
Formal specification and analysis of trusted communities

Jan-Philipp Steghöfer, Florian Nafz, Wolfgang Reif, Yvonne Bernard, Lukas
Klejnowski, Jörg Hähner, Christian Müller-Schloer

Angaben zur Veröffentlichung / Publication details:

Steghöfer, Jan-Philipp, Florian Nafz, Wolfgang Reif, Yvonne Bernard, Lukas Klejnowski, Jörg
Hähner, and Christian Müller-Schloer. 2010. “Formal specification and analysis of trusted
communities.” In 2010 Fourth IEEE International Conference on Self-Adaptive and
Self-Organizing Systems Workshop, 27-28 September 2010, Budapest, Hungary, edited by
Scott Alexander, Jonathan Smith, and Robert Laddaga, 190–95. Piscataway, NJ: IEEE.
https://doi.org/10.1109/sasow.2010.39.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1109/sasow.2010.39
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/


Formal Specification and Analysis of Trusted Communities

Jan-Philipp Steghöfer, Florian Nafz, Wolfgang Reif
Institute for Software & Systems Engineering

Augsburg University
Augsburg, Germany

Email: {steghoefer, nafz, reif}
@informatik.uni-augsburg.de

Yvonne Bernard, Lukas Klejnowski,
Jörg Hähner, Christian Müller-Schloer
Institut für Systems Engineering – SRA

Leibniz Universität Hannover,
Hannover, Germany

Email: {bernard, klejnowski, haehner, cms}
@sra.uni-hannover.de

Abstract—Trusted Communities are a way to improve the
performance of self-organising agent systems by limiting the
interactions to trustworthy partners and excluding agents that
behaved uncooperatively. We describe the mechanism in an
abstract way and identify three central decisions each agent
has to make if it supports Trusted Communities. Based on a
formal specification of the agent behaviour in an instantiation
of the mechanism for Desktop Grid Systems, we identify one
of the system goals and show by formal verification that this
goal is reached. Additionally, we provide certain requirements
for the decision procedures that become evident during the
analysis process.

Keywords-formal methods; agents; trust

I. INTRODUCTION

In open self-organising software systems, autonomous
agents cooperate to achieve a common goal. However, it
can not be assumed that all agents behave in a benevolent
fashion. Instead, such systems require measures to identify
and punish selfish or outright malevolent agents to protect
the system from them. Research in Organic Computing deals
with open self-organising systems and is now starting to
investigate the implications that trust considerations have on
such systems [1].

One of the mechanisms that deal with the untrustwor-
thiness of some agents in an open environment is Trusted
Communities [2] (TCs). A TC is an association of agents that
mutually trust each other due to previous experiences from
direct interactions and knowledge about the other agents’
reputation. If an agent behaved in a non-desired fashion in
the past, the TC is able to detect the adverse effect this has on
the system and excludes the agent from further interactions.
This is achieved solely by the use of local rules and without
an explicit notion of the TC.

The crucial elements for the success and the correct
behaviour of the mechanism are the functions that evaluate
with which other agent to interact, if an interaction with
another agent should be pursued, and, in case another
agent rejected an interaction, if this rejection influences
the other agent’s trustworthiness. This paper, starting from
an abstract description of Trusted Communities and an
instantiation for Desktop Grid Systems, will show how a

formal specification and analysis of TCs informs the design
of these functions in a concrete system. Formal specification
requires a concrete and detailed specification which reveals
problems and hidden properties that would be concealed in
a system that is only implemented. The ultimate goal will
be to identify which factors have to be regarded in order to
achieve the desired system goals with the help of these low
level decision procedures. The formal model and the proof
sketch given in the following are a first step in this direction.

The paper is organised as follows: Section II introduces
the notion of Trusted Communities and outlines their func-
tion in an abstract and informal fashion. Section III outlines
the case study of Desktop Grid Systems to which Trusted
Communities have been applied successfully. The formal
model of the agents and their behaviour is described in
Section IV while the system’s goals are outlined in Section
V. The analysis and its results are given in Section VI before
the paper concludes with an outlook to future work.

