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Abstract

The ability to analyse attenuation rates of individual wave fields along rough media using
the effective wave field is investigated for the problem of a string with continuous, randomly
varying properties. A clustering method is developed to approximate the continuous problem
as a discrete problem, which provides insights into the relationship between the effective and
individual wave fields. It is found that as scattering strength increases the attenuation rate
of the effective wave field experiences a rapid transition from being orders of magnitude
greater than the attenuation rate of its constituent individual wave fields to being almost
identical to them.

Keywords: Wave attenuation, continuous scattering, discrete scattering, localisation,
effective wave field

1. Introduction

Due to the wave localisation phenomenon (cf. Sheng, 2006, e.g.), a monochromatic inci-
dent wave train will typically attenuate exponentially along a rough (randomly disordered)
medium, without the influence of any dissipative mechanism. Effective media theory is an
appealing way to approach the problem of calculating the exponential attenuation rate —
commonly referred to as the attenuation coefficient — as a function of the incident wave
properties (frequency) and the properties of the given medium, including the statistical
properties of the roughness. Effective media theory uses the effective wave field, which is
the mean wave field with respect to an ensemble of individual wave fields obtained for single
roughness realisations. Associated analytical methods for effective media theory provide
insights into the attenuation process, and circumvent the need to compute individual wave
fields for different realisations of the disorder.
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For wave propagation along one-dimensional, continuously varying, rough media, it has
been shown that the attenuation coefficient found using effective media theory often sig-
nificantly overestimates the attenuation rate of the individual wave fields. In particular,
Bennetts et al. (2015) investigated ocean wave propagation over a continuously varying,
rough seabed in intermediate water depth, and found that individual wave fields gener-
ally do not attenuate, whereas effective wave fields experience significant attenuation. Wu
(1982) and Rupprecht et al. (2017) made similar findings for seismic waves and flexural
waves, respectively.

The left-hand panel of Fig. 1 shows the attenuation coefficients (later denoted C) of
individual and effective wave fields for a rough string with continuously varying density (the
prototype problem used for this study), as functions of the roughness correlation length (later
denoted lG). The attenuation coefficient is non-dimensionalised with respect to the mean
wavenumber, k̄, and scaled using the roughness amplitude squared, ν2, and the correlation
length is non-dimensionalised using the mean wavenumber.
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Figure 1: Left-hand panel: non-dimensional, scaled attenuation coefficient (later denoted (C / k̄) / ν2) as a
function of non-dimensional correlation length (later k̄ lG) for a continuously varying string (with roughness
amplitude ν = 1.0 × 10−2). Numerical results for individual (×) and effective (◦) wave fields, with results
given by a multiple-scale method shown for comparison (dashed line). Right-hand panel: non-dimensional,
scaled attenuation coefficient ((C / k) /ΓBK) as a function of scaled positional disorder (ε k d / π) for discrete
beaded-string problem (with scattering strength i η = 0.2). Numerical results for individual (×) and effective
(◦) wave fields, with results given by CPA shown for comparison (dashed line).

