
Dissertation

Reliable Company Logo Detection with
Deep Convolutional Neural Networks

Addressing the Small Object Detection Problem

Christian Eggert

February 2019

Department of Computer Science
University of Augsburg

Advisor: Prof. Dr. Rainer Lienhart
Reviewers: Prof. Dr. Rainer Lienhart

Prof. Dr. Björn Schuller

Thesis defense: February 8th, 2019
Examiners: Prof. Dr. Rainer Lienhart

Prof. Dr. Björn Schuller
Prof. Dr. Elisabeth André

iii

Abstract

Many companies conduct market research to gather information about their cus-
tomers. Among other things, they are often interested in information about cus-
tomer expectations, customer satisfaction, brand popularity and brand perception.
A classical instrument of market research to gather such data are surveys.

While surveys undeniably offer valuable insights into many aspects of customer
relations, they are time-consuming and expensive to conduct. Because of these
limitations, surveys can often be only conducted on a comparatively small sample of
people. Therefore, market research organizations are always interested in obtaining
data through different channels. The rise of social media has opened up such a
channel. With cell phone cameras being ubiquitous nowadays, many people post
pictures of their daily activities on social media sites. In doing so, they capture
their interactions with certain brands. This capture of brand interaction sometimes
is a conscious act, e.g. by showing off a new car to friends or by displaying affection
to a certain brand of beer. However, more commonly these brand interactions are
captured inadvertently. For example, a self portrait might capture the brand of
clothing the user likes to wear. In any case, images on social media provide a
useful source of information for market research. The reliable detection of company
logos forms an important building block for any further analysis of these brand
interactions.

Object detection is a well-studied problem in computer vision. Great advances
have been made especially in recent years with the advent of object detection
pipelines like R-CNN and Fast(er) R-CNN, which are based on deep convolutional
neural networks. In this work, we have applied these new techniques to the problem
of company logo detection. We have created a new object detection dataset as a
benchmark, specifically targeted for company logo detection. And while on the face
of it, company logo detection is nothing but a special case of object detection, we
have noticed some peculiarities when applying these new object detection pipelines
to our new dataset. We have noticed for example, that while being slower, the
oldest approach (R-CNN) performs considerably better on our dataset than newer
approaches like Fast(er) R-CNN which are usually considered to be improvements
over R-CNN – both in terms of detection performance and speed.

In this work we investigate the reasons for this discrepancy by analyzing each
step of these object detection pipelines. In particular, we look at the generation of
both heuristic and trainable object proposals and their classification. For heuristic
object proposals we look at two commonly used algorithms: Selective Search and
Edge Boxes. We observe some conditions under which these algorithms fail that
have particular relevance for company logos. In particular we notice that both algo-
rithms struggle to identify proposals for text-based company logos and introduce an
additional heuristic to mitigate this problem and demonstrate its effectiveness. For
trainable object proposals we look at Region Proposal Networks (RPNs) which we
analyze in detail, both theoretically and in in practice and notice some fundamental

iv

shortcomings for detecting small company logos. We introduce some simple modi-
fications and show that these are able to considerably improve the performance of
small object proposals.

We also look at the classification stage and identify the receptive field of the
network as an important quantity to improve the classification performance. We
finally look at SSD, a more modern single-stage approach for object detection which
allows us to incorporate all our observations into a single detection framework. Our
improvements allow us to improve our object detection pipeline to a point where
where we not only exceed the detection performance of R-CNN but can also perform
real-time company logo detection.

v

Acknowledgements

There are many people who deserve credit because they – directly or indirectly –
influenced this work and made it possible. Most notably, I want to thank Prof.
Lienhart, whose door was always open, for supervising and reviewing this thesis and
for providing ideas and criticism. Similarly, I want to express my gratitude towards
Prof. Schuller for the time he invested in reviewing this thesis.

Also, I want to thank my colleagues Dan Zecha, Philipp Harzig, Stephan Brehm
and Moritz Einfalt for the countless discussions which often provided valuable in-
sights and alternative views on many problems. This also extends to my former
colleagues Anton Winschel, Christoph Lassner, Christian Ries, Fabian Richter and
Stefan Romberg from whom I learned a lot.

I also want to express my gratitude towards Carolin Kaiser, Holger Dietrich,
René Schallner and Raimund Wildner from GfK-Verein who partially funded much
of the work that forms the basis of this thesis. They also had a major part in
re-annotating the FlickrLogos-32 dataset for object detection.

Finally, I want to thank my family and especially my mother who always sup-
ported me during my studies.

vi

To my mother, who always supported me.

