
Integrating Reactive and Scripted Behaviors
in a Life-Like Presentation Agent

Elisabeth Andr6, Thomas Rist and Jochen Mf.iller
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbriicken
Email: (andre,rist,mueller} @dfki.uni-sb.de

1. ABSTRACT
Animated agents - based either on real video,
cartoon-style drawings or even model-based
3D graphics - offer great promise for
computer-based presentations as they make
presentations more lively and appealing and
allow for the emulation of conversation styles
known from human-human communication.
In this paper, we describe a life-like interface
agent which presents multimedia material to
the user following the directives of a script.
The overall behavior of the presentation agent
is partly determined by such a script, and
partly by the agent’s self-behavior. In our
approach, the agent’s behavior is deiined in a
declarative specification language, Behavior
specifications are used to automatically
generate a control module for an agent display
system. The first part of the paper describes
the generation processw hich involves AI
planning and a two-step compilation. Since the
manual creation of presentation scripts is
tedious and error-prone, we also address the
automated generation of presentation scripts
which may be forwarded to the interface
agent. The second part of the paper presents
an approach for multimedia presentation
design which combines hierarchical pIanning
with temporal reasoning.

1.1 Keywords
human-likeq ualitieso f synthetica gents,l ife-like qualities,
presentationa gents

2. MOTIVATION
A growing number of research projects in both academia and
industry provide increasing evidence that the next major step
in interface evolution will be a shift towards highly person-
alized interfaces in which communication between user and
computer will be mediated by life-like agents. Due to ad-
vances in computer graphics, the realization of visually ap-
pealing agents based on real video, cartoon-styIe drawings
or even model-based 3D graphics, has become easier to han-
dle. To be useful, however, such agents have to behave in a
reasonable and believable manner.
The focus of our work is on presentation agents appropri-
ate for a broad range of applications including computer-
based instruction, guides through information spaces, and
web-based product advertisement. There are several rea-
sons for using animated presentation agents in the interface.
First, they allow for the emulation of presentation styles
common in human-human communication. For example,
they enable more natural referential acts that involve loco-
motive, gestural and speech behaviors (cf. [9]). In virtual
environments, animated agents may help users learn to per-
form procedural tasks by demonstrating their execution (cf.
[12]). Furthermore, they can also serve as a guide through
a presentation to release the user from orientation and navi-
gation problems common in multi-window/multi-screen set-
tings (cf. [3]). Last but not least, there is the entertaining and
emotional function of such animated characters. They may
help to lower the “getting started barrier” for novice users
of computers/applications, and, as Adelson notes, “... inter-
face agents can be valuable educational aids since they can
engage students without distracting or distancing them from
the learning experience” (cf. [I], pp. 355).
To illustrate this, we use some examples taken from the PPP
(Personalized Plan-based Presenter) system. The first appli-
cation scenario deals with instructions for the maintenance
and repair of technical devices, such as modems. Suppose
the system is requested to explain the internal parts of a mo-
dem. One strategy is to generate a picture showing the mo-
dem’s circuit board and to introduce the names of the de-
picted objects. Unlike conventional static graphics where
the naming is usually done by drawing text labels onto the
graphics (often in combination with arrows pointing from the

261

label to the object), the PPP Persona enables the emulation
of referential acts that also occur in personal human-human
communication. In the example, it points to the transformer
and utters “This is the transformer” (using a speech synthe-
sizer), The example also demonstrates how facial displays
and head movements help to restrict the visual focus, By
having the Persona look into the direction of the target ob-
jcct, the user’s attention is directed to this object.

,~~.. _..--_ ._ -_ _.._ - . ..--...__-...___ ~

i ;-.
-.!!!L

Figure 1: The Persona instructs the user in operating a tech-
nical device
In the second example, the Persona advertises accommoda-
tion offers found on the WWW, Suppose the user is planning
to spend holidays in Finland and is therefore looking for a
lake-side cottage, To comply with the user’s request, the
system retrieves a matching offer from the web and creates a
prcscntation script for the PPP persona which is then sent to
the presentation viewer (e.g. Netscape NavigatorTM includ-
ing a JavaTM interpreter). When viewing the presentation,
the PPP Persona highlights the fact that the cottage has a
nice terrace by means of a verbal annotation of a picture;
Le,, Persona points to the picture during a verbal utterance
(cf, Fig, Z), In case graphics is generated automatically,
as in the modem example, the presentation system can build
up a reference table that stores the correspondence between
picture parts and domain concepts. Since scanned pictures
are used in the travelling agent application, such a reference
table has been set up manually in order to enable pointing
gestures to that material, However, in many cases, the author
of a web page already did the job of relating image regions
to concepts, For example, many maps available on the web
are already mouse-sensitive and the system just has to follow
the links to find the concepts related to the mouse-sensitive
regions,
There are several requirements an animated presentation
agent has to meet. According to its functional roles in a pre-
sentation, the animated character must be conversant with a
broad variety of presentation gestures and rhetorical body
postures, Furthermore, it should adopt a reasonable and
lively behavior without being distracting. From the technical
point of view, the declarative specification of agent behaviors