The attenuation coefficient for the individual wave fields are calculated numerically using
a random sampling method, and the attenuation coefficient for the effective wave field is
calculated both numerically and analytically (using a multiple-scale approach). The results
shown are cognate to those given by Bennetts et al. (2015) and Rupprecht et al. (2017)
(who provide detailed descriptions of analogous multiple-scale approaches to the one used
for the varying string). In particular, the attenuation coefficient for the effective wave field
grows for increasing correlation length, which is merely a statistical effect caused by wave
cancellation in the averaging process, whereas the attenuation coefficient for the individual
wave fields is approximately zero for (non-dimensional) correlation lengths greater than two.
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The situation appears to be different for problems involving disordered discrete scatter-
ers, which have received significant attention since the late 1950s due to the seminal work
of Anderson (1958), who proposed localisation of electrons in disordered systems for suf-
ficiently large randomness. An example from classical physics, for which effective media
theory works well, is linear wave propagation along a string with randomly positioned beads
attached. More precisely, identical point masses are distributed along an elastic string, with
their positions randomly perturbed from a periodic arrangement. The perturbed periodic
problem has been studied extensively over the last decade and analytical theories have been
adopted to describe the effective wave field, e.g. a quasi-crystalline assumption considering
perturbations from an underlying periodic setting (Parnell and Abrahams, 2008) and the
coherent potential approximation based on a closure assumption (Maurel et al., 2010). Ro-
mack and Weaver (1990) used a Monte Carlo method for vibrations in beaded strings to
study effective waves in one-dimensional random media composed of uncorrelated point scat-
terers with exponentially distributed scatterer spacings. Maurel and Martin (2013) showed
that localised modes appear in disordered media of finite size (using perturbation theory)
and also studied compositional disorder. Martin (2014) used perturbation theory to study
finite beaded strings with perturbations of the masses from their periodic structure by a
small distance. For the cognate problem of rows of discrete scatterers, Bennetts and Peter
(2013) showed that individual and effective wave fields have almost identical attenuation
coefficients.

In the case of large positional disorder of the discrete scatterers, an attenuation coefficient
related to the individual wave fields can be derived in a simple way using the method
proposed by Berry and Klein (1997) for light propagation through a stack of transparent
plates. More precisely, if it is assumed that wave interactions between adjacent (identical)
scatterers range over all phases, which requires that ε k d / π ≥ 1, where ε ∈ [0, 1) is the
non-dimensional disorder strength (ε = 0 denoting unperturbed), k is the wavenumber and d
is the spacing of the underlying periodic structure, then the attenuation rate is ΓBK = ln |τ |,
where τ is the transmission coefficient for a single scatterer, which is related to its (real-
valued) scattering strength i η by τ = 1/(1 − η). Hence, we refer to ε k d / π = 1 as the
positional-disorder threshold.

The right-hand panel of Fig. 1 shows individual and effective attenuation coefficients for
the discrete problem of positionally perturbed beads along an elastic string, as a function
of scaled, non-dimensional positional disorder (ε k d / π). The attenuation coefficient is nor-
malised using the Berry–Klein limit (BK limit, ΓBK). Analytical results obtained with a
coherent potential approximation (CPA), as derived by Maurel et al. (2010), are shown for
comparison. The individual and effective attenuation coefficients agree well for the whole
range of positional disorder and they agree with the BK limit beyond the positional-disorder
threshold. In particular, the attenuation rate for the effective wave field is almost identical
to that of the individual wave fields for the range of disorder strengths considered.

Thus, sometimes the effective wave field has an attenuation rate that is representative
of attenuation rates of individual wave fields (i.e. for the discrete problem) and sometimes
its attenuation rate is much larger than the individual wave fields (i.e. for the continuous
problem). This paper investigates this phenomenon for the problem of attenuation of linear
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waves along strings with discrete or continuous random variations, which can be viewed as
model problems for waves in more complicated media but containing the relevant physics.
It is shown that the attenuation rates of effective and individual wave fields transition from
being significantly different to almost identical.

The paper is organised as follows: In §2, the problem formulation for wave propagation
along a one-dimensional string with continuously varying density profile is defined, and a
numerical solution method is introduced. Further, the different attenuation coefficients are
defined precisely and their computation is discussed. In §3, the continuous problem is ap-
proximated by a discrete problem using a clustering approach, thus facilitating investigation
of the transition between the two behaviours. In §4, the main result of the paper is given,
which is the characterisation of the relation between individual and effective waves along a
rough string. A summary of the results is given in §5.

