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Abstract 

During recent years? a variety of important inter- 
connections between the theory of nonlinear dynami- 
cal systems, nonlinear stochastically excited systems, 
and nonlinear control systems have been obtained by 
mathematicians, physicists, and engineers. This pa- 
per is the beginning of a systematic study of reli- 
ability aspects within the emerging unified view of 
the different classes of nonlinear dynamical systems. 
We study the response behavior of dynamical systems 
with random excitation depending on two parame- 
ters: a bifurcation parameter a E W, and a parameter 
p 5 0 that measures the strength of the disturbance. 
The goal of this paper is to obtain precise stability 
and reliability diagrams in a-pspace. In particular, 
we characterize for each parameter combination the 
levels that the (maximal) system response will reach 
with probability 1, with positive probability, or with 
probability 0. Emphasis is placed on determining the 
parameter combinations for which the system behav- 
ior changes drastically, i.e. on stochastic bifurcation 
phenomena, to determine crucial system parameters 
and their critical values. 

1. Introduction 

&liability assessment of dynamical systems with 
random excitation addresses the problems of max- 
imal systems response (instantaneous collapse) and 
of sustained vibrations (fatigue). For nonlinear sys- 
t e m  with non-Gaussian excitation the standard tech- 
niques of (statistical) reliability theory may not prove 
adequate, in particular if the system depends in a 
nonlinear fashion on parameters, or if a nonlinear con- 
trol design is sought to prevent collapse and fatigue. 

Recent advances in nonlinear control theory, er- 
godic theory of stochastic dynamical systems, sto- 
chastic bifurcation theory, and control of bifurcations 
allow the development of a dynamic reliability theory 
that takes nonlinear dynamics, non-Gaussian noise 
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and nonlinear control design into account. This pa- 
per presents an outline of such a theory, and reports 
first results. 

Consider a nonlinear dynamical system depending 
on a real (bifurcation) parameter of the form 

in Rd or on a smooth manifold M (of dimension d < 
CO), where Xo is a smooth vectorfield, and CY E I C 2 
is a bifurcation parameter. The system is subject to 
a random excitation, resulting in 

where ( ( t )  = (&i(t), i = 1. .  . m) is a stochastic pr+ 
cess, and X i ( z ; a ) , i  = 1.. .m, are the (smooth) ex- 
citation dynamics. We assume that the excitation 
process f ( t )  comes fiom an underlying nondegener- 
ate stationary Markov diffusion process of the form 

where ~ ( t )  lives on a smooth manifold N (of finite 
dimension), YO . . . Yt are smooth vector fields, “0” de- 
notes the symmetric (StratonoviE) differential and f 
is a C” map. If Yo is linear and if Yl . . . Ut are con- 
stant on N = Wp, then rj is an Ornstein-Uhlenbeck 
process, with Gaussian statistics. We are interested 
in the realistic situation that N is compact, and hence 
q( t )  and f ( t )  are non-Gaussian. 

In order to study the behavior of system (2) de- 
pending on excitation range and on excitation sta- 
tistics, we consider a family {U,, p 2 0) of compact 
subsets of IIpm and a family { fp ,p  >, 0) of onto maps 
f, : N -, U,, mapping the background noise q( t )  
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onto the random excitation ( ( t )  in U,. Thus system 
(2) depends on two parameters: the bifurcation pa- 
rameter o and the range p of the disturbance. 

In this paper we study the problem of level cross- 
ing, i.e. we characterize for each a - p combination 
the levels that the (maximal) system response will 
reach with probability 1, with positive probability, 
or with probability 0. Furthermore, we characterize 
the multistability regions of the system, consisting of 
those points, fiom which the response will reach mul- 
tiple, distinct areas in the state space with positive 
probability. 

2. Ergodic theory of nonlinear 
stochastic systems 

Ergodic theory of nonlinear stochastic systems de- 
scribes the systems' long term behavior and hence 
identifies almost sure maximal response and areas 
of sustained vibrations for large time, i.e. for t -+ 

00. In the context of reliability theory the time it 
takes to reach certain levels of system response and 
to reach sustained oscillations are also of importance. 
Therefore we present a generalized classification of 
the states of the system that includes ergodic states 
as a special case. 