Contents

Abstract . iii
Acknowledgements . v

1 Introduction 1
1.1 Motivation and Applications . 1
1.2 Challenges . 2
1.3 Related Work . 4
1.4 Contributions . 8
1.5 List of Publications . 9
1.6 Thesis outline . 10

I Foundations 11

2 Datasets and Network Structures 13
2.1 The FlickrLogos-47 Dataset . 13

2.1.1 Motivation . 13
2.1.2 Dataset Statistics . 15
2.1.3 Evaluation Protocol . 17

2.2 The VGG16 Network . 20
2.2.1 Architecture and Nomenclature 20
2.2.2 Receptive Field . 22
2.2.3 Usage as fully-convolutional Network 23

II Two-Stage Object Detection 25

3 Proposal Stage 29
3.1 Criteria for good object proposals . 29
3.2 Selective Search . 30

3.2.1 Similarity Metrics . 31
3.2.2 Diversifying object proposals 32
3.2.3 Ranking object proposals . 33

3.3 Edge Boxes . 34

vii

viii CONTENTS

3.3.1 Finding and grouping edges 34
3.3.2 Scoring function . 35
3.3.3 Search strategy and proposal refinement 37
3.3.4 Discussion of Selective Search and Edge Boxes 38

3.4 Heuristic object proposals on FlickrLogos 38
3.4.1 Performance Evaluation . 38
3.4.2 Selective Search Error Modes 40
3.4.3 Object Proposals for Text-based Company Logos 41
3.4.4 Improving heuristic Object Proposals 43
3.4.5 Conclusions . 45

3.5 Trainable Object Proposals . 45
3.5.1 Region Proposal Networks . 45
3.5.2 Evaluating RPNs on FlickrLogos 52
3.5.3 Analyzing the Anchor Grid 54
3.5.4 Improving RPN object proposals 59
3.5.5 Conclusion . 63

4 Classification Stage 65
4.1 R-CNN . 65

4.1.1 The R-CNN detection pipeline 65
4.1.2 Implementation Details . 67
4.1.3 Evaluation . 69

4.2 Fast R-CNN . 70
4.2.1 Network architecture and Detection pipeline 70
4.2.2 Fast R-CNN on FlickrLogos-47 73
4.2.3 Receptive field and object size 76

4.3 Faster R-CNN . 80
4.3.1 Network architecture . 80
4.3.2 Results on FlickrLogos-47 . 81

4.4 Selective Magnification . 83
4.4.1 Overview . 83
4.4.2 Selecting object proposals for magnification 85
4.4.3 Efficient Rectangle Packing 87
4.4.4 Evaluation . 91

4.5 Conclusion . 93

III Single-Stage Object Detection 95

5 The Single Shot MultiBox Detector 99
5.1 Original Implementation . 99
5.2 Improving SSD for Company Logo Detection 103

5.2.1 Analyzing SSD . 103

CONTENTS ix

5.2.2 Addressing the Weaknesses . 105
5.2.3 Implementation Details . 105
5.2.4 Evaluation . 110
5.2.5 Comparison to other approaches in the literature 113

5.3 Conclusion . 114

IV Conclusion 115

6 Conclusions 117
6.1 Conclusions . 117
6.2 Outlook . 118

A FlickrLogos-47: Object Instances 120

B Edge Grouping 122

C Sigmoid or Softmax 123

D Detection Examples 130

Bibliography 137

x CONTENTS

Chapter 1

Introduction

1.1 Motivation and Applications

For many companies, market research is a powerful tool to remain competitive. By
analyzing current trends and customer demands, market research allows companies
to tune their products to fit the demand of their target markets better.

Market research companies have developed many metrics to gain information
on the target markets. One important metric is to track brand popularity among
specific population groups – usually defined by gender, age, and income brackets.
Another metric is to track whether certain population groups have a predominantly
positive or negative perception of a particular brand. Sometimes, market research
companies also try to gauge the emotional investment into brands.

In order to apply these metrics, data has to be gathered. Surveys are one of
the most important sources of information. However, surveys are costly and time
consuming to conduct, which usually only allows questioning a comparatively small
sample of people. Therefore market research companies are looking for different
sources of information which are more easily accessible.

The recent rise of social media has created a new source of information for mar-
ket research companies. Combined with cell phone cameras – which are ubiquitous
nowadays – many people use services like Twitter, Facebook and Instagram to share
pictures of their daily life with each other. By sharing these images, consumers pro-
vide market research companies a window into their habits and preferences. Some-
times these preferences are expressed as a conscious act by the user, e.g., by showing
off a newly purchased product to their friends. However, most of the time, these
preferences are expressed unintentionally, e.g., the brand of clothing a user usually
wears. By analyzing the image content, these images can not only convey informa-
tion about brand preferences and popularity but also about the emotional connection
a user has with a particular brand.

The analysis of customer brand relations is not the only field of activity for mar-
ket researchers. Sometimes, researchers also survey supermarkets to gather informa-
tion on what brands are carried by which supermarket chains. Many companies are

1

2 CHAPTER 1. INTRODUCTION

interested in this information because it allows them to gain knowledge on which
competing products are on offer and how they are priced in comparison to their
product. This surveying of supermarkets is usually conducted by taking pictures of
shelves which are later analyzed manually.