2. Preliminaries

2.1. Problem formulation and solution method

Consider an infinitely long, one-dimensional, linearly elastic, stretched string, where the
horizontal coordinate x denotes position along the undisturbed string. The string under-
goes small amplitude, time-harmonic displacements at a prescribed angular frequency ω, so
that the displacement can be written Re {u(x) e−iωt}, where t denotes time. The spatial
component of the displacement, u = u(x), satisfies the Helmholtz equation,

u′′ + k2 u = 0 for x ∈ (−∞,∞), (1)

where the wavenumber k = k(x) is rough, i.e. has a randomly fluctuating profile, produced
by underlying variations in the properties of the string, e.g. in its density. In this setting,

k(x) = ω

√
µ(x)

T
, (2)

where µ is the mass per unit length and T is the tension force.
Let the rough wavenumber profile, k, be a random function with an associated expecta-

tion E (with respect to space). It has the form

k(x) = k̄
(

1 + ν κ(x)
)

with κ = O(1), (3)

where k̄ = E[k] is a prescribed mean, and k̄ ν =
√

E[k2] is a prescribed root-mean-square
amplitude. Wavenumber roughness is produced by the zero-mean random function κ, with√

E[κ2] = 1. The function κ is assumed to be stationary and ergodic, so that κ is the spatial
mean of the rough wavenumber, and ν is the root-mean square amplitude with respect to
space, and hence referred to as the (non-dimensional) roughness amplitude. For the sake of
definiteness, the random functions considered satisfy the Gaussian autocorrelation condition

E[κ(x)κ(x− ξ)] = e−ξ
2/l2G , (4)
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where lG is the correlation length.
Following Shinozuka (1971), individual realisations of the random function are generated

via

κ(x) =

√
2

H

H∑
h=1

cos (rh x+ ϕh) for H � 1, (5)

where the frequencies rh (h = 1, . . . , H) are random variables, independently chosen from
a Gaussian distribution with zero mean and standard deviation of

√
2 / lG, and the phases

ϕh (h = 1, . . . , H) are independently selected from a uniform distribution over the interval
[0, 2π). These satisfy the autocorrelation condition (4) in the limit H → ∞. In practice,
H = 400 terms are used in the random process (5).

For numerical computations, let the variations extend over a long, finite interval x ∈
(0, L), where L� 2 π / k̄, and be constant in the surrounding intervals (−∞, 0) and (L,∞).
The rough wavenumber profile is approximated by the so-called step approximation, consist-
ing of a piece-wise constant function on M � 1 sub-intervals over x ∈ (0, L), where the value
of the constant wavenumber in each sub-interval, km (m = 1, . . . ,M), is set to be equal to
the value of the corresponding continuous wavenumber profile at the sub-interval mid-point.
The surrounding semi-infinite intervals, (−∞, 0) and (L,∞), are referred to as the 0-th and
(M + 1)-th sub-intervals, respectively, and the wavenumbers, k0 and kM+1, are set as the
(constant) wavenumbers in the respective intervals. Fig. 2 shows an example realisation of
a continuous wavenumber profile for roughness amplitude ν = 0.1, and the corresponding
piece-wise constant approximation of the profile, where each correlation length is divided
into four sub-intervals, which provides sufficient computational accuracy.

0 20 40
x/lG

1.2
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[×k̄ ]
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Figure 2: Example realisation of continuous roughness profile (grey curve) and corresponding step approx-
imation with four sub-intervals per correlation length (black), for roughness amplitude ν = 0.1 (adapted
from Fig. 1 of Rupprecht et al., 2017).

In the m-th sub-interval, the wave field can be expressed as

um(x) = am ei km x + bm e−i km x, (6)
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where am and bm are amplitudes of right- and left-travelling waves, respectively. Motion is
forced by a unit-amplitude incident wave propagating in the positive x-direction from x→
−∞, which is set via a0 = 1 and bM+1 = 0. Wave fields in adjacent sub-intervals are coupled
via continuity conditions of displacement, u, and displacement slope, u′. The continuity
conditions are applied at the jumps between the finite sub-intervals within the rough interval,
and the jumps at the ends of the rough interval and the surrounding semi-infinite intervals
(x = 0, L). The continuity conditions between the rough and semi-infinite intervals are
ensured numerically by considering only profile realisations with sufficiently small steps
at the respective interfaces. A modified version of the iterative algorithm developed by
Bennetts and Squire (2009) is used to calculate the amplitudes am (m = 1, . . . ,M + 1) and
bm (m = 0, . . . ,M) for a given roughness realisation.