should be supported, and the software that realizes the char-
acterplayer should be highly independent of application and
platform.

The overall behavior of the PPP persona is partly deter-
mined by a presentation script, and partly by the agent’s
self-behavior. In the next section, we introduce a declarative
specification language for defining such behaviors. Behav-
ior specifications are used to automatically generate a con-
trol module of a presentation display component. This dis-
play component will be referred to as the Persona Engine
throughout the rest of the paper. When operated stand-alone,
the Persona Engine expects a presentation script as input and
displays the corresponding presentation as output. However,
for an increasing number of applications, the manual author-
ing of such presentation scripts (including the creation of the
media material such as text, graphics, and animation clips)
is no longer feasible because information has to be commu-
nicated fast and flexibly to meet the specific needs of the
individual presentation consumer. Although powerful au-
thoring tools have become available, they are not likely to
solve this problem as they only facilitate presentation edit-
ing. Therefore, we also address the automatization of the
whole authoring process, including the selection of appro-
priate information content, media allocation, logical presen-
tation structuring, creation of media items which are to con-
vey selected information as well as tbe temporal scheduling
of presentation acts.

q lMIr III

Figure2: PPP Persona presents retrieval results from the web
using the Netscape NavigatorTM and JavaTM

3, CONCEPTION OF THE PERSONA EN-
GINE
As stated above, the Persona Engine takes presentation
scripts as input and displays the corresponding presentation.
However, in contrast to other display components for media
objects (e,g, video or audio players, graphics viewers, etc.)
the output of the Persona Enginge is not only determined by
the directives (Le., presentation tasks) specified in the script.
Rather, the behavior of the animated character follows the
equation:

Persona behavior := directives + self-behavior
Such self-behaviors are indispensible in order to increase the
Persona’s vividness and believability. Currently, they com-
prise idle-time actions, such as tapping with a foot, actions
for indicating activity, e.g., turning over book pages, naviga-
tion acts, such as walking or jumping, and immediate reac-
tions to external events, such as mouse gestures on the pre-
scntcd material,

3.1 Defining the Persona’s Behaviors
To facilitate the definition of Persona behaviors, we have de-
veloped a declarative specification language. Persona be-
haviors are represented as operators of a planning system
relying on standard representation constructs common in AI
planning (e,g,, see [2]). For instance, the following defini-
tion specifics the pre- and postconditions for the action: hot-
tomupjumping,
(dcfprimftive bottomupjumping

:prc ((lefiarm standard)(rightam standard)
(icon noicon)(bodydirfront)
(bodypos stand)(stick off))

:post ((posy -= I))
:gesture 42)

The action can only be performed if both arms are in a stan-
dard position, the Persona is not iconified, is facing the user,
is standing, and isn’t holding a stick. If this is the case, the
image scqucnce associated with the action (:gesture 42) is
played and the state of the world is updated as indicated
in the post conditions :post. Otherwise, the system tries to
achieve the desired preconditions by executing further ac-
tions,
While primitive actions like bottomupjumping are directly
associated with an image sequence, complex actions are
composed of several subactions. An exampIe of a complex
action is:
(defactionseq MoveUp

:pre ((icon noicon)(bodydirfront)
(lefrarm standard)(rightam standard)
(bodypos stand)(stick ofl)

:prim startbottomupjumping
:whilc ((posy # target) :prim bottomupjumping)
:prlm etrdbottomupjumping)

This definition specifies a jump to a given target target. The
I We nrc able to gcnertie both C- and Java-Code.

preconditions of this action coincide with the preconditions
of bottomupjumping. If they are satisfied, the Persona starts
with the jump (startbottomupjumping) and continues to jump
until it reaches the target ((posy # target)). Finally, it finishes
the jump (endbottomupjumping).

