos’ 8.

We compute for j=1

do = —(acos¢+bsin¢+ (c—Kk)cot6 —cot@MA)dt
- o(cot@ — cotfcos? 9) o dW(1),
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cotf cot@sin’ ¢
do=[—"=—¢ ettt
] (cos¢ angM ,+acotOsing+ b osd

+(c—K)cot’0tang— cotzatanq&MA) dt

- a(tan¢c052 o— cotZBtanq)—l-cotzBtancpcos2 6)
odW(t)

and for j=2 we similarly find

do = —(acos¢ + bsing + (c — k) cot@ — cotGMA)dt
- a(sin¢ — sin ¢ cos? 9) o dW(1),

to in?
d¢ = ——°° — tangM +acotfsing + b LIS @
cos¢ cos¢

+ (¢ — k)cot? 0tan ¢ — cot® ftan ¢M4)dt

o ( sin fsin® ¢cosf  cot 6sin’ ¢

cos ¢ cos¢
-2 3
sin“ ¢rcos’ @

sinfcos ¢ ) °dW ().

3. Numerical approximation of the invariant densities

In this section we discuss a numerical method for approx-
imating the unique invariant density in projective space.
More details about the numerical details can be found
in Gayer (2003). We first discretize the state space by
dividing it into ‘boxes’. For the projected system in s?
we use angular coordinates. Identifying opposite points
on the sphere we obtain the projective space P%. For
this space we use coordinates in K =[0,2x] x [0, /2],
which is the upper half of the unit sphere. The compu-
tation of the invariant density on this space is based on
the discretization of the Frobenius—Perron operator
defined on the space of probability measures on RZ.
Choose a discretization time T > 0 and define a partition
of K into finitely many boxes B;. Then compute the
transition probabilities

1
py = m(B)J P(T, x, B)) dx

for the ensuing discretized system averaged over the
box covering. Here m( -) denotes the Lebesgue measure.

The transition matrix P := (py) € RV +D*V+D jg row
stochastic.

This partition is numerically very convenient; for the
generation of the boxes we rely on subdivision techni-
ques for the numerical analysis of dynamical systems
developed by Dellnitz et al. (see (Dellnitz and
Hohmann 1997; Dellnitz and Junge 2002)). For the
approximation of the dynamics on this box partition,
we create a Markov chain with finitely many states
cach of which symbolizes one box. The transition prob-
abilities from one state to the other are computed by
Monte Carlo simulation; here we use a
stochastic Runge-Kutta technique of order four (see
e.g. Kloeden and Platen 1992).

More specifically, s, starting points x* are picked in
each box B;. From each starting point, the solution is
approximated for all samples 4’ generating s;5; target
points ¢(T, x*, 7). The transition function from box B;
to B; is then approximated by

Py = (B)j (T, %, mdx

5 5

s,szzsz (1,5, 7).

The question as to how many starting points, boxes, and
sample paths of the background process should be used
depends on the properties of the system, the time length
T, and the box size-and, of course, on the available
computing resources.

This yields the transition matrix of the Markov chain,
which in turn allows the computation of the stationary
density which is represented as a normalized eigenvector
of the discretized Frobenius-Perron operator associated
with the eigenvalue one. Thus an approximation to
a fixed point of the Frobenius-Perron operator is
obtained.

Remark 3.1: The universally applied idea of
Monte-Carlo simulations goes back to Ulam,
Metropolis, and von Neumann (see Metropolis and
Ulam (1949)). Although many sophisticated variants
for different disciplines have been developed in the mean-
while, there are no general error estimates available.

Remark 3.2: For further information on results con-
cerning the convergence of the above approximations
we refer the reader to Dellnitz and Junge (2002), Ding
et al. (1993) and Hunt (1994) for the deterministic
case and to Imkeller and Kloeden (2003) for the approx-
imation of invariant measures for random dynamical
systems.

Remark 3.3: We note that numerical methods for the
computation of invariant measures are frequently used



in stochastic mechanics. We only mention Karch
and Wedig (1995), Griesbaum (1999). Griesbaum in par-
ticular approximates the invariant density on the sphere
and computes Lyapunov exponents, similarly as above.
His approximation is either based on Monte-Carlo
simulations or on a numerical solution of the Fokker—
Planck equation in angular coordinates; then he
uses a Fourier series expansion causing difficulties in
dimension larger than two. Results for certain systems
in dimension two, and three and four are included.

4. Examples, 2-D case

In this section we illustrate the previous ideas for the
following two dimensional stochastic oscillator and
with noise acting in a purely skew symmetric way.

3—k -4
dx:( )xdt+a(0
1 -10 1

Specifically, we will study the effects of small (o = 1073)
and relatively big (o=1) noise on the corresponding
invariant measure of (15) for different high gain values.

We adopt the values a =3, h=-4, c=1, d=-10
for the drift matrix (which we call A4;) because they
make the origin of the unperturbed system a saddle
and the corresponding root locus is dynamically more
interesting.