Manually collecting and analyzing these images is a time consuming and expen-
sive process and therefore suffers from many of the same drawbacks as customer
surveys. Automating image analysis is, therefore, an essential focus of market re-
search companies. Computer vision can assist market researchers in performing
these analyses. However, in this work, we will not look at the automation of the
actual analyses but instead focus exclusively on the reliable detection of company
logos which forms an important building block for the analyses mentioned above.

1.2 Challenges

Object detection refers to the ability to recognize and localize object instances in a
scene. What we mean by localization is the identification of an image area containing
the object by enclosing it with a tight bounding box. By recognition we mean the
assignment of this image area to an element in a set of pre-defined classes. An image
may contain an arbitrary number of object instances of arbitrarily many classes.

The human brain is able to recognize and localize objects in an instant so that
we are tempted to think that this is an easy task. However, when we are pressed
to give a precise mechanism by which we recognize objects, we usually are unable
to do so. This inability to define a precise function for mapping image content to
object classes makes it hard to tackle this problem in a computer.

Even if we disregard the problem of localization, objects can vary strongly in
their visual appearance, and the recognition function needs to be able to account
for these variations. We can roughly group the variation in appearance into the
following four categories:

Variance in Scale A classic problem in object detection that any object detection
algorithm needs to overcome is the problem of scale variance (i.e., object instances
can vary in size). In the case of company logo detection we have found that these
variations in scale can be quite severe: It is not uncommon that the side length
of the largest object has 50 times the size of the smallest object. These extreme
variations in scale are often due to the fact that some images are taken with the
intent of depicting product logos while others are not. In the former case, the logos
tend to appear quite large while in the latter case, they can be tiny.

Variation in Pose Another classic problem of object detection is variation in
pose. The pose of an object refers to its orientation in 3D space relative to the
camera. An example of differences in object pose would be the existence of front
and profile views of the same object. Although these views might visually be quite

1.2. CHALLENGES 3

different, an object detection algorithm should be able to recognize both views of
the object as belonging to the same object class. Fortunately, this problem is only
of minor significance to company logo detection since most company logos are 2D
objects. As such, they are usually found on planar surfaces or surfaces that can be
approximated as planar. Differences in pose can therefore often be modeled as a
simple perspective transformation.

Truncation and Occlusion Sometimes, object instances are not fully visible.
In such a case we refer to the object as truncated. Truncation can have multiple
reasons: One of the most common reasons is that the object has only been partially
caught in the picture frame. Occlusion is a special case of truncated where another
object is partially blocking the view and therefore truncating the object in question.
While the aforementioned situations are commonplace in object detection, we found
that another case of truncation is relevant for company logo detection: Since most
company logos are 2D objects, they may exist on a curved surface. A typical example
of such a situation would be the logo of a brewery on a bottle. In such a case the
bottle could be rotated in such a way that the logo is only partially visible.

Intra-class Variance Even objects of the same class can vary in appearance.
One example regarding company logos might be varying backgrounds. For example,
Coca-Cola logos might be located as advertisements on billboards, which tend to
have a white background, or on bottles, which tend to have a dark background.
Another example that falls into this category are multiple versions of the same
company logo: Companies sometimes re-brand their products by changing the logo
associated with the product. Ideally, the recognition function should be able to
classify each logo version equally well.

Another source of visual variation is company logos which consist of both a
symbol and a text component. Symbol and text often appear in different geometric
configurations and sometimes only one of these components is actually present.
While it is indeed possible to train a classifier which is able to take all these modes
into account, we do not encounter this problem in this work, because we model
text-based and symbol-based company logos as separate classes (see Chapter 2.1).

Computational Complexity Since the ultimate goal of company logo detection
is to evaluate images from social media, the algorithms need to be able to scale to a
potentially large number of images. Therefore, the computational effort to analyze
these images becomes an important factor. As we shall see in Chapters 4.2.3 and 4.4
this is especially true when considering small object instances because detecting
small object instances is usually associated with more computation.

4 CHAPTER 1. INTRODUCTION

(a) (b) (c) (d)

Figure 1.1: Challenges of company logo detection. (a) Strong differences in scale.
(b) Differences in pose. (c) Truncated logo instances. (d) Intra-class variance.

1.3 Related Work

Object detection is a traditional discipline of computer vision. Long before deep
convolutional neural networks made their impact on the computer vision community,
much work has been done in this field. The primary challenge of object detection
is to take account of the large visual variety of objects, as described in the previous
chapter.

Before the advent of deep convolutional neural networks, this was usually difficult
to achieve on raw pixel data. Therefore, these early approaches typically relied on
hand-crafted image features which helped a classifier to focus on relevant image
content.