3.2 Compiling Behaviors
Since animations have to be performed in realtime (and our
system should run on ordinary PCs/workstations as well),
it’s not advisable to decompose actions into animation se-
quences at nmtime. Following [7], we developed a multi-
pass compiler that enables the automated generation of a
finite state machine from declarative action specifications.
The state machine is then converted into efficient machine
code (cf. Fig. 3). That is we compute for all possible sit-
uations beforehand which animation sequence to play. As
a result, the system just has to follow the paths of the state
machine when making a decision at nmtime.
When creating the source code for the finite state machine l,
action specifications are translated as follows:

l Primirive Actions, such as bottomupjumping, are
mapped onto functions in which (1) a function is
called to achieve the precondition of the action, (2)
a command for playing an image sequence is executed
and (3) the settings of the state variables are updated.

l Complex Actions, such as MoveUp, are mapped onto
functions which may invoke other functions according
their control structures. For example, the middle part
of Fig. 3 lists the source code for the action MoveUp.

l Idle-l&m? Actions are mapped onto functions which
apply heuristics to select an idle-time script, play it
and update the state variables.

The next step is the definition of functions for achieving the
preconditions specified in the action definitions. In particu-
lar, we have to compute action sequences which transform
each possible state in which the system might be into these
preconditions. This is done by regression-based planning.
For each precondition specified in an action definition, we
apply primitive actions in reverse order until all possible start
states axe achieved. The result of this process is a list of
tuples that consist of a state and an action sequence which
has to be performed in this state to satisfy the precondition.
These tupIes are converted to if-then-eLse programme blocks
and compiled into efficient machine code.
The compiled state machine forms the so-called behavior
monitor. Summing up, the behavior monitor accomplishes
the following tasks:

l It decomposes complex presentation tasks into ele-
mentary postures that correspond to a single Persona
frame (e.g. stored as a pixmap) or to an uninterrupt-
able image sequence.

263

Declamtlve Speclflcatlon
(dofactlon MovelJp

(dofpdmltlve bottomupjumlng

Re
E

ntoslve Plannlng +
ode GeneratIon

f
Source Code
Int actlonMOVEUP (lnt start int time,

f
Int x, Int y, char *text)

nt res,a,a~me,relUme,Jobrd;
char c, l bufff
:,“t”,‘l,ssl,ss; int nlong,nshort,spl,sp2,wn,i,j,g;
mls r&art; k

ms = pdmltlveBOlTOMUPJUMPNG
a (r&l$t, time, x, y, text);

I
-= s

ms = plfmkiveENDBOllOMUPJUMPlNG
(mIstart, time, x, y, text):
return rss;
1 . . .

Source Code Compllatlon

Figure 3: Compilation of Persona Actions

l It ensures that necessary preconditions for the execu-
tion of primitive actions are satisfied.

l It updates the internal state of the Persona after the ex-
ecution of a primitive posture.

l It augments the Persona’s presentation behaviors by
believability-enhancing behaviors, such as idle-time
acts.

Besides the behavior monitor; the Persona Engine also com-
prises an event handler, a character composer, and an inter-
face which is tailored to the target platform (currently either
Xl I or a JavaTM interpreter). The task of the event handler
is to recognize whether input derived from theplatforminter-
face needs immediate responses from the Persona. That is,
for each input message the event handler checks whether the
message triggers one of the so-called “reactive behaviors”
stored in an internal knowledge-base. If this is the case, the
selected behavior is made accessible to the behavior moni-
tor, Depending on the application, notifications may be for-
warded to the application program, too. For example in our
PPP system, some events are interpreted as requests for the
satisfaction of new presentation goals and thus activate apre-
scntation planner (thus the dotted line in Figure 4). The pos-
tures determined by the behavior monitor are forwarded to a
character composer which selects the corresponding frames
(video frames or drawn images) from an indexed data-base,
and forwards the display commands to the window system.

Executable Machlne Code . . . T :;~~~ha:~:~~~~lO
mow X%1 1
move %lO, KoO
mow o/011, %ol

I . . .