_01 )x o dW/(i).
(15)

Remark 4.1: Observe that when noise enters in
this skew symmetric way the system for the angle ¢
on §' is elliptic and so there is a unique invariant
measure.

4.1. Small noise intensity

We start by plotting the root locus for the unperturbed
equation (15), this is shown in figure 1.

The root locus shows that for 0 < k& < 9 there are two
real eigenvalues A &~ —9.69 and A; ~2.69, which
become complex for 9 <k <17 and eventually for
k=17 one converges to minus infinity and the other to
d = —10. Thus the origin will change from being a
saddle to a stable spiral and will eventually become a
stable node.

The latter arguments imply that the invariant measure
of (15) for 0 < k£ <9 will almost be a Dirac measure
concentrated in the eigendirection corresponding to A,
this is shown in figure 2. (Here and in the following
figures we plot the different values of the density as
distances from the unit circle §'.) For 9 <k <17 the
density assumes values different than zero in a wider
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Root locus

Imaginary axis
<3

26 -15 -10 -8 i} g
Real axis

Figure 1. Root locus for 4.

Y-axis

Figure 2. o=107% and k=9.

area since the solution becomes a spiral and thus visits
some areas of S' more than once, figure 3. However,
since noise is small, high gain forces the density to
concentrate more in one *box’. This is seen in figure 3
where only one big peak appears.

For k=20, the measure returns to being almost
Dirac, figure 4. Increasing & further, noise gradually
loses its effect and the measure approximates a Dirac
measure concentrated on the north pole, figure 5.

4.2. Noise intensity ¢ = 1

In this subsection we treat again equation (15), but we
increase the noise intensity to one. The smoothing



Y-axis

X-axis

Figure 3. o =107 and k=10.

Y-axis

X-axis

Figure 4. o = 107> and k=20.

effect of noise can be viewed in the following two figures
which were made using the same configuration as for
figures 3 and 5, with the exception that noise intensity
was increased.

Observe how the density from peaking at one
point in figure 3, ‘spreads out’ in two big peaks in
figure 6. The same happens between figures 5 and 7
where the density from having value almost one for
o = 1073 becomes much smaller and spreads uniformly
on the surface of §'.

P O TP P

25 -2 -5 -1 05 0 05 {1 15 2 25
X-axis

Figure 5. o =10 and k= 50.

Figure 6. o=1 and k=10.

5. Examples, 3-D case

We now study the combined effect of noise intensity and
high gain on the density of the third order linear oscilla-
tors (5) and (6). For both equations the drift matrices 4
coincide. We begin with the root locus of the drift
matrix 4. Then we study (5) and (6) considering differ-
ent noise intensities and gains k.

Note: In contrast to the 2-D case where we plotted the
different density values as distances from the surface of
§!, here we use grey shades to plot them on S



Y-axis

X-axis

Figure 7. o=1 and k=50.

Root locus

0.5

-05

Imaginary axis

AEeTS 2 o0 12 5 4
Real axis

Figure 8. Root locus for A.

5.1. Small noise intensity

The root locus for

01 0
A= 0 0 1
-5 2 3-k

is plotted in figure 8,

In particular, for k=0 we get three real eigenvalues
Ay =3.1284,2, = —1.3301 and A; =1.2016. The red
line indicates that A, will remain real for all sub-
sequent values of & and will move gradually towards
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Figure 9. o =10 and k=0.

minus infinity. On the other hand, when k % 0.77 eigen-
values A; and A3 become complex and stay complex for
all greater values of k.

Next we study equation (5) given by

0 1 0 000
dc=]10 0 1 |xdi+c]0 0 0[xodW(),
-5 2 3-k 0 01

(16)

Thus for k=0 we get an almost Dirac measure concen-
trated in the eigendirection associated with Ay, this can
be seen in figure 9. For k> 0.77 the solution of the
unperturbed system becomes an unstable spiral and so
the peak flattens in figure 10.

Increasing now k to values higher than one forces
the solution to oscillate faster since the imaginary
parts of A; and A3 increase. Therefore the density
becomes a ‘ring’ around §? as can be seen in figures
11 and 12.

For k > 10 the density will keep on being a ‘ring’ and
eventually become the equator. Observe, however, that
for higher values of k the noise affects the system less
and so the density concentrates (peaks) more. This
is seen in figure 12 where-in the lighter parts-maximal
values close to 0.04 are attained in comparison with
0.03 in figure 11.

5.2. Higher noise intensity

We now increase the noise intensity to o=1 and
compare with the small noise case. Observe in
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figures 13-16 how the density spreads out in comparison
with the small intensity case. The peaks, for example in
figures 11 and 12, disappear.

Before closing this subsection we present figure 17
for 0=35 and figure 18 for ¢=20. Here the smooth-
ing effect of higher noise intensity becomes mere
visible.