II. IMPLICIT TRUSTED COMMUNITIES

An Implicit Trusted Community is a dynamic agent
organisation that is build in a bottom-up fashion by agents
that have developed mutual trust relations during a line of
interactions. Agents that do not cooperate, i.e. with whom
interactions are unsatisfactory, are excluded from the Trusted
Community. It is implicit because there is no explicit notion
of the community in any of the agents.

The way cooperation is defined is, however, highly depen-
dent on the application the agent system is tailored to. This
becomes evident if a general definition of the term is applied:
in a general sense, cooperation means that two or more
agents work towards a common goal. The common goal
has to be defined for each application or even for different
agent groups in an open competitive system.

If an agent only interacts with agents it trusts, the results
of the interactions are more likely to be beneficial as if it
would interact with untrusted agents as well. An additional
benefit of Trusted Communities is that with growing trust,
certain security precautions, like, e.g. additional protocol
steps, can be omitted or more information could be revealed
to ease cooperation when trusting agents interact. Therefore,

190



individual agents profit from being part of the community
and the entire system profits as redundant and over-cautious
interactions decrease. The formation of Trusted Communi-
ties can even have a normative benefit: as uncooperative
agents will see a decline in their interactions’ benefits, the
mechanism promotes cooperation.

While a reputation mechanism is a prerequisite that has
to be taken care of by the system, the individual agent’s
behaviour is an interesting facet and open to analysis. How
does an agent have to implement its decisions in order to
achieve a desirable outcome? After introducing a concrete
implementation of Trusted Communities for Desktop Grid
Systems in the next section, this paper will show the possi-
bilities formal methods provide to deal with this question.

III. TRUSTED COMMUNITIES IN DESKTOP GRID
SYSTEMS

In this paper, the system under consideration is a Desktop
Grid System in which computing resources are shared to
facilitate and accelerate the computation of algorithmically
complex tasks. Agents can act as workers that offer their
computational resources to other agents and accept work
units that contain a self-contained task. The task is computed
and returned to the submitter. A submitter splits a job that
has been generated by a user application into smaller work
units and distributes those work units to workers according
to a specific strategy. It then waits for the workers to return
the work units and combines the results to achieve the overall
result for the entire job. An agent can act both as a worker
and as a submitter at the same time.

A. Benefits and Adapted Definition

Trusted Communities are beneficial in Desktop Grid Sys-
tems as they allow a submitter to identify those agents that
reliably return completed work units and use them for future
computations. Agents that refuse to accept work units or
do not deliver completed work units in time are recognized
and will eventually be excluded from the community. A
reputation mechanism ensures that other reliable agents can
benefit from the knowledge individual submitters gathered
about other workers. Overall, this mechanism forms an
ensemble of agents that trust each other and that favour each
other when work units need to be distributed while excluding
untrustworthy agents. This yields performance benefits and
decreases overall system load as work units do not need to
be resubmitted or processed multiple times in order to make
sure that jobs will be completed.

In the Desktop Grid scenario, the members of the com-
munity are those agents that have accepted and actually
processed work units when requested by submitters and re-
jected requests only under certain conditions. Uncooperative
agents, on the other hand, are those that repeatedly rejected
requests without just cause or accepted work units but never
returned the processed data.

B. Important Agent Decisions
The description above already hints at some of the choices

an agent has to make if it is part of a system in which Trusted
Communities play a role. To make the requirements more
concrete, an agent has to make the following decisions:
• Decision 1: Which peer to give a work unit? This deci-

sion depends on the trustworthiness of the peer, as well
as on other factors such as its current load. Different
strategies that incorporate different parameters in the
decision are possible. [2] outlines two strategies that
use different weightings for three parameters: trustwor-
thiness, work queue length, and resource specification.

• Decision 2: Should I accept a work unit? There are
several factors that can play a role in the decision of a
worker to accept a work unit or not. The trustworthi-
ness of the submitter, the current work load, resource
restrictions or even reasoning about the development
of one’s own trust level can come into play. Different
types of agents will react differently to a request.

• Decision 3: Was a rejection justified? When a worker
rejected the processing of a work unit, it might have had
a good reason to do so. If, e.g. the worker is currently
used to capacity, it might be beneficial for the submitter
that the worker actually rejected the processing because
the work unit can now be given to a less busy worker.