Two different cases have to be considered separately: 

Singular systems: The vector fields Xo . . . Xm have 
a common limit set, e.g. a fixed point to E M with 

Regular systems: The system dynamics Xo and the 
excitation dynamics XI . . . X,,, effect all components 
of the states t E M, i.e. dim ICA(X0.. .Xm}(z) =
dimM for all t E M. Here f A { Xo . .  . Xm} is the 
Lie algebra generated by ,Yo . . . Xm, and dim LA(=) 
denotes the dimension of the dBtribution generated 
by Ld in T,iM, the tangent space of M at the point 
x E 1M. 
If dimfA(z) < dimM, then for integrable systems 
without common limit.sets, the system can be con- 
sidered on its maximal integral manifolds, where it 
is regular. Ergodic theory of singular systems needs 
additional techniques like linearization and Lyapunov 
exponents, which are beyond the scope of this short 
paper. Hence we restrict our attention to regular sys- 
tems throughout this paper. 

For the remainder of this section fix a and p in the 
randomly excited system (2). This system itself is 
not a Markov process, but the 'pair process' given by 
(2) and (3) is Markovian. The long term behavior of 
(2,3) can be described by associated control systems 
via the support theorem. Under our assumptions that 
q( t )  in (3) is nondegenerate and stationary, it suffices 
to describe the associated control structure of (2). 

The control system associated to (2) is given by 

Xo(z0) = * * - = X&O) = 0. 

(neglecting the fixed a and p )  

where u(t)  = (u i ( t ) , i  = 1 ... m) E U = {U : IIP -, U; 
measurable} with U C IR" compact and 0 E int U. 
This last assumption guarantees that the undisturbed 
system (1) is a special case of (2) and (2C). The pos- 
sible limit sets of the random system (2) are the in- 
variant control sets of (ZC), see [3]. Attraction and 
stability of these limit sets are described by the do- 
mains of attraction of the control sets: 

Let D C M be a control set of (2C) (compare 
e.g.[l] for the definition and basic properties of control 
sets) and define its domain of attraction by 

A(D) = {z E M ;  there exists U E U 
and t 2 0 such that cp(f,z,u) E D}, 

where c p ( f ,  t, U) is the solution of (2C) at time t with 
initial value cp(O,z, U) = z, under the control U E U. 
We obtain the following result: 
1. Theorem. Let Cj, j = 1.. .n be the invariant 
control sets of(2C). Then for each 2 E M there e.&t 
n+l  numbempj(t),poo(+), withj = l...nsuch that 

P&) + 5 P j ( 4  = 1 
J=l 

P { $ ( t , z , w )  -L Cj fort -+ 00) = pi(.) 
P{$(t ,  z , w )  leaves every compact set in M for 

t -+ CG} = p&). 

Here $ ( t , t , w )  denotes the (pathwise) solutions of 
(2). If the invariant control sets are compact and if 
p,(t) = 0, then $ ( t ,  t, .) converges in distribution to n 

p j ( s ) p j  for t - 00, where pj is the unique invari- 
j-1 
ant probability measure of (2) in C,. Furthermore, 
Pi(.) > 0 iRz E A(Cj). 

While variant control sets of (2C) cannot carry in- 
variant probabilities of (2), and hence do not contain 
limit sets of (2), the stochastic system will experience 
oscillations and slow down in these rets. Hence they 
are important from a reliability point of view, com- 
pare the next section. Furthermore, a certain type 
of variant control sets characterizes the multistability 
regions of the system, compare Section 4. 