Clearly, the more o increases for constant k, the more
the density flattens around the sphere in a uniform
manner.

The invanand densty oF e 30 it OGrSINY MR SRTEvyg

F & Y
-

Figure 12. o =107% and k=10.

Tom irsaraan dannly of e 30 ek aselalor we Grmping

Yan

Figure 13. o=1 and k=0.

5.3. Different diffusions

Finally, we study what happens to the density function
when we switch from equation (5) to equation {6). We
use the same drift matrix 4 for the calculations and
poise intensity o= 1.

We see that although the quantitative behaviour of
the density remains the same as can be easily seen
between figures 13, 14 and 19, 20, nevertheless quali-
tatively the density finds a new area of concentration,
figures 15, 16 and 21, 22. This leads us to believe that
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different mixing of noise significantly alters the prop-
erties of the invariant measure when high gain is not
big enough to counterbalance the effect of the noise.

5.4. Application to Lyapunov exponents

Using the measures we calculated in the previous sec-
tion, we now compute the Lyapunov exponents Ap,
and Ap, from equation (11) as functions of high gain

and noisc intensity. Specifically we plot Ap, p, for

0<k<10 and for noise intensities o =10"¢ and
g=1. We start by computing for equation (8) the
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Figure 16. o=1 and k=190.
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Figure 17. ¢=5and k=10.

maximal Lyapunov exponent (11) with respect to the
angles (¢,6) on P. This gives

2 pif2
o=, |
0 Jo

+%sin29(sin¢+ acos¢ -+ bsing)

—sin2¢sin’ 0
2smqbu

+ (¢ — k)cos? 9 + o*(cos” Osin” 6)

x pl¢, O)d¢ d6.
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Using equation (11) but with different diffusion D,, we

recover the following integral whose solution gives the
greatest Lyapunov exponent of equation (9):

2 pnf2 1
Ap, =J J -2-sin 2¢sin @
0

1. . .
+§sm20(sm¢+acos¢+bsm¢)
2,9
+(c —k)cos 6+7(sin2¢sin20

—2cos”dsin’ ¢sin®8) | plg, 0)d¢ do.

fhnmmhﬂ,:ﬁaw

Figure 20. o=1and k=1.
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Figure 21. o=1and k=3.

In figures 23-25 the +-sign corresponds to computed
values of .... and the continuous line denotes the real
parts of the drift matrices of equations (8) and (9).
Both exponents are plotted as k is being increased
with step 1 from zero to ten.

Clearly when o is small, Ap, (and Ap,) matches the
deterministic exponent, figure 23. Increasing the noise
intensity has a destabilizing effect on the system as can
be viewed in figure 24, where Ap, instead of converging
fast towards zero is forced to remain positive for a
longer period. Ap, assumes smaller values than the deter-
ministic maximal exponent since the diffusion part
coming from D; in the Khasminskii formula contributes
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negative values. So when noise enters with diffusion D,
stabilizes in contrast to Dy.

Nevertheless both Ap, and Ap, converge to the deter-
ministic exponent for increasing k. This is expected
as the invariant measure numerically converges to its
deterministic counterpart while k increases.

6. Conclusions

This paper presents numerical results which compare the
effects of changes in the gain and in the intensity of noise
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on the stability behaviour of linear systems measured
via the almost sure Lyapunov exponent. In particular,
our numerical results show stabilizing and destabiliz-
ing effects of noise versus gain changes for three-
dimensional systems.

Numerical computation of Lyapunov exponents is
a vast field which already for deterministic systems
(in the context of chaotic dynamics) poses challenging
problems. The approach used here in a stochastic
context is based on the Furstenberg-Khasminskii
formula determining the Lyapunov exponent by
integration with respect to the invariant measure on
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projective space. This has the advantage that it also
gives information on the directions where the system
concentrates. We chose to use a Monte-Carlo
method for computation of the invariant measure.
Although time-consuming (computation for the 3-D
examples took between 3 and 6 hours on a 2.8 GHZ
Pentium IV), these methods are, in principle, also
applicable in higher dimensional situations. We are
not aware of error estimates for these methods.
One will expect that this is different for the alter-
native to compute the invariant measure via the
Fokker-Planck equation which determines the invar-
jant measure, since numerical methods for partial
differential equations usually include error estimates.
However, since this partial differential equation
has to be solved numerically on a manifold, the
n-sphere, additional problems occur (this becomes
e.g. apparent in Griesbaum (1999)). Furthermore,
numerical methods for partial differential equations
are mainly developed for two or three dimensional
state spaces.

Due to the mentioned lack of error estimates, there is
a clear need for comparisons of results based on Monte
Carlo methods with other techniques for computing
invariant densities and/or Lyapunov exponents. Thus
the present paper is only a step toward more systematic
studies when noise has a stabilizing/destabilizing influ-
ence on the system, in particular, in connection with
high-gain control.
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