These decisions are also the ones which will be the focus
of analysis with regard to Trusted Communities. In the
following, first steps towards this direction are made. To
set the stage, however, a formal model of the agents and
their environment will be given first.

IV. FORMAL MODEL OF AGENTS IN DESKTOP GRID
SYSTEMS

The model of the agents, their communication and their
environment is formalized in ITL+ [3], a variant of Interval
Time Logic (ITL) that allows to explicitly include steps
performed by the environment. ITL is in turn based on
Linear Time Logic. A run (trace) of a system is a sequence
of states. We distinguish system transitions and environment
transitions. For the latter, an additional primed intermediate
state is introduced. A run is thus an alternating sequence
of unprimed and primed states, respectively system and
environment transition. The formula x′ = x + 1 denotes
that the value of x in the primed state is the current value
of x plus one. As a convention for this paper, only variables
that appear in a formula are changed.

Besides the standard predicate logic operators ¬ (not), ∧
(and), ∨ (or), → (implies), ↔ (equivalence) and quantifiers
∀, ∃ which are evaluated over a single state, the logic
contains the temporal operators � ϕ (ϕ holds now and
always in the future), � ϕ (ϕ holds now or eventually in
the future) and ◦ ϕ (ϕ holds in the next state).

The formulas that describe the agents also refer to data
types and variables, either global or local to the agents. Each

191



agent ag has a queue Qag that stores incoming messages.
A message msg is a triple (snd, per, dat) consisting of the
sender, a performative, i.e. an identifier of the message’s
purpose, and a data payload, e.g. a work unit. The elements
of the triple are accessed by msgsnd, msgper, and msgdat
respectively. Further, an agent has operations enq and deq
to enqueue and dequeue a message to or from a queue.

A submitter relies on the presence of some data structures
to store and retrieve information. The hashes eg and eb hold
the number of either good or bad experiences any of the
agents has had with any other agent. Another hash AWU
stores the number of work units that any agent currently
accepted to work on. The hash value for a particular agent
ag as a key is selected by eg[ag]. The Timeout Table TT
: WorkUnit × Agent × Int is stored locally by each
submitting agent and holds the agent a work unit was given
to as well as a timer for this work unit.

Next, trustworthiness as used in the system will be de-
fined. Then, work unit submission will be regarded, before
the behaviour of different worker “characters” is modeled.

A. Trustworthiness

The trustworthiness of an agent ag is expressed by its
aggregated Trust Level (aggTL). To calculate this value,
a local fitness function f(ag) is used. The fitness value is
calculated by a weighted summation of the numbers of good
(eg) and bad (eb) experiences the agents in the system have
had with the worker ag.

f(ag) = α · eg[ag]− (1− α) · eb[ag] (1)

Usually, the weighting factor α reflects that bad experi-
ences are perceived as having a higher impact than good
ones. Based on this fitness function, the agent discretises
the aggregated Trust Level of ag as follows:

aggTL(ag) =


1, f(ag) > 0

0, f(ag) = 0

−1, f(ag) < 0

(2)

While in the following, we mainly rely on f(ag) (and the
two functions are interchangeable for our purposes), aggTL
is a basis for future extensions, e.g. if direct experience and
reputation are to be regarded separately or other sources of
trust information are introduced.

B. Work Unit Submission

Whenever a work unit wu is available for dispatch (ex-
pressed by a predicate wuAv) the submitter snd will send
the work unit to a worker to by putting it into to’s message
queue. The performative used in this case is req (request).

wuSubmit :⇔ wuAv → (3)
to′ = selto() ∧ ◦enq((snd,req, wu), Qto′)

The crucial part here is the selection of the agent to,
constituting Decision 1 as defined in Section III-B. to will

receive the work unit and will be asked to process it.
Therefore, a function selto : Agents → Agent specifying
the selection strategy needs to be in place.