Features These features could take very different forms, depending on the desired
application: For some time, features based on Haar wavelets [32] were popular. Im-
proved features inspired by Haar wavelets were used by [79] and [53] for detecting
human faces. In some rather rare instances, texture-based features extracted by Ga-
bor filters [29] were used for detecting humans and parsing body poses [69]. Object
shape was also previously used for detection [84] using shape context [6] features.
However, the by far most popular features for object detection were gradient his-
tograms, either computed on a dense grid across the whole image [14] or at sparse
locations [57]. While the approaches mentioned above can achieve reasonable detec-
tion performance in specialized applications, the underlying hand-crafted features
limit their general applicability since different objects may be mapped to a similar
feature representation. This lack of distinctiveness has been demonstrated to be
a problem for gradient histogram based features in [80] who conclude that better
learning algorithms or bigger datasets are unlikely to improve the quality of object
detectors significantly.

1.3. RELATED WORK 5

Object models Largely independent from the underlying feature representation
is the choice of object model. One of the most simple models consists of a single
fixed feature template which is matched to image regions which potentially contain
object instances [57, 14]. This approach usually works well for rigid objects whose
pose does not vary very strongly. For objects which are not rigid, this approach
is unlikely to yield good results, and part-based models have been introduced to
address this problem.

Part-based models can roughly be classified as probabilistic models or pictorial
structure-based models. Probabilistic part-based models – often called constellation
models [81, 27] – model an object as collections of features which have an expected
geometric relation with each other. For these models to be computationally feasible,
they usually need to make strong assumptions about the probability distributions
which express the relations between features. Models built on the idea of picto-
rial structures [28] regard objects as being composed of multiple parts (e.g., a face
being composed of eyes, nose, mouth, etc.). Each part exists in a preferred geomet-
rical configuration with respect to the other parts but is allowed to deviate from
this preferred position. By deviating from the expected position, the model incurs
deformation costs. Pictorial structure-based model have been applied to object de-
tection [25] with great success. Deformable part models [24] – which are one of the
most successful approaches to object detection prior to the triumph of deep learning
– are based on pictorial structures. They restrict the object model to a star-shaped
arrangement of parts which can be computed efficiently by employing a distance
transform [26].

DCNN-based approaches After the initial success of deep convolutional neural
networks for image classification by Krizhevsky et al. [49], new network architec-
tures like VGG16 [72], Inception [74] and Residual Networks [36] were developed.
They were able to significantly improve on the results of Krizhevsky et al. Deep
neural networks also had a major impact on object recognition because they blur the
distinction between feature extraction, object model, and classification. All these
previously separate steps are moved into the layers of a single neural network that
is jointly optimized.

The high computational cost of evaluating a deep neural network made it in-
feasible to apply it in a traditional sliding window fashion applied over multiple
image scales. Similar to the idea of sparsely distributed interest points, the idea
of object proposals – a sparse set of bounding boxes describing the outline of po-
tential object instances – was introduced. There exists a large variety of object
proposal algorithms based on different principles: Some algorithms are based on
rapidly generating multiple object segmentations [11, 21, 63]. Other algorithms
start with a single (over-)segmentation of the image and iteratively merge object
proposals [59, 77]. Some object proposal algorithms are based on a ranking mech-
anism which measures the objectness [1, 12] of a proposal. In this work, we will
only cover two object proposal algorithms in detail (see chapter 3), namely Selective

6 CHAPTER 1. INTRODUCTION

Search [77] – which is based on merging superpixels – and Edge Boxes [85] – which
ranks the objectness of a dense grid of proposals.

R-CNN [31] was the first object detection framework which was based on con-
volutional neural networks and used Selective Search [77] as a source for object
proposals. While the use of object proposals made R-CNN computationally feasi-
ble, it is comparatively slow in processing images. Subsequent improvements like
Fast R-CNN [30] and Faster R-CNN [66] made significant improvements regarding
detection speed. Because all of these detection frameworks use object proposals in
one way or another, we refer to these class of algorithms as two-stage object detection
approaches. We will cover these approaches in detail in Chapter 4. Another class
of neural network based object detection pipelines do away with object proposals
entirely. We refer to these algorithms as single-stage object detection approaches
which we cover in chapter III in greater detail. The two most notable algorithms in
this class are the Single Shot MultiBox Detector (SSD) [56] and YOLO [65]. For the
scope of this work, we disregard YOLO since even the authors point out that by its
very design it has difficulties to detect small objects and groups of object instances
which are located close to each other – two attributes that make YOLO unattractive
for company logo detection.