3. Maximal response and oscillations 
of nonlinear stochastic systems 

In this section we work under the assumptions of 
Theorem 1. In order to describe the maximal re- 
sponse of the nonlinear random dynamical system 
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(2), we need a distance function on the state space 
M. If M = Rd, the Euclidean norm is often a natu- 
ral choice. However, this norm weighs all components 
of the state t uniformly, which may not always be ap- 
propriate. E.g. if t measures position aad velocity, 
different reliability bounds may be placed on the two 
components. Therefore, we introduce the concept of 
level sets: 
2. Definition. A family { L , , p  2 0) of sets in M is 
called a family of level sets, if L, = {y E M, r(t0, y) 5 
p} for some reference point 20 E M. Here r(., e )  de- 
notes a metric on M. 
3. Theorem. Under the conditions of Theorem I., 
the maximal system response of (2) for t -+ 00 from 
t E M with respect to the f m d y  {L,, p 5 0) of level 
sets is given by $(z) = sup(6 >, 0 ; L j  n UCj # 0 
where the union is taken over all Cj with pi(")  > 0). 

denotes the complement of a set.) The probability 
of reaching 6( t )  from t is Cpj(z ) ,  where the sum is 
taken over all j with dL$(c,,nCj # 0. (d denotes the 
closure of a set.) firthermore, the trajectories of (21, 
starting &om 2, undergo sustained oscillations in each 
Cj with p j  (t) > 0. UCj is compact, these oscillations 
cover a dense set in Cj and their empirical memure 
approaches the invariant probability p j  as t - CO. 

Theorem 2. goes a long way in describing the max- 
imal response and sustained oscillations for nonlinear 
dynamical systems with random excitation: It de- 
scribes the long term behavior for t - 00 and the 
probability of its occurrence. The transient, i.e. fi- 
nite time behavior of system (2) can be important for 
reliability assessment under at least the following cir- 
cumstances: ,a) The system may reach a higher re- 
sponse level 6 before settling in the invariant control 
sets, and b) the time to reach the response level 6 in 
an invariant control set may be too long for practical 
considerations. 

a) The maximal system response from t E M 
with respect to- ('La, 6 >, 0) is given by the 
positive orbit of (2C) O+(t) = {y E M ;  there 
exist U E U and t 2 0 with cp(i, E ,  U) = y}. For 
general nonlinear stochastic systems like (2) 
there we no analyticd methods to compute 
the probability of reaching the maximal sys- 
tems response within O+(z), or the probabil- 
i ty of reaching a predetermined level 6. Thk 
has to be done numerically. 
While it is relatively easy to obtain estimates 
for the system velocity outeide of control sets, 
and hence estimates for the time the system 
takes to travel through sets outside of con- 
trol sets, similar estimates for control sets are 
impossible to obtain analytically. The re* 
son is that in variant control sets D there 

is a positive probability that the system will 
oscillate through all of D before leaving the 
set: This slowing down effect may be strong 
enough to keep the system in D for a suf- 
ficiently long time period to ensure practi- 
cal reliability. Again, numerical simulations 
are needed for estimates of the corresponding 
crossing times through D. 

4. Multistability regions of nonlinear 
stochastic systems 

Of particular importance for reliability assessment 
of dynamical systems with random excitation are those 
points in the state space MI from which different limit 
sets (invariant control sets of (2C)) are reached with 
positive probability: In these multistability regions 
small perturbations may lead to drastically different 
systems response. In order to describe multistabil- 
ity phenomena, we work in a compact, forward in- 
variant subset X c M. Note that in X the sys- 
tem (2C) has only finitely many invariant control sets Cl . . . C,, each of which carries an invariant measure 
pj,j= 1, ... nof(2).  
4. Definition. A point t E X is said to be mul- 
tistable, if there exist at least two different invari- 
ant probability measures pi in X with P{4(2, t, .) + 

SUPP Pi} > 0. 
Note that there exists a multistable point t E X if€ 

(2C) has at Ieast two invariant control sets in X. The 
multistability region is described by the 'relatively 
invariant control sets': 
5. Definition. Let MS C X be the set of muiti- 
stable points. A control set D C MS is called rela- 
tively invariant, if t E D and cp(t, t, U) 4 D for some 
t > 0, U E U implies ~ ( t ,  t, U) 4 MS. 