If the worker acknowledges the receipt of the work unit
and that it will start working on it by sending an accept
message (performative: acc), the submitter increases the
number of work units the worker is currently processing and
puts the work unit and the worker into the Timeout Table
TT. ε denotes a predefined value for the initial timer.

wuAcc(msg) :⇔ msgper = acc→ (4)
(AWU ′[msgsnd] = AWU [msgsnd] + 1

∧ TT ′[msgdat] = (msgsnd, ε))

If a work unit has been rejected, the rejection needs to
be evaluated. Agents can reject a work unit for a variety of
reasons, some of which might be in the interest of the system
while others are purely in the interest of the rejecting agent
(Decision 3). The VALID predicate evaluates the rejection
and becomes true when the rejection was justified, i.e. if
it indeed was in the interest of the system. Otherwise, a bad
experience is filed and the work unit is removed from the
Timeout Table.

wuRej(msg) :⇔ msgper = rej ∧ ¬V ALID → (5)
((e′b[msgsnd] = eb[msgsnd] + 1)

∧ TT ′ = rem(msgdat, TT ))

After an agent accepted a work unit for processing, the
submitter has to wait until the agent either returns the
completed work unit or a timeout occurs. In the latter case,
a bad experience is filed for the sender. In all cases, the
number of accepted work units has to be decreased.

In order to detect a timeout, the submitter will have to
evaluate the Timeout Table in every time step. If the timer
becomes 0, a timeout has occurred, a bad experience has
to be filed and the number of accepted work units for the
agent has to be reduced. The operation rem removes the
entry from the table.

evTT :⇔ ∀(wu, ag, timer) ∈ TT : timer = 0→ (6)
( TT ′ = rem(wu, TT ) ∧ e′b[ag] = eb[ag] + 1

∧AWU ′[ag] = AWU [ag]− 1)

Only if the agent completed the work unit in a timely
fashion, a good experience for the agent is added. At the
same time, the number of accepted work units is decreased
and the timeout for the work unit is removed:

wuDone(msg) :⇔ (7)
msgper = done→ (e′g[msgsnd] = eg[msgsnd] + 1

∧AWU ′[msgsnd] = AWU [msgsnd]− 1

∧ TT ′ = rem(msgdat, TT ))

192



In every time step, the submitter updates the entries in its
Timeout Table by decreasing the respective values by one.

upTT :⇔ ∀(wu, ag, timer) ∈ TT : (8)
TT ′[wu] = (ag, timer − 1)

The submitter is a combination of the above formulas. In
each time step, it checks for new work units that are available
for dispatch, updates the Timeout Table and evaluates it. If
there is no message to process and the queue is not empty,
it dequeues the message and stores it in msg for processing
in the next step. If, however, there is a message, it checks
the message type and reacts accordingly. Also, the message
variable is emptied by assigning ⊥ to it to indicate that it
has been processed.

Submitter :⇔ wuSubmit ∧ upTT ∧ evTT∧ (9)
(msg = ⊥ ∧QSub 6= ∅ → msg′ = deq()

∨msg 6= ⊥ → msg′ = ⊥ ∧ wuRej(msg)
∧ wuAcc(msg) ∧ wuDone(msg))

C. Worker Behaviour

All workers base their decision to accept a work unit
on the trustworthiness of the submitter. If a submitter’s
aggregated trust level is negative, any work unit submitted is
rejected. Other than that, different agent characters behave
differently when they are asked to process work units.

Similar to the submitter, a worker can either dequeue a
message in each time step or process it. When a message
was processed, the variable holding the message is emptied.
Additionally, a worker can also do nothing (indicated by
idle) which is used to model delays in the system or in the
message delivery system. In this case, none of the variables
of the worker or its environment is changed. Whenever a
submitter puts a work unit into a worker’s queue, the agent
will dequeue the message and react to it. The reaction will
be based on Decision 2, the choice whether or not to accept
a work unit. Depending on the agent character, different
reactions are possible: the agent can either reject the work
unit which is performed by enqueueing a message with
the rej performative in the submitter’s message queue or
accept it, indicated by an acc message. Some agents require
additional deliberation, e.g. about their current work load or
the sender of the work unit. If the work unit was accepted,
the agent will either return it eventually, as indicated by a
done message which contains the processed work unit as its
payload, or it will not get processed and thus will never be
returned to the submitter (i.e. the worker performs a null
action). This will cause a timeout on the submitter’s side.