4. PLANNING PRESENTATION SCRIPTS
For many applications, the manual specification of presenta-
tion scripts is not feasible. This encouraged us to address the
automatic creation of presentation scripts.
To build up a coherent and temporally coordinated presen-
tation for a specified presentation goal, the PPP system ex-
ploits design knowledge. In our approach, we use so-called
presentation strategies to represent that knowledge. They are
characterized by a header, a set of applicability conditions,
a collection of inferior acts, a list of qualitative and metric
temporal constraints and a start and an end interval. The
header corresponds to a complex presentation act. The ap-
plicability conditions specify when a strategy may be used
and constrain the variables to be instantiated. The inferior
acts provide a decomposition of the header into more ele-
mentary acquisition or presentation acts. While acquisition
acts refer to the retrieval or creation of multimedia material,
presentation acts refer to its display.
Currently, onr Persona is able to perform gestures that: ex-
press emotions (e.g., approval or disapproval), convey the
communicative function of a presentation act (e.g., warn,
recommend or dissuade), support referential acts (e.g., to
look at an object and point at it), regulate the interaction be-
tween the Persona and the user (e.g., establishing eye con-
tact with the user during communication) and indicate that
the Persona is speaking. Of course, these gestures may also
superimpose each other. For example, to warn the user, the
Persona lifts its index finger, looks towards ‘the user and ut-
ters the warning.

264

Information concerning the temporal coordination of presen-
tation acts is represented by means of qualitative and quanri-
tatIve co~~sfralnrs, Qualitative constraints are represented in
nn “Allen-style” fashion which allows for the specification of
thirteen temporal relationships between two named intervals,
c,g, (Speak1 (During) Point2). Quantitative constraints ap-
pear as metric (in)equalities, e.g. (5 5 Duration Poinr2). For
more details, see [5]. An example of a presentation strategy
is listed below, It may be used to build up the presentation
shown in Fig. 1.
(de~strategy

:headcr (Introduce Persona User ?object Iwindow)
:appllcabllfty-conditions
(Be1 Persona (ISA lobject Physical-Object))
:lrlfirlors
((Al (Make-Window Persona User ?object ?window))
(A2 (S-Show- Window Persona User ?window ?object))
(A3 (Elaborate-Parts Persona User ?object ?window))
(A4 (S-Wait Persona User)))

:qualitative: ((AI (meets) A2) (A3 (starts) A2)
(A3 (meets) A4)(A4 (jinishes) A2))

:metrlc ((10 < Duration A2) (2 5 Duration A4 5 2))
:start Al
gill id1 A2)

Besides acts for the acquistion of multimedia material, such
as Make-Window, our strategies also comprise presentation
acts to be executed by the Persona, such S-Show-WGzdow.
Note that we are not forced to completely specify the tem-
poral behavior of all acts at definition time. This enables us
to handle acts with unpredictable durations, start and end-
points, i,e, acts whose temporal behavior can only be de-
termined by executing them. For example, in the strategy
we only specify a minimal duration for act A2 and a fixed
duration for act A4.
In order to construct presentation scripts, we have combined
n hierarchical planner (cf, [4]) with a temporal reasoner
which is based on MATS (Metric/Allen Time System, cf.
[S]), The basic idea behind the planning process is as fol-
lows: Given a presentation goal, try to find a matching strat-
egy and post the inferior acts of this strategy as new sub-
goals, For each subgoal, create a local temporal constraint
network which contains all qualitative and metric constraints
corresponding to the applied strategy. In case a subgoal can-
not be achieved or the temporal constraint network proves
inconsistent, apply another matching strategy. The goal re-
Rnement process terminates if all goals are expanded to el-
ementary acquisition or presentation acts. To allow for user
interaction, some goals are realized as mouse-sensitive items
in the final presentation and only expanded on demand, i.e.,
if the user clicks on the corresponding item at presentation
runtimc, After the completion of the presentation planning
process, PPP determines the transitive closure over all qual-
itative constraints and computes numeric ranges over inter-
val endpoints and their difference. The last step is the cre-
ation of a schedule which reflects the temporal behavior of

the presentation. Since the behavior of many events is not
predictable, the schedule still permits time to be stretched
or shrunk between them. At runtime, the initial schedule is
refined by adding new metric constraints to the constraint
network. Fig. 5 provides an overview of the presentation
planning process.