Recent improvements to general object detection While the above-
mentioned object detection pipelines have been very successful, they rely only
on deep image features (i.e., features produced from layers at a late stage of the
network) – with the exception of SSD which combines predictions from multiple
feature maps. In classical network architectures like the ones described above, deep
features have two properties: They describe high-level semantic aspects of an image
but have a lower spatial resolution than the original input image. By contrast,
shallow features (i.e., features produced from early layers of the network), usually
only describe low-level image structures like edges or corners, but still maintain
much of the spatial resolution of the original image. It has been observed that
this reliance on low-resolution deep features is not ideal, especially for tasks which
require precise location or fine-grained classification (e.g., segmentation). More
recent approaches, therefore, attempt to incorporate multiple feature maps into the
prediction: SSD [56] uses multiple network layers to make independent predictions
for smaller and larger objects. Network architectures using Hypercolumns [33]
make predictions by concatenating multiple features from different feature maps
into a new feature representation. Other architectures that rely on concatenation of
features are HyperNet [46] and Inside-Outside Networks [5]. A different approach
to combine multiple feature maps are encoder-decoder networks: U-Net [70] follows
the architecture of traditional classification networks by performing downsampling
of feature maps between convolutions producing a low-resolution feature map.
This low-resolution feature map is upsampled using deconvolutions while allowing
earlier high-resolution information to refine the feature representation through skip-
connections. Other approaches which employ skip-connections are Recombinator

1.3. RELATED WORK 7

Networks [40] and Stacked Hourglass Networks [60]. Feature Pyramid Networks [54]
are conceptually similar to U-Net but in addition to U-Net use multiple feature
maps to make predictions. Many of these approaches make use of multiple feature
maps for prediction. All of them acknowledge the need for high-resolution informa-
tion to improve predictions. However, there is another concept that none of them
consider as an important factor: The receptive field of a feature map. In this work
we will show the influence of the receptive field on the detection quality.

In addition to improvements in network architectures, some work has been done
on the pipelines itself: [8] describe an improved non-maximum suppression which
not only takes the score of the detection into account but also the degree of overlap
between detections. However, this mechanism only offers potential improvements for
datasets in which the bounding boxes of object instances tend to overlap strongly,
which is not the case for company logo detection. There are other new approaches
to object detection, which have been published recently that we do not cover in
this work: Mask R-CNN [34] simultaneously predicts bounding boxes and segmen-
tation masks. The inclusion of the segmentation task is believed to be beneficial
to object localization. Cascade R-CNN [10] is a multi-stage extension to R-CNN,
which implements a cascade classifier. Although designed for use with R-CNN it
can in principle be applied to Fast(er) R-CNN as well. This approach can help to
reduce false positives and improve localization. [44] uses a network to predict the
overlap of detections with a groundtruth object which can be used to guide the
non-maximum suppression. CornerNet [51] models object detection as a regression
problem to predict the corner points of bounding boxes.

Company logo detection Finally, we like to examine some related work which
is specific to company logo detection. There exist quite a few datasets for com-
pany logos: The METU dataset [75] is a very large dataset containing 923,343
instances from 687,842 different trademarks. However, this dataset is built primar-
ily for trademark retrieval and thus is only of limited use for the task of company
logo detection: It only provides image-level annotations and does not contain real-
world images: Each image usually consists of a tight cut-out of the logo in front of a
uniform white background. A large dataset geared towards company logo detection
is the Logos in the Wild [76] dataset. This dataset consists of 32,850 annotated logo
instances of 871 different brands. While both the quantity of logo instances and the
quality of annotations is impressive, it suffers from two major drawbacks: It lacks a
standardized evaluation script, and the images are not directly available for down-
load. The dataset provides a list of URLs from which the images can be retrieved.
Unfortunately, many of the URLs are no longer accessible which means that even
with a commonly accepted evaluation protocol, the results may not be comparable.
Aside from the FlickrLogos-47 dataset which we will introduce in chapter 2.1 there
are a few other datasets which are usable for company logo detection. The most
important examples are the BelgaLogos dataset [45, 52] – which consists of 2,697

8 CHAPTER 1. INTRODUCTION

annotated logo instances (which are not classified as junk) – and the LOGO-Net [38]
dataset.

Previous work modeled company logo detection as an image retrieval problem [3,
45, 2] using SIFT [57] features. To improve the scalability of these approaches,
feature triplets [68] have been introduced and have later been generalized to feature
bundles [67].

Su et al. [73] investigate the viability of data augmentation to train a logo de-
tection system in the absence of large amounts of training data. The approach is
conceptually very similar to previous work [18] done by us. Hoi et al. [38] introduce
LOGO-Net and apply several deep learning based approaches to object detection
such as R-CNN [31] and Fast R-CNN [30] as a base line. In doing so, they no-
tice similar problems for company logo detection as we do, which we will discuss in
chapter 4.2.2. Bombonato et al. [9] apply the SSD framework [9] to the problem of
company logo recognition.

1.4 Contributions

The contributions covered in this work can be summarized as follows:

Heuristic Region Proposals We analyze two algorithms for heuristic object
proposals, namely Selective Search [77] and Edge Boxes [85], for their suitability
for company logo detection. We notice that object proposals generated by Selec-
tive Search and Edge Boxes complement each other well and that by diversifying
the heuristics by which object proposals are generated we are able to improve the
performance while still using the same number of proposals. During our analysis of
Selective Search, we notice a failure mode which frequently occurs in combination
with text-based company logos. Since this failure mode is at the very core of Selec-
tive Search, we introduce VH-connect [82] – an additional heuristic which is targeted
towards text-based company logos. We can show that we are able to improve the
quality of proposals and that these improved proposals also translate into improved
detections.