We distinguish four agent characters, where the first three
implement Decision 2 without special considerations:

An altruistic agent will process all work units that
are submitted by a trustworthy agent. If a work unit was

accepted, it will eventually be processed and returned to the
submitter.

AL :⇔ idle (10)
∨msg = ⊥ ∧QAL 6= ∅ → msg′ = deq()

∨ (msg 6= ⊥ ∧msgper = req→
((aggTL(msgsnd) ≥ 0→
enq(msgsnd,acc,msgdat)

∧ (♦enq(msgsnd,done,msgdat)))

∨ ((aggTL(msgsnd) < 0→
enq(msgsnd,rej,msgdat)) ∧msg′ = ⊥))

A free rider rejects all work unit processing requests,
regardless of the submitter’s trust level or other properties.

FR :⇔ idle (11)
∨msg = ⊥ ∧QFR 6= ∅ → msg′ = deq()

∨msg 6= ⊥ ∧msgper = req→
enq(msgsnd,rej,msgdat) ∧msg′ = ⊥

An egoistic agent accepts work unit requests but might
cancel some of the work units. In the Desktop Grid scenario,
egoistic behaviour represents the activation of user-defined
constraints on resource usage (e.g. the user needs the system
resources for other purposes). Also, we use egoism to model
malevolent behaviour.

EG :⇔ idle (12)
∨msg = ⊥ ∧QEG 6= ∅ → msg′ = deq()

∨ (msg 6= ⊥ ∧msgper = req→
(aggTL(msgsnd) ≥ 0→
enq(msgsnd,acc,msgdat)

∧ (♦enq(msgsnd,done,msgdat) ∨ null))
∨ ((aggTL(msgsnd) < 0→

enq(msgsnd,rej,msgdat)) ∧msg′ = ⊥))
A rational agent accepts work units from submitters that

are trustworthy, as long as certain conditions are met. These
can be of different nature, e.g. how many work units it
already processed in comparison to the number of work units
it submitted or how much computing resources are currently
available. This more complicated variant of Decision 2 is
included in the formula with the abstract predicate BUSY.

RA :⇔ idle (13)
∨msg = ⊥ ∧QRA 6= ∅ → msg′ = deq()

∨ (msg 6= ⊥ ∧msgper = req→
(aggTL(msgsnd) ≥ 0 ∧ ¬BUSY →
enq(msgsnd,acc,msgdat)

∧ (♦enq(msgsnd, (done,msgdat)))

∨ aggTL(msgsnd) < 0 ∨BUSY →
enq(msgsnd,rej,msgdat) ∧msg′ = ⊥)

193



In addition, there are predicates AL(ag), FR(ag), EG(ag),
and RA(ag) for each character that evaluate to true if the
agent in question adheres to the respective specification.

V. SYSTEM GOALS

The key beneficial property of Trusted Communities is
that they exclude selfish or free riding agents. This can be
expressed in terms of the fitness function f (1).

FR(ag)→ �(f ′(ag) ≤ f(ag) ∧ ♦f ′(ag) < f(ag)) (14)

It is valid to assume that a submitter will always pick
an agent with a high fitness value to submit work units to.
After all, a high fitness value shows that there have been
beneficial interactions in the past. (14) means that the fitness
value of a free rider decreases monotonically, i.e. only bad
experiences are registered for it. Whenever an interaction
with it occurred, the fitness will decrease and will eventually
be low enough so it does not get picked as a worker any
more. If we assume a system in which not all agents are free
riders, this behaviour will effectively lead to an exclusion of
free riders. As long as there are other agents available to
process the work units, their fitness will be higher and they
will be chosen for processing.

In principle, the same argument is valid for egoistic
agents. However, as an egoist sometimes delivers results, its
trust value is not monotonically decreasing. In some cases,
when cooperative agents are rare, free riders will still be
asked to process work units. This allows them to change
their behaviour and adopt a more altruistic stance in order
to return to the Trusted Community.