We obtain the following characterization of the 
multistability region MS: 
6. Theorem. Consider the stochastic system (2), 
and let X C A4 be a compact set such that all limit 
sets of (2C) have positive distance from the boundary 
of X. Then the set MS of muitistable points is given 

by MS = U A(Dj) ,  where D j ,  j = 1.. .e ,  are the 

relatively invariant control sets. 

k 

j = I  

For a proof see [4]. Theorem 6. says in particu- 
lar that the set M S  is open and consists of at most 
finitely many components in X. The computation of 
MS reduces to the computation of the finitely many, 
relatively invariant control sets and their domains of 
attraction. In general, this has to be done numer- 
ically. For onedimensional systems a control set is 
relatively invariant iff it is open, and hence coincides 
with its domain of attraction. 
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5. Reliability of randomly excited systems 
depending on a parameter  

Randomly excited system usually depend on a set 
of parameters that are not fixed, but can be used for 
design and/or control purposes in a way such that 
the resulting system has a desired behavior, e.g. with 
respect to reliability specifications. Design parame- 
ters can include e.g. damping (material constants) 
or kinetic constants (geometry of a system), control 
may involve feedback laws (for stabilization) etc. In 
this section we analyze reliability aspects of stochas- 
tic systems depending on a parameter a E I C R and 
draw some conclusions for optimal reliable design in 
Section 6. 

In Sections 3. and 4. we saw that control sets of 
the associated control system (2C) play a crucial role 
in assessing reliability of nonlinear dynamical systems 
with random excitationsof the form (2). Thus we will 
first analyze bifurcations of control sets for nonlinear 
control systems. The dependence of the control sets 
on two parameters a and p has to be taken into ac- 
count: a describes the change in local behavior of 
the undisturbed system (1) and of the excitation vec- 
tor fields XI . . . X,, while p determines, how much of 
the global behavior of the system affects the change 
of control sets. 
Fix LY for now and consider the dependence of con- 

trol sets on p: Assume that the undisturbed system 
(1) has a finest Morse decompwition {MI,. . . , M r }  
with finitely many Morse sets, ordered by 4 (compare 
[Z] for details). The following theorem was proved in 
[I] under the 'inner pair condition': The pair (2, U) E 
M x U is called an inner pair of (2C) if there exist 
times T, S > 0 such that p(T, z, U) E int OfT+s(z ) .  
Here O$+S(z) denotes the points of M t h a t  are 
reachabk in (2C) up to time T + S, and "int" is the 
interior of a set. 

7. Theorem. Assume that for af! h E .  U hfk of 

(I) the pair (z,O) io an inner pair of (2Cp) for p > 0. Then for each Mb, k = 1.. . r and each p > 0 there ex- 
ists a control set 0: such that Mk C ini D;, and the 
limits lim 0; are exactly the Morse sets of (1). Fur- 
thermore, for small p the order between the Morse 
sets of (1) and the control sets of (2Cp) agree. In 
particular, the invariant control secs are in 1-1 corre- 
spondence witb maximal Morse sejs, i.e. attractors, 

In the context of reliability theory Theorem 7. as- 
serts that maximal system response levels are deter- 
mined by the attractors of (1) for small random exci- 
tations, which is a rather intuitive result, but it need 
not hold for non-Markovian disturbances. As the ex- 
citation range grows, control sets belonging to differ- 

r 

k-1 

Pi0 

of (1). ,, 

ent Morse sets may merge. If invariant and variant 
control sets for p < PO merge into one control set for 
p > PO, the resulting control set may be variant, and 
it cannot be a limit set for the random system (2). 
Hence the maximal system response will jump to a 
different value at this point, and a slowing dawn be- 
havior will occur in the merged control set. Thus po 
indicates a reliability bifurcation point, see Section 6. 
for an example. 