Application
(e.g. a presentation planner)

Behavior Monitor
(situated selection and

decomposition of actions)

+
Event Character

Handler Composer
f 4

Platform interface __
41 ‘1

(Xl I-Veidon)

WWW Browser (with Media APls) J-l
Window System and Device Drivers

Figure 4: Architecture of the Persona Engine

5. EVALUATION
Our research on animated interface agents was motivated by
the assumption that they make man-machine communica-
tion more effective. In order to find empirical support for
this conjecture, we conducted a psychological experiment in
which 28 subjects (15 females, 13 males, average age: 28)
were confronted with 5 web-based presentations that they
were subsequently asked questions about. All presentation
scripts were created using the authoring tool described in this
paper. The subjects were allowed to spend as much time as
they required to answer the questions, but not to watch the
presentations several times. On the average, each subject
spent 45 minutes on the experiment.

265

Input:
a presentation task

e.g., introduce an object

determine a presentation mlui
plan including I-

unmm awu I sltlon and wn s-m-m
pre’sentatlon acts)

determine a presentation
schedule

t

output:
executed presentation

Figure 5: The Presentation Planning Process

Our study focused on two issues: 1) the effect of a Persona
on the subjects’ rating of the presentations (a subjectivemea-
sure), and 2) its effect on the subjects’ comprehension of pre-
sentations (an objective measure). The first issue was mea-
sured through a questionnaire at the end of the experiment.
The second issue was measured through comprehension and
recall questions following the presentations.
In the experiment, two variables were varied. The first vti-
able concerned the Persona itself. The Persona was either
absent or present. In the experiment without the Persona, a
voice spoke the same explanations as in the Persona-version
and pointing gestures by the Persona were replaced with
an arrow. The second variable was the information type.
Subjects were confronted with technical descriptions of pul-
ley systems and with person descriptions (i.e., information
about DPKI employees). The first variable was manipu-
lated between-subjects, while the second variable was ma-
nipulated within-subjects. Thus, each subject viewed either
presentations with or without the Persona, but each subject
was confronted with both kinds of presentation.
Concerning our first objective, the evaluation of the Per-
sona’s affective impact, our study revealed a positive ef-
fect. Most subjects perceived the Persona as being helpful.
Only one subject indicated that he would prefer presenta-
tions without a Persona in the future. Furthermore, subjects

confronted with the Persona-based presentations rated the
technical descriptions as less difficult and more entertaining.
In the case of the DFKI experiment, we didn’t find a signif-
icant difference between the ratings of the difficulty of the
presentation and its entertaining value. Also subjects found
the Persona’s behavior less adequate in this domain. We hy-
pothesize that this result is due to the fact that the Persona’s
realization as a workman is more appropriate to technical
descriptions than to institute descriptions.
Concerning the second objective, the evaluation of the Per-
sona’s learning effect, the difference between the Persona
and the No-Persona version was not statistically significant.
That is, the Persona did neither contribute to the students’
comprehension of the technical matters in the pully exper-
iment, nor to their recall capabilities in the second experi-
ment. As a possible reason, we indicate that we only ex-
ploited Persona behaviors that can be easily replaced with
other means of communication not necessarily requiring the
existence of a Persona. In our experiments, Persona ges-
tures were restricted to neutral facial expressions (i.e. head
and eye movements towards the objects currently being ex-
plained and lip movements indicating that the Persona is
speaking), pointing gestures and simple idle time actions,
such as breathing or tapping with a foot.
On the other hand, initial concerns that people would be dis-

266

trnctcd by the Persona and concentrate too much on the Per-
sonn’s facial expressions instead of looking at the referent of
the pointing gestures were not confirmed. In the question-
naire, nil subjects indicated that the Persona did not distract
them,