VI. ANALYSIS

Sections IV and V provided the formal foundation for
different kinds of analyses. In [4], different properties, both
local to an agent and global to a system, have been shown
by logical deduction in Temporal Belief Logic. Others are
happy with a specification which in itself yields benefits with
regard to eliminating ambiguity and ensuring conciseness. Z
is often used in such cases and complex agent architectures
like BDI can be regarded [5]. The language is also popular
when systems have to be engineered and formal analysis is
used to determine how a global behaviour has to be broken
down into local agent behaviours [6].

An approach inspired by [6] is pursued in the following.
The aim is to show that the system reaches its goal to
exclude free riders. In order to do this, however, assumptions
about the parts that have been left open in the descriptions
above (like the selto-function and the VALID predicate)
have to be made explicit. This does not necessarily mean
that a concrete instantiation has to be given but that certain
properties will be required in the proof which are equivalent
to the requirements the parts have to adhere to.

In the following, a very short sketch for the proof of
(14) will be given, to show how this formal model can

be utilized for formal verification and to give a feeling for
what such a proof looks like. The property to prove is that
the specification of a Free Rider as given in (11) and the
specification of an environment consisting of other agents
and agents that act as submitters will lead to a monotonically
decreasing fitness of free riders. Init denotes the initial
system in which all queues, TT , and AWU are empty.

FR ∧ Env ∧ Init⇒ (14) (15)

The environment Env in this case consists of many
different agents, each of which can be of type FR, AL,
EG, or RA. The only relevant element of the environment,
however, is a submitter that creates new work units (wuAv)
and submits them to the free rider under consideration. The
proof obligation can therefore be rewritten as

FR ∧ Submitter ∧�♦wuAv ∧ Init⇒ (16)
�(f ′(FRid) ≤ f(FRid) ∧ ♦f ′(FRid) < f(FRid))

A. Proof Sketch

The proof strategy uses symbolic execution to perform
a stepwise evaluation of a proof obligation. As for infinite
traces executing all steps may not be possible, we further use
an induction technique for parallel programs. In principle,
this technique constitutes noetherian induction over the num-
ber of steps necessary to reach the final state and is similar
to Dynamic Logic induction over the number of cycles of a
loop. For more technical details about the calculus, see [7].

The symbolic execution of the Free Rider results in one
case distinction for every disjunction during the system
step and the subsequent environment step. In the following,
space restrictions limit us to an informal description of
the most interesting cases generated by symbolic execution.
Nevertheless, we hope to clarify the structure of the proof.

The execution of the first step results in two proof
obligations. If wuAv was true, the submitter sent a request
to the Free Rider (case A1)1. Here we assume that selto at
least selects the Free Rider from time to time. If wuAv was
false (case A2), no work unit was available and the submitter
just updated TT . In both cases (14) still holds as no update
to the fitness was done.

Advancing the next step for case A2 results in the same
proof obligations as in the beginning and premises can be
closed by induction or contracted to the first case. Case A1,
however, yields four new premises.

B1 Free Rider dequeued the first message and
wuAV = false. Unchanged fitness value.

B2 Free Rider dequeued the first message and
wuAV = true. Unchanged fitness value.

B3 Free Rider idles and wuAV = false. Therefore,
the first package is still the only one in the queue.
Submitter leaves the fitness value unchanged.

1We omit the case that the request was sent to another agent as it has
no impact on the fitness. Of course, this case has to be proven as well.

194



B4 Free Rider idles, wuAV = true, and submitter has
sent another package. There are now two messages
in the queue. Unchanged fitness value.

We only consider the most important cases B1 and B3.
The others can be shown with an analogous argumentation.

Premise B1: Executing the next step leads to the same
case distinction as in case A2 with the addition of a case
in which the Free Rider enqueued a reject message in the
submitter’s queue. In this case, the submitter picks it up
in the same time step. The VALID predicate in (5) then
evaluates to false, indicating that the Free Rider should
not have rejected the work unit. The submitter thus decreases
the fitness of the free rider. With an inductive argument and
using �♦wuAV – stating that always eventually a work
unit is available again – the latter part of the system goal
(♦f ′(FRid) < f(FRid)) can be proven.

Premise B3: In case B3, the system is further executed and
the Free Rider idles until the submitter decreases TT [FRid]
to 0. The submitter will then register a bad experience with
the agent in evTo, constituting a true decrease of the Free
Riders’ fitness. The same arguments as in premise B1 can
then be used to close this open premise.