Improved Region Proposal Networks Aside from heuristic object proposals
we also examine trainable object proposals. Specifically, we look at Region Pro-
posal Networks (RPNs). When we apply RPNs to our dataset, we notice that they
do not perform as well as heuristic object proposals. We analyze the reasons for
this deficiency both theoretically and through experiment and identify two crucial
factors which contribute to this behavior. We validate our results and show that
by addressing these factors, we can considerably improve the performance of the
proposal generation [17, 20].

1.5. LIST OF PUBLICATIONS 9

Receptive field vs. object size We apply the R-CNN and Fast R-CNN detec-
tion pipeline to the problem of company logo detection. Although Fast R-CNN is
significantly faster than R-CNN, we notice a steep difference in performance. This is
surprising because Fast R-CNN can in principle be made equivalent to R-CNN. We
analyze the differences between both approaches in detail and identify the relation
between the size of the object and the receptive field of the network as an important
factor for increasing classification performance. We show that simple magnification
of the images can considerably improve the detection performance at the cost of
considerably increased runtime. We propose a selective magnification strategy [19]
which is able to exploit this fact while reducing the impact on the overall runtime.

Improved SSD Pipeline All the previously discussed techniques are only appli-
cable in the context of two-staged object detection which consists of identification
of object proposals and subsequent classification of these proposals. We turn to the
SSD detector – a single stage approach to object detection which eliminates the
need for object proposals. However, we find that we can apply our findings from
both our analysis of Region Proposal Networks and our analysis of receptive fields to
the SSD detector. In doing so, we are able to improve the quality of the detections
considerably and can detect company logos orders of magnitude faster than R-CNN
while simultaneously exceeding its detection performance.

Many parts of this work have previously been published in the academic lit-
erature. Our findings regarding improved object proposals with Region Proposal
Networks have been published in [17] and [20]. The selective magnification strategy
has been published in [19]. Our findings on heuristic object proposals were published
in [82] which was done in cooperation with Anton Winschel. Another publication
which is only marginally relevant to this work is our work on data augmentation for
company logo detection [18] in which we show that we are able to train an R-CNN
pipeline using only a few training examples.

1.5 List of Publications

Improving VLAD: Hierarchical Coding and a refined Local Coor-
dinate System, Christian Eggert, Stefan Romberg, Rainer Lienhart, IEEE
International Conference on Image Processing 2014, Paris, October 2014

On the Benefit of Synthetic Data for Company Logo Detection, Chris-
tian Eggert, Anton Winschel, Rainer Lienhart, ACM Multimedia 2015, Bris-
bane, October 2015

Saliency-guided Selective Magnification for Company Logo Detec-
tion, Christian Eggert, Anton Winschel, Dan Zecha, Rainer Lienhart, IAPR

10 CHAPTER 1. INTRODUCTION

International Conference on Pattern Recognition 2016, Cancun, December
2016

Improving Small Object Proposals for Company Logo Detection,
Christian Eggert, Stefan Brehm, Dan Zecha, Rainer Lienhart, ACM Interna-
tional Conference on Multimedia Retrieval 2017, Bucharest, June 2017

A Closer Look: Small Object Detection in Faster R-CNN, Christian
Eggert, Stefan Brehm, Anton Winschel, Dan Zecha, Rainer Lienhart, IEEE
International Conference on Multimedia and Expo, Hong Kong, July 2017

1.6 Thesis outline

This work consists of four parts:
Part I introduces the foundations for this work. We will introduce the

FlickrLogos-47 dataset which is a dataset for company logo detection that we have
created with the help of GfK-Nürnberg e.V. We will discuss the properties of this
dataset and its relation with other datasets for general object detection as well as
some unique challenges associated with it.

Part II discusses two-stage object detection. Two-stage object detection consists
of a proposal stage and a classification stage. We will first take a look at object
proposals, which we group into heuristic object proposals and trainable object pro-
posals. For heuristic proposals, we analyze the applicability of two algorithms to
company logo detection: Selective Search [77] and Edge Boxes [85]. Here we also
introduce the aforementioned VH-connect algorithm for improved proposals for text-
based company logos. For trainable object proposals, we analyze Region Proposal
Networks [66] and suggest improvements based on our observations.

After analyzing the proposal stage, this part also contains a look at the clas-
sification stage. We analyze R-CNN, Fast R-CNN, and Faster R-CNN and make
our observations regarding receptive field and where we suggest our aforementioned
selective magnification strategy.

Part III contains our evaluation of SSD and a description of how we can integrate
our observations on the receptive field and on improving Region Proposals Networks
into the SSD framework. We present our best pipeline for object detection and
perform some evaluations on other datasets. Additionally, we compare our approach
to other approaches to company logo detection.