Over long distances L, roughness amplitudes larger than ν ≈ 0.2 generate negative
wavenumbers in (3), which are viewed as being unphysical due to the assumed relationship
with the material parameter in (2), i.e. they correspond to complex-valued densities µ.
Therefore, a numerical cutoff scheme is applied, in which wavenumbers km < 0.01 are set
to km = 0.01. This permits roughness amplitudes ν > 0.2 to be investigated, unlike the
previous cognate studies by Bennetts et al. (2015) and Rupprecht et al. (2017). The cutoff
means the autocorrelation (4) is no longer satisfied exactly as H → ∞, but this does not
influence the key findings of the investigation.

2.2. Attenuation coefficients

The attenuation coefficient, C, of an individual wave field, i.e. the exponential attenuation
rate, is found by applying the ansatz

|u(x)| ∝ e−C x for x ∈ (0, L), (7)

using a least-squares minimisation routine. A representative attenuation coefficient, Cind, for
wave fields produced by given statistical properties of the roughness (roughness amplitude,
ν, and correlation length, lG) is then calculated as

Cind = 〈C〉, (8)

where 〈·〉 denotes the ensemble average of the included quantity, i.e. its mean with respect to
a large number of randomly generated realisations of the rough wavenumber. An ensemble
size of 1500 is used for calculations.

Similarly, the effective wave field for given statistical properties of the roughness, ueff, is
calculated numerically as the ensemble average

ueff = 〈u〉. (9)

The attenuation coefficient for the effective field, Ceff , is then calculated via

|ueff(x)| ∝ e−Ceff x for x ∈ (0, L). (10)

Ansatz (10) accurately captures the modulus of the effective wave field, up to numerical
discrepancies, whereas ansatz (7) captures the mean attenuation of the individual wave
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Figure 3: Left-hand panel: As in the right-hand panel of Fig. 1 but for scattering strength i η = 0.6. Right-
hand panel: As in the left-hand panel but with individual (×) and effective (◦) attenuation coefficients
calculated using percentile approach, and with CPA results omitted.

field only, neglecting fluctuations in the wave field that result from its dependence on the
associated random wavenumber profile. For the numerical results presented in §§ 3–4, an
interval length approximately 400 times the correlation length, L ≈ 400× lG, was found to
be sufficiently large to capture wave attenuation accurately.

2.3. Calculation of effective attenuation coefficient

The left-hand panel of Fig. 3 is similar to the right-hand panel of Fig. 1, but for the larger
scattering strength i η = 0.6. It shows individual and effective attenuation coefficients, Cind

and Ceff , respectively, calculated using the method described in § 2.2, for the relatively
simple, beaded-string problem described in § 1, and we refer to the notation introduced
there. The attenuation coefficients are scaled by the BK limit, ΓBK, which is available for
this discrete problem, and shown as functions of scaled positional disorder, and the CPA
derived by Maurel et al. (2010) is overlaid for comparison.

The individual attenuation coefficient is approximately zero for

log10(ε k d / π) < −1,

and then monotonically increases to the BK limit at log10(ε k d / π) = 0, as expected. The
CPA predicts the same behaviour, with only slightly smaller values in the increasing interval.
However, the effective attenuation coefficient is consistent with the individual attenuation
coefficient and CPA only up to log10(ε k d / π) ≈ −0.5. For larger disorder strengths, the
effective attenuation coefficient is smaller than individual attenuation coefficient, and for
log10(ε k d / π) > 0 it is 30–40% smaller, hence also 30–40% smaller than the BK limit.