In order to analyze the reliability behavior depend- 
ing on the bifurcation parameter a, one has to study 
the specific bifurcation scenarios of system (l), be- 
cause different scenarios affect the bifurcation of con- 
trol sets and hence reliability aspects in different ways. 
If one is interested in the maximal response of (2) with 
respect to the Euclidian norm, (1) may be reduced to 
a one-dimensional system for 1.1. The following theo- 
rem is an e-xample of the possible bifurcation behavior 
of control sets in one-dimensional systems. 
8. Theorem. Consider the randomly excited system 
(2) in R'. Assume that the undisturbed system (1)  
undergoes a transcritical bifurcation at a0 E I, and 
that the bifurcation branches are continuously differ- 
entiable in a around ao. 

(i) If the derivatives of the bifurcation branches 
at a0 have opposite signs, then there exists 
po > 0 such that the system (2C) has a variant 
and an invariant control set for all p c PO in a 
neighborhood of 00. The control sets depend 
continuously on p and CY for p < PO. 

(ii) If the derivatives of the bifurcation branches 
at a0 have the same sign, then there exists 
PO > 0 such that the system (ZC) has exactly 
one control set for all p < po in a neighbor- 
hood of ao, and this control set is variant. 

For the reliability behavior of system (2) this the- 
orem has the following consequences: In case (i) the 
maximal systems response and the areas of sustained 
oscillations vary' continuously with a in a neighbor- 
hood of ao. They are determined by the bifurcation 
branches of the undisturbed system (l), i.e. by the 
sets of stable and unstable fixed points. In case (ii) 
the system exhibits in a neighborhood of a0 two relia- 
bility bifurcation points for small excitation ranges p. 
In particular, the maximal response jumps at these 
two points and there is one area of sustained oscilla- 
tions, given by a variant control set, with large cross- 
ing time, i.e. further reliability assessment from a 
practical point of view has to take estimates of this 
crossing time into account. 

6. An Example 
We consider a dynamical system in M = RI, whose 

bifurcation diagram is given in Figure 1. Let t o  be a 
critical threshold, below which the state z (e.g. the 
norm of the system response) is not allowed to faU. In 

3882 

                                                                                                                                               



the deterministic case for a 5 ao, the system will ful- 
fill this requirement for initial values above the upper 
bifurcation branch. 

Figure 2: a) system of Figure 1. with stochastic 
excitation of size 2p 

Figure 1. Deterministic bifurcation diagram with 
pitchfork and transcritical bifurcation. 

Now consider the same system, but with a bifurca- 
tion parameter a that is randomly excited by external 
or internal noise. Figure 2a. indicates the behavior of 
the stochastic system for an excitation range 2 p ,  i.e. 
at is a stochastic process with values in [a -PI a f p ] .  
For a 5 a1 the stochastic system response is not 
surprising: The system will almost surely converge 
towards the region A around the lower bifurcation 
branch, thus crossing the critical threshold zo with 
probability 1. In order to retain reliability under sto- 
chastic excitation of size 2p,  the system has to be 
designed in such a way that a > al. What is sur- 
prising, is the behavior for a E (azla4): there the 
randomness of Q will turn the region around the up-- 
per bifurcation branches into a tr.ansient region, i.e. 
after a relatively long transience time the system will 
drop to the lower bifurcation branch, thus crossing 
the threshold zo with probability 1. The reason is 
that the noise exploits some of the nonlocal dynamics 
around a = ag, resulting in a transient region for the 
random system. Figure 2b. shows the minimal lev- 
els that will be reached by the system response with 
probability one for initial values above the curve. 

The area B in Figure 2a. is a bistability region. 
For initial values in B there is a positive probabil- 
ity that the system response will take values in the 
upper and in the lower A-areas. (Once the solution 
enters one of these areas, its distribution will converge 
towards the invariant measure whose support is the 
corresponding A- set). Hence, for each z E B there 

b) Minimal levels that are reached with probability 
1 

exists a probability q ( t )  with 0 < q ( t )  < 1 such that 
the system response from 2 crosses the level t o  with 
probability q(r). 

Effects like the ones discussed here show how the 
interaction between deterministic dynamics and sto- 
chastic excitation can drastically alter the response 
behavior of a system. 
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