Part IV concludes this thesis and contains an outlook on potentially rewarding
directions for future research on company logo detection.

Part I

Foundations

11

12

Chapter 2

Datasets and Network Structures

2.1 The FlickrLogos-47 Dataset

2.1.1 Motivation

For evaluating our object proposal and detection pipelines, we have created a new
dataset called FlickrLogos-47. FlickrLogos-47 is based on the FlickrLogos-32 dataset.
FlickrLogos-32 is a dataset which was primarily conceived for the task of image
retrieval, although it can also be used for object detection since it features object-
level annotations in the form of segmentation masks and bounding boxes as well as
image-level annotations.

As the name suggests, FlickrLogos-32 consists of 32 different object classes of
company logos. The dataset contains 8240 images in total with 4280 images in the
training/validation set and 3960 images in the test set. Because FlickrLogos-32 was
conceived for image retrieval, both the trainval set and the test set contain 3000
logo-free images as distractor images.

However, it soon became clear that the object-level annotations of FlickrLogos-
32 were insufficiently detailed for the task of company logo detection: The most
prominent problem is that not all object instances were annotated but only the
most prominent object instances. While this is not necessarily a problem from the
standpoint of image retrieval, it is problematic for object detection because the set of
negative examples is not clean. These incomplete annotations can have particularly
strong effects when strategies as hard-negative mining are used.

Another problem of the FlickrLogos-32 dataset is that every image is associated
with only a single class. While in many cases, multiple object instances per image
have been annotated, all object instances have to be of the same class. Again, this
makes sense in an image retrieval scenario but is too restrictive for the task of object
detection because we could only use images that exclusively contain instances of the
same logo class.

While it is certainly conceivable to use such a dataset for evaluating object
detection pipelines we found that even in the original FlickrLogos-32 dataset multiple

13

14 CHAPTER 2. DATASETS AND NETWORK STRUCTURES

Figure 2.1: Annotations of the FlickrLogos-32 dataset (top) and the FlickrLogos-47
dataset (bottom). Shown are only bounding boxes. The underlying annotations
are pixel-level binary masks. The problems with the original annotation of the
FlickrLogos-32 are apparent: Not all object instances were annotated and only one
class per image was originally annotated. For many classes, FlickrLogos-47 also
distinguishes between text- and symbol-based logos.

logo classes are sometimes found on the same image. In such a case usually the most
prominent object instance is annotated while the other object instance is being
ignored. Again, this poses a potential problem with regards to evaluation and hard-
negative mining. Therefore, each object instance should be assigned its own class
label for maximum flexibility.

Finally, company logos sometimes consist of multiple parts – often a symbol and
a text-based logo. Not all parts are present for every given instance. Even if all parts
are present, the geometrical arrangement between them may vary from instance to
instance.

As a result of these shortcomings and observations, we have re-annotated and re-
structured the FlickrLogos-32 dataset1. Aside from updating missing annotations,
we have introduced separate class labels for symbol- and text-based logos wherever
it made sense and the number of training examples allowed to do so.

Figure 2.1 shows some of the shortcomings of the original FlickrLogos-32 dataset
and provides an impression of the differences in annotation between both datasets.

Additionally to providing every logo instance with its own class label, we have
also introduced flags for truncated or otherwise difficult instances. This is useful for
extremely small logo instances which only span a few pixels. Objectively, the logo
is not recognizable from the pixel data itself, and its presence can only be inferred
indirectly through the scene context.

Such annotations allow taking this into account during training: We can choose
to exclude these object instances and avoid using them as either positive or negative
examples in order not to confuse the classifier. During evaluation, we want to ignore

1We want to thank Dr. Karolin Kaiser and GfK-Nürnberg e.V. who provided most of the
updated annotations for the FlickrLogos-47 dataset.