The unexpected behaviour in the effective attenuation coefficient contrasts with the
results shown in the right-hand panel of Fig. 1, in which it agrees with the the individual
attenuation coefficients and CPA over the full range positional disorders considered. The
agreement could potentially be improved by extending the length L of the interval, but, for
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practical purposes where the interval is short enough that calculations are not prohibitively
time consuming, there exists a scattering strength above which the effective attenuation
coefficient does not reach the BK limit. For the chosen length, L ≈ 400 × lG, the effective
attenuation coefficient does not reach the BK limit for scattering strengths i η > 0.25, and
cognate behaviour occurs in the varying string problem.

A straightforward method to overcome the inconsistency in the numerical calculations
is to form the effective wave field from an ensemble containing only individual fields with
attenuation coefficients within the 25th–75th percentiles of all individual attenuation coeffi-
cients, thus eliminating the handful of individual wave fields in the ensemble that attenuate
much more slowly than the other wave fields, which dominate the effective wave field at large
propagation distances. The total ensemble size is increased to 3000, so that the effective field
is still formed from 1500 individual fields. The right-hand panel of Fig. 3 shows that this
method produces an effective attenuation coefficient that agrees with the individual atten-
uation coefficient, and, in particular, reaches the BK limit for large disorder. The modified
method will be used to calculate all effective fields for the remainder of this study.

3. Clustering: discrete approximation of continuous problem

Each realisation of the wavenumber profile is clustered into humps, where a hump is
defined as the profile between successive local minima, with respect to the step approxima-
tion. (Defining humps in terms of local minima is arbitrary, and local maxima or similar
could equally be used.) Fig. 4 illustrates clustering of a wavenumber profile into humps for
a section of the profile shown in Fig. 2.

20 25 30 35

x/lG

1.2

1

0.8

k

[×k̄ ]

Figure 4: Example of clustering scheme applied to step approximation (black curve) of a rough wavenumer
profile (grey), divided into clustered hump intervals (black broken vertical lines).

The complex-valued reflection coefficient for each hump, Rhmp ∈ C, is calculated by
applying the iterative algorithm discussed in § 2.1 to the steps in the interval occupied by
the hump, i.e., having applied the method to the hump, it is given by b0 in (6). The left-
hand panel of Fig. 5 shows the mean clustered reflection coefficient modulus, 〈|Rhmp|〉hmp,
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where 〈·〉hmp denotes the ensemble average with respect to humps in a profile of length L =
40000× lG, giving ∼ 15000 humps, as a function of non-dimensional correlation length, k̄ lG,
for roughness amplitude ν = 0.1. The mean reflection increases with increasing correlation
length up to k̄ lG ≈ 0.7, i.e. a wavelength ∼ 3 times the mean hump length, after which it
decreases, slowly tending to zero as the correlation length becomes large.
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Figure 5: Left-hand panel: Scaled mean clustered reflection coefficient modulus as a function of correlation
length, for roughness amplitude ν = 0.1. Right-hand panel: Box-and-whisker plot of scaled clustered
reflection coefficient moduli for different roughness amplitudes, for non-dimensional correlation length k̄ lG =
0.7. The boxes indicate the intervals containing the central 50% of the clustered reflection coefficient moduli
(25% to 75% percentiles), and the horizontal lines within them denote the median values (50% percentiles).
The whiskers indicate the remaining sampled data lying in the range of 1.5 times the height of the central
box next to the percentiles. Data points outside this range are considered to be outliers and are shown as
crosses.