6. RELATED WORK
In this section, we will review previous approaches for au-
thoring and controlling the behavior of life-like characters.
Closely related to our work is Microsoft’s Persona project in
which the interface agent is a parrot named Peedy (cf. [7]).
Ncvcrthelcss Peedy is an anthropomorphic character since it
interacts with the user in a natural-language dialogue, and
also mimics some non-verbal (human) communicative acts,
e,g,, Pcedy raises a wing to the ear in case speech recognition
fails, Since Peedy is to act as a conversational assistant (at
least for the sample application, a retrieval system for music
CD’s), the system comprises of components for processing
spoken language, dialogue management and the generation
of audio-visual output. However, the system doesn’t have to
create presentation scripts since the presentation of material
is restricted to playing the selected CDs.
Lester and Stone [13] have combined a coherence-based be-
havior sequencing engine to control the behavior of Heman
tljc Brrg, the pedagogical agent of Design a Plant. This en-
gine dynamically selects and assembles behaviors from a
bchnvior space consisting of animated segments and audio
clips, This material has been manually designed by a mul-
tidisciplinary team of graphic artists, animators, musicians
and voice specialists, On the one hand, this allows the au-
thoring of high quality presentations as the human author has
much control over the material to be presented. On the other
hnnd, enormous effort by the human author is required to
produce the basic repertoire of a course. In contrast to their
work, our approach aims at a higher degree of automatiza-
tion, The basic animation units from which a presentation is
built correspond to very elementary actions, such as taking a
step or lifting one’s arm, which are flexibly combined by the
Persona Engine, Furthermore, we don’t rely on prestored
audio clips, but use a speech synthesizer to produce verbal
output,
Rickel and Johnson [12] have developed a pedagogical agent
called Steve based on the Jack Software, a tool for model-
ing 31) virtual humans [6J. Instead of creating animation
sequences for a course offline and putting them dynamically
togcthcr as in Design a Plant, the 3D character Steve is di-
rcctly controlled by commands, such as “look at”, walk to”
or “grasp an object”. In this case, the character interacts with
virtual objects in the same way as a human will do in a real
cnvironmcnt with direct access to the objects. In contrast
to this, our system strictly distinguish between domain and
presentation objects, That is the PPP Persona is part of a
multimedia presentation and interacts with domain objects
via their depictions or descriptions. This setting is similar
to a setting where a tutor presents and comments slides or

transparencies.
Similar applications have been described by Noma and
Badler [lo] who developed a virtual human-like presenter
based on the Jack Software and Thalmann and Kalra [14]
who produced some animation sequences for a virtual char-
acter acting as a television presenter. While the production
of animation sequences for the TV presenter requires a lot of
manual effort, the Jack presenter receives input at a higher
level of abstraction. Essentially, this input consists of text to
be uttered by the presenter and commands, such as pointing
and rejecting, which refer to the presenter’s body language.
Nevertheless, the human author still has to specifiy the pre-
sentation script while our system computes this automati-
cally starting from a complex presentation goal. However,
since our presentation planner is application-independent, it
may also be used to generate presentation scripts for the Jack
presenter or the TV presenter.
Perlin and Goldberg [l l] have developed an “english-style”
scripting language called IMPROV for authoring the behav-
ior of animated actors. To a certain extent, the library of
agent scripts in their approach can be compared to the reper-
toire of presentation strategies in our approach since they
both allow for the organization of behaviors into groups.
However, their scripts are represented as a sequence of ac-
tions or other scripts while we exploit the full set of Allen
relationships. A novelty of our system is that it doesn’t re-
quire the human author to specify the desired temporal con-
straints between the single presentation acts, but computes
this information dynamically from a complex presentation
goal. Furthermore, our system does not only design presen-
tation scripts, but also assembles the multimedia material to
be presented to the user.

7. TECHNICAL DATA
Implementations of the PPP Persona Engine are currently
available for Unix platforms running X11, and Java-
enhanced WWW-browsers. The Persona Engine has been
implemented in JavaTM and C++. It relies on about 250
frames for each Persona. Currently, we use two cartoon per-
sonas and three real personas composed of grabbed video
material. To control the behavior of the personas, more than
150 different behaviors have been defined. The presenta-
tion planner, the temporal reasoner and the Persona Com-
piler have been implemented in Allegro Common Lisp. To
plan presentation scripts, about 70 presentation strategies
have been defined.

8. coNcLusIoN
Animated user interface agents have been proposed by sev-
eral other authors. Distinguishing features of our approach
are:

l the clear distinction between task-specijic directives
and character- and situation-speci$c self-behaviors

Such a distinction has several advantages. From a
conceptual point of view, it’s more adequate to draw
a clear borderline between a “what to present”- part
which is determined by the application, and a ‘how
to present”-part which also depends on the particular
presenter and the current situation. From the practical
perspective, the approach facilitates script generation
since scripts can be formulated on a higher level of ab-
straction, The distinction is also reflected by different
processing mechanisms. While the design of a pre-
sentation script is performed in a proactive planning
phase, the transformation of these scripts into fine-
grained animation sequences is done reactively taking
into account the presentation situation at runtime.

l the integration of a temporal reasoner
Most commercial systems require the human author to
completely specify the temporal behavior of a multi-
media presentation by positioning events along a time
line, an error-prone and tedious process. More so-
phisticated scripting approaches allow for the spec-
ification of a presentation at a higher degree of ab-
straction, But, the human author still has to input all
desired temporal constraints from which a consistent
schedule is computed. In our approach, schedules are
generated automatically starting from a complex pre-
sentation goal. Furthermore, our system ensures tem-
poral consistency at presentation runtime by contin-
uously adapting schedules whenever necessary. This
has been achieved by combining an AI planning ap-
proach with a module for temporal reasoning.