All other premises which are opened during the proof can
be closed the same way or contracted to the other cases. �

B. Results and further considerations

During the proof, when steps were advanced, an inter-
esting condition became evident: after a timeout caused the
submitter to register a bad experience, the free rider could
still process the message and send a reject to the submitter.
Without additional effort, this leads to the submitter regis-
tering another bad experience for the free rider for the same
interaction. While the system goal does not explicitly forbid
this (after all, the fitness value of the agent is still decreasing
monotonically), this behaviour is not desired. Each interac-
tion should influence the experiences exactly once. This is
a good example of how formal analysis reveals properties
of the system that go unnoticed in simulations and how
additional system goals arise from such analysis. Especially
problems that occur in concurrent execution of the different
agents (interleaving) are very hard to grasp intuitively and
are much better revealed with formal methods.

A good way to prevent the submitter to register two
bad experiences for such an interaction is to have VALID
check for such a condition. If a timeout already occurred,
a subsequent reject would be justified and VALID would
evaluate to true. The bad experience would not be counted.

One of the assumptions that has to be in place for selto
is that it will always select the Free Rider again. As long as
it keeps sending a work unit to the free rider from time to
time, the verified property is valid. If the system goal is the
only one we want to have, every implementation of selto
with respect to that property is valid. The AWU table, e.g.,
is a possibility to distinguish agents in selto and VALID.

VII. CONCLUSION

In this paper, we gave an abstract description of Trusted
Communities, a mechanism to enhance system performance
by encouraging cooperative behaviour and identifying and
excluding uncooperative agents. The description was then
instantiated for Desktop Grid Systems and a formal specifi-
cation for Trusted Communities in these systems was given.
Based on that and a formalisation of the main system goal,
an analysis was performed that showed that the system
reaches the goal and also revealed a previously unnoted flaw
in the specification.

Future work will include analysis of other agent types
and which goal the system is trying to achieve with regard
to their behaviour. Also, the implementation of an actual free
rider can be checked against the specification presented here.
This will enable us to verify that the implementation also
exhibits the property we showed above. Another interesting
aspect that can be analysed is the relationship between the
predicates BUSY and VALID. A rational agent should not
be punished for a rejection if it actually was busy and if it
was beneficial for the system that it rejected the work unit.

ACKNOWLEDGMENT

This research is partly sponsored by the research unit
“OC-Trust” (FOR 1085) of the German research foundation
(DFG).

REFERENCES

[1] J.-P. Steghöfer, R. Kiefhaber, K. Leichtenstern, Y. Bernard,
L. Klejnowski, W. Reif, T. Ungerer, J. Hähner, and C. Müller-
Schloer, “Trustworthy Organic Computing Systems – Chal-
lenges and Perspectives,” in Autonomic and Trusted Comput-
ing. Springer, 2010.

[2] Y. Bernard, L. Klejnowski, J. Hähner, and C. Müller-Schloer,
“Towards trust in desktop grid systems,” in Cluster Computing
and the Grid, IEEE International Symposium on. Los
Alamitos, CA: IEEE Computer Society, 2010, pp. 637–642.

[3] S. Bäumler, M. Balser, F. Nafz, W. Reif, and G. Schellhorn,
“Interactive verification of concurrent systems using symbolic
execution,” European Journal on Artificial Interlligence (AI
Communication), vol. 23, no. 2-3, pp. 285–307, 2010.

[4] M. Fisher and M. Wooldridge, “On the formal specification
and verification of multi-agent systems,” Int. Journal of Coop-
erative Information Systems, vol. 6, no. 1, pp. 37–66, 1997.

[5] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A
formal specification of dMARS,” Intelligent Agents IV Agent
Theories, Architectures, and Languages, pp. 155–176, 1998.

[6] G. Smith and J. Sanders, “Formal development of self-
organising systems,” in Autonomic and Trusted Computing.
Springer, 2009, pp. 90–104.

[7] M. Balser, “Verifying concurrent system with symbolic ex-
ecution – temporal reasoning is symbolic execution with a
little induction,” Ph.D. dissertation, University of Augsburg,
Augsburg, Germany, 2005.

195