The right-hand panel of Fig. 5 shows box-and-whisker plots of the reflection modulus,
scaled by the roughness amplitude, ν, as a function of the roughness amplitude, and for
k̄ lG = 0.7. The reflection coefficient appears to scale with the roughness amplitude. In
particular, the medians of the scaled reflection coefficients are similar, with no evidence of
a trend. The overall distributions are similar for ν = 0.01–0.2, but differ for ν = 0.5, with,
in particular, no outliers appearing for ν = 0.5 and the upper whisker being relatively small
due to the numerical cutoff scheme reducing the range of hump amplitudes. However, the
interquartile range (the box) is consistent with the smaller roughness amplitudes.

Fig. 6 shows the distribution of the reflection coefficient phases, arg(Rhmp), for the non-
dimensional correlation lengths k̄ lG = 0.7 (left-hand panel) and k̄ lG = 2.5 (right). The
distributions are overlaid by a non-parametric probability density function, which is fitted
using a kernel density estimator (Silverman, 1986). For the shorter correlation length, k̄ lG =
0.7, the distribution is approximately bell-shaped, with its mode just above 1.1π, and slightly
skewed towards phase changes between 0.3π and 0.8 π. For k̄ lG = 2.5, the mode is close to
3π / 2, and the distribution is broader than for k̄ lG = 0.7, covering all phases.

The wavenumber profile clustering is used to form an approximate mapping of the varying
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Figure 6: Distributions of reflection coefficient phases for roughness amplitude ν = 0.1 and non-dimensional
correlation length k̄ lG = 0.7 (left-hand panel) and k̄ lG = 2.5 (right). Fitted kernel distributions are overlaid
(black curves).

string problem to a discrete problem, allowing it to be analysed in analogous fashion to the
discrete problem of § 1 and § 2.3, with the constant wavenumber k ≡ k̄ for consistency with
the continuous problem. In analogy to the discrete problem, a scattering strength equivalent
to the mean reflection coefficient is calculated as

i η =
i 〈〈|Rhmp|〉〉

1 + 〈〈|Rhmp|〉〉
, (11)

where 〈〈·〉〉 denotes the ensemble average with respect to realisations and humps in the
realisations. In practice, the scattering strength is increased by increasing the roughness
amplitude, noting that the value of the scattering strength also depends on the correlation
length, as shown in Fig. 5. The kernel functions are used to approximate the phase changes,
which are induced by the different scatterer separations in the discrete problem, and the
phase changes and scattering strengths are considered to be uncorrelated.

Fig. 7 shows individual attenuation coefficients, scaled by the BK limit, as functions of
scattering strength, for the continuously varying string problem (outlined in § 2.1), and its
discrete analogue formed from the clustering method. In all cases, the scaled attenuation
coefficient for the discrete problem is insensitive to the scattering strength, noting that the
BK limit scaling means the values shown do not tend to zero as the scattering strength tends
to zero. For the smallest correlation length, k̄ lG = 0.7, the scaled attenuation coefficient
for the continuous problem closely matches the attenuation coefficient found by clustering,
but with some indication of a trend to decrease as the scattering strength increases, par-
ticularly for scattering strengths greater than i η ≈ 0.18. This behaviour is presumably
due to the reflection coefficient, Rhmp, covering a greater range of values as the roughness
amplitude/scattering strength increases. The trend becomes more pronounced for the inter-
mediate correlation lengths, k̄ lG = 0.9 and 1.1, with the continuous attenuation coefficient
departing the attenuation coefficient found by clustering at i η ≈ 0.25 for k̄ lG = 0.9, and
i η ≈ 0.18 for k̄ lG = 1.1. This is presumably due to correlation between the modulus of
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Figure 7: Scaled individual attenuation coefficients for continuous (×) and clustered (�) problems, as a
function of scattering strength, for non-dimensional correlation lengths k̄ lG = 0.7 (top left-hand panel),
k̄ lG = 0.9 (top right), k̄ lG = 1.1 (bottom left) and k̄ lG = 2.5 (bottom right)

the reflection coefficient and its phase, which becomes more important as the correlation
length increases and the phase spreads over a wider range of values, as shown in Fig. 6. For
the largest correlation length, k̄ lG = 2.5, the continuous attenuation coefficient is signifi-
cantly smaller than the attenuation coefficient found by clustering for the range of scattering
strengths considered, noting that the attenuation rates are very small for large correlation
lengths and small scattering strengths, and the increase in the scaled continuous attenua-
tion coefficient for i η < 0.1 is possibly a numerical artefact associated with difficulties in
calculating small attenuation coefficients.