While our evaluation study did not support the assumption
that life-like agents improve task comprehension and infor-
mation recall cababilities of human presentation consumers,
it clearly revealed a strong affective impact. Our subjects
rated learning tasks presented by the Persona as less difficult
than presentations without a life-like character. Obviously
however, this effect does not occur in all applications, and
users seem to have clear preferences about when to have a
personified agent in the interface. Thus, user interface de-
signers should not only take into account inter-individual,
but also intra-individual differences.

9. KXNOWLEDGMENTS
This work has been supported by the BMBF under the con-
tracts ITW 9400 7 and 97010. We would like to thank Peter
Rist for drawing the cartoons, H.-J. Profitlich andM. Metzler
for the development of the temporal reasoner, Frank Biringer
for implementing the Persona Compiler, and Susanne van
Mulken for supervising the empirical evaluation.

lO.REl?ERENCES
1 B, Adelson. Evocative Agents and Multi-Media In-

terface Design. In Proc. of the UIST’92 (ACM SIG-
GRAPH Symp. on User Interface Software and Technol-
ogy), pages 351356, Monterey, CA, U.S.A., 1992.

J. Allen, J. Hendler, and A. Tate, editors. Readings in
Planning. Morgan Kaufmann, San Mateo, California,
1990.

E. Andre, J. Mtiller, and T. Rist. WebPersona: A Life-
Like Presentation Agent for the \Vorld-Wide Web. In
Proc. of the IJCAI-97 Workshop on Animated Intetjbce
Agents: Making them Intelligent, Nagoya, 1997.

E. Andre and T. Rist. The Design of Illustrated Docu-
ments as a Planning Task. In M. Maybury, editor, Intel&-
gent Multimedia Znterjbces, pages 94-l 16. AAAI Press,
1993.

E. And& and T. Rist. Coping with temporal constraints
in multimedia presentation planning. In Proc. of AAAI-
96, volume 1, pages 142-147, Portland, Oregon, 1996.

N.I. Badler, C.B. Phillips, and B.L. Webber. Simulating
Humans: Computer Graphics, Animation and Control.
Oxford University Press, New York, Oxford, 1993.

G. Ball, D. Ling, D. Kurlander, J. Miller, D. Pugh,
T. Skelly, A. Stankosky, D. Thiel, M. van Dantzich,
and T. Wax. Lifelike computer characters: the persona
project at microsoft. In J.M. Bradshaw, editor, Softwure
Agents. AAAVMIT Press, Menlo Park, CA, 1997.

H. A. Kautz and P. B. Ladkin. Integrating metric and
qualitative temporal reasoning. In Proc. of AAAI-91,
pages 241-246,199l.

J. Lester, XL. Voerman, S.G. Towns, and C.B. Callaway.
Cosmo: A life-like animated pedagogical agent with de-
ictic believability. In E. Andre, editor, Proc. ofthe ZJCAI-
97 Workshop on Animated Interface Agents: Making
them Intelligent, Nagoya, 1997.

10 T. Noma and N.I. Badler. A Virtual Human Presenter. In
Proc. of the IJCAI-97 Workshop on Animated Interface
Agents: Making them Intelligent, pages 45-51, Nagoya,
1997.

11 K. Perlin and A. Goldberg. Improv: A System for
Scripting Interactive Actors in Viiual Worlds. Computer
Graphics, 28(3), 1996.

12 J. Rickel and W.L. Johnson. Integrating pedagogical ca-
pabilities in a virtual environment agent. In Proceedings
of the First International Conference on Autonomous
Agents, Marina de1 Rey, 1997.

13 B.A. Stone and J.C. Lester. Dynamically sequencing an
animated pedagogical agent. In Ptvc. of AAAZ-96, vol-
ume 1, pages 424-431, Portland, Oregon, 1996.

14 N. Magnenat Thalmann and P. Kalra. The Simulation
of a Vial TV presenter. In Computer Graphics and
Applications, pages 9-21. World Scientific, 1995.

268