4. Individual vs. effective wave fields

Fig. 7 shows that individual wave fields attenuate at the same rate along a varying
string and for its approximating discrete problem formed from the clustering method, over a
wide range of parameters. This implies the likely existence of regimes where the individual
attenuation coefficients for the varying string can be predicted by the corresponding effective
attenuation coefficients (as for the discrete beaded-string problem shown in the right-hand
panel of Fig. 1), and, conversely, the individual attenuation coefficients for the beaded-string

11



problem are significantly less than the corresponding effective attenuations coefficients (as
for the continuous problem shown in the left-hand panel of Fig. 1).
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Figure 8: Individual (×) and effective (◦) non-dimensional, scaled attenuation coefficients for discrete
beaded-string problem, as functions of scattering strength, for values of disorder ε k d / π = 0.08 (light
grey), ε k d / π = 0.40 (dark grey) and ε k d / π = 1.00 (black)

Fig. 8 shows (non-dimensional and scaled) individual and effective attenuation coeffi-
cients, for the beaded-string problem, as functions of scattering strength, and for posi-
tional disorders ε k d / π = 0.08, 0.40 and 1.00. The individual attenuation coefficients
are insensitive to the scattering strength in all cases. For the smallest positional disorder,
ε k d / π = 0.08, the effective attenuation coefficient is indistinguishable from the individual
attenuation coefficient. However, for the two larger positional disorders, ε k d / π = 0.40 and
1.00, the effective attenuation coefficients match the individual attenuation coefficients only
for large scattering strengths, with the attenuation coefficients matching for i η greater than
≈ 0.7 for ε k d / π = 0.40, and i η greater than ≈ 0.55 for ε k d / π = 1.00. For smaller scatter-
ing strengths, the effective attenuation coefficients are greater than the individual attenua-
tion coefficients, with the scaled attenuation coefficients being farthest apart at i η = 0.4 and
0.25 for ε k d / π = 0.40 and 1.00, respectively, and tending towards one another as i η → 0.
The deviations for smaller scattering strengths are likely due to wave cancellation effects,
which are insignificant for fast attenuating wave fields, i.e. larger scattering strengths. This
suggests that a sufficiently large scattering strength is required in order for the effective and
individual attenuation coefficients to match, even in the case of discrete scatterers.

Fig. 9 shows log–log plots of individual and effective (non-dimensional and scaled) atten-
uation coefficients for the varying string problem, as functions of roughness amplitude, for
the non-dimensional correlation lengths k̄ lG = 0.7 and 2.5. The scaled attenuation coeffi-
cients are insensitive to the roughness amplitude for small roughness amplitudes, specifically
log10 ν less than ≈ −0.8 and ≈ −1.4 for k̄ lG = 0.7 and 2.5, respectively. In these inter-
vals, the scaled effective attenuation coefficient is approximately twice as large as the scaled
individual attenuation coefficient for k̄ lG = 0.7, i.e. the correlation length at which the in-
dividual attenuation rate is near its maximum. For k̄ lG = 2.5, i.e. a correlation length for
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Figure 9: Individual (×) and effective (◦) non-dimensional, scaled attenuation coefficients for continuous
problem, as functions of roughness amplitude, for non-dimensional correlation length k̄ lG = 0.7 (left-hand
panel) and k̄ lG = 2.5 (right-hand panel)

which the individual wave fields experience negligible attenuation (as shown in the left-hand
panel of Fig. 1), the scaled effective attenuation coefficient is larger than the scaled individ-
ual attenuation coefficient by approximately three orders of magnitude. For larger roughness
amplitudes, the scaled attenuation coefficients vary with the roughness amplitude, with the
effective and individual scaled attenuation coefficients monotonically decreasing with increas-
ing roughness amplitude for k̄ lG = 0.7, and with more intricate behaviour for k̄ lG = 2.5.
Strikingly, in the large-roughness-amplitude intervals, the corresponding effective and indi-
vidual attenuation coefficients rapidly tend towards one another, becoming almost identical
for log10 ν greater than ≈ −0.5 and ≈ −0.6 for k̄ lG = 0.7 and 2.5, respectively, noting that
these values can only be reached using the numerical cutoff scheme.
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Figure 10: Example individual wave fields (grey curves) and corresponding effective wave fields (black) for
continuous problem with non-dimensional correlation length k̄ lG = 0.7 and roughness amplitude ν = 0.05
(left-hand panel), ν = 0.10 (middle panel) and ν = 0.20 (right-hand panel)

Fig. 10 shows three example individual wave fields for the continuous problem with
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k̄ lG = 0.7, and the corresponding effective wave fields. They illustrate the transition in
attenuation behaviours as the roughness amplitude increases, as shown in the left-hand panel
of Fig. 9. The smallest two roughness amplitudes, ν = 0.05 and 0.10, are in the interval
where the attenuation coefficients are proportional to the roughness amplitude squared, and
the effective attenuation coefficient is greater than the individual attenuation coefficient.
Stronger attenuation of the effective wave fields than the individual wave fields is evident
both for ν = 0.05, where the attenuation rates are relatively slow, and for ν = 0.10, where
the attenuation rates are larger, again noting that k̄ lG = 0.7 provides the largest attenuation
of individual fields. The largest roughness amplitude, ν = 0.20, is just large enough for the
effective and individual attenuation coefficients to be close to one another. The wave fields
attenuate more rapidly than the wave fields for the smaller roughness amplitudes (noting
the scaling of the attenuation coefficients in Fig. 9), and the similarity of the individual and
effective attenuation rates is clear, with the effective field approximating the envelope of the
individual field.

5. Summary

The investigation was motivated by contrasting previous findings regarding the use of
effective wave fields to predict attenuation of individual waves due to random scattering
along one-dimensional rough media, with accurate predictions found in discrete scattering
problems and innaccuate predictions in continuous problems. Here, a varying string was
considered, in which the variations were manifest as continuous random fluctuations in the
wavenumber, defined by a Gaussian autocorrelation with specified correlation length and
root-mean-square amplitude (roughness amplitude). The varying string can be viewed as
a model problem for multiple scattering of waves containing the relevant physics, and the
findings potentially also apply to wave propgation in more complicated media and in higher
dimensions (in the same scale regime).

For small to mid-range correlation lengths and roughness amplitudes, it was shown that
the continuous problem is accurately approximated by a simpler discrete problem, in which
scattering characteristics are defined by a single scattering strength (primarily related to
the roughness amplitude in the continuous problem) and a kernel function for the phase
changes between scatterers (primarily related to the correlation length). This provided
evidence of a transition from effective attenuation being unrepresentative of individual at-
tenuation (as in previous investigations for continuous problems) to being representative
(as in previous investigations for discrete problems). It was subsequently shown that the
scattering strength/roughness amplitude controls the accuracy of the effective attenuation,
with, in particular, a sharp transition found in the varying string problem as the roughness
amplitude increases, from the effective attenuation being far greater than the individual
attenuation to the effective and individual attenuations being almost identical. This key
finding required application of a numerical cutoff for non-physical wavenumber values, in
order to reach the regime in which the effective attenuation accurately represents the in-
dividual attenuation, thus explaining why the transition had not been noted in previous
investigations.
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