2.1. THE FLICKRLOGOS-47 DATASET 15

ad
id

as
_s

ym
bo

l
ad

id
as

_t
ex

t
al

di
ap

pl
e

be
ck

s_
sy

m
bo

l
be

ck
s_

te
xt

bm
w

ca
rls

be
rg

_s
ym

bo
l

ca
rls

be
rg

_t
ex

t
ch

im
ay

_s
ym

bo
l

ch
im

ay
_t

ex
t

co
ca

co
la

co
ro

na
_s

ym
bo

l
co

ro
na

_t
ex

t
dh

l
er

di
ng

er
_s

ym
bo

l
er

di
ng

er
_t

ex
t

es
so

_s
ym

bo
l

es
so

_t
ex

t
fe

de
x

fe
rra

ri
fo

rd
fo

st
er

s_
sy

m
bo

l
fo

st
er

s_
te

xt
go

og
le

gu
in

ne
ss

_s
ym

bo
l

gu
in

ne
ss

_t
ex

t
he

in
ek

en hp
m

ilk
a

nv
id

ia
_s

ym
bo

l
nv

id
ia

_t
ex

t
pa

ul
an

er
_s

ym
bo

l
pa

ul
an

er
_t

ex
t

pe
ps

i_s
ym

bo
l

pe
ps

i_t
ex

t
rit

te
rs

po
rt

sh
el

l
sin

gh
a_

sy
m

bo
l

sin
gh

a_
te

xt
st

ar
bu

ck
s

st
el

la
ar

to
is_

sy
m

bo
l

st
el

la
ar

to
is_

te
xt

te
xa

co
ts

in
gt

ao
_s

ym
bo

l
ts

in
gt

ao
_t

ex
t

up
s

0

50

100

150

200

of

 in
st

an
ce

s
Number of object instances by class

trainval
test

Figure 2.2: Number of (non-difficult) object instances per class. The number of
training examples per class are largely balanced across all classes. A noteable ex-
ception is the class esso text which only consists of 8 training examples.

object instances that we cannot reasonably expect to be detected. At the same time,
we do not want to penalize detectors that are able to detect such difficult instances.
These annotations allow us to achieve exactly that.

2.1.2 Dataset Statistics

The re-annotation of logo instances made it necessary to re-structure the dataset as
well. Since the FlickrLogos-32 dataset could only support image-level class informa-
tion, it is easy to divide the images into training/validation and test so that every
set contains enough examples.

With the re-annotation, each image of FlickrLogos-47 can contain multiple object
instances of different classes. Since we still have to assign set membership at the
image level, we cannot just retain the original image sets from the FlickrLogos-32
dataset because we cannot guarantee that a sufficient number of logo instances from
each class will end up in each set.

FlickrLogos-47 is compiled from the same image corpus as FlickrLogos-32, but
the assignment of images to trainval and test set needs to be changed to account
for the new annotation: The new trainval image set is comprised of 833 images,
and the test set contains 1402 images. Figure 2.2 shows the distribution of object
instances between trainval and test set for all classes. For a detailed itemization
of the dataset complete with information on the number of difficult and truncated
examples, please refer to Table A.1 in Appendix A. It can be seen that for every

16 CHAPTER 2. DATASETS AND NETWORK STRUCTURES

0 100 200 300 400 500
sqrt(area)

0.000

0.002

0.004

0.006

0.008

0.010

Re
l.

Fr
eq

ue
nc

y

Object instances by size

trainval
test

(a)

2 3 2 1 21 23

Aspect ratio (width/height)

0.00

0.25

0.50

0.75

1.00

Re
l.

Fr
eq

ue
nc

y

Object instances by aspect ratio

trainval
test

(b)

Figure 2.3: (a) Size distribution of the FlickrLogos-47 dataset. Plot was generated
from a histogram with a bin width of 5px. A unique challenge of company logo
detection are large variations in scale and the large fraction of small logo instances.
(b) Distribution of aspect ratios (histogram bin width 0.1). Especially text-based
company logos can have quite extreme aspect ratios.

class this new partition ensures that around 33% of all instances are found in the
trainval set.

In addition to the trainval set, the dataset also contains a set of 3000 logo-free
images, which we call the nologo set. This nologo set is intended to be used for
hard-negative mining. Object detection datasets typically have no use for distractor
images. For this reason, the distractor images of FlickrLogos-32 have been removed
in the FlickrLogos-47 dataset.

A typical image in the dataset has a size of 1024px× 768px. The maximum size
is 1024px×1024px. A unique challenge of company logos detection is that company
logos vary strongly in scale. This challenge can also be found in the FlickrLogos-47
dataset. The smallest non-difficult and non-truncated logo instance in the trainval
set has a side length of 15px while the largest instance has a side length of 834px.
The median side length is 99px. Figure 2.3 (a) shows the distribution of instance
sizes for the trainval and test set. It is apparent that a significant fraction of company
logos is comparatively small. Since small object instances are typically harder to
detect than large object instances, this represents another challenge for company
logo detection.

Figure 2.3 (b) shows the distribution of aspect ratios for the trainval and test
set. Unsurprisingly, most of the object instances have quadratic bounding boxes.
However, a significant number of instances have bounding boxes with rather extreme
aspect ratios. These instances tend to be associated with text-based company logos.
Since many algorithms for object detection make a priori assumptions about the
shape of the objects, extreme aspect ratios can also cause problems.

2.1. THE FLICKRLOGOS-47 DATASET 17

2.1.3 Evaluation Protocol

Evaluation Metrics for Detection

The FlickrLogos-47 dataset comes with a new evaluation script which is targeted at
evaluating object detection tasks. In the following, we will describe the metric used
for evaluating object detection and how it is computed. We will first look at a single
class detection problem – which means one class versus background – and then see
that we can easily generalize to multi-class detection problems.

An object detector returns a list of detections. Each detection consists of a
location in the form of a bounding box Bdet, a class label c and a confidence score
s. For a single class detection problem, each detection can be classified into one of
two categories: True positives (TPs) and false positives (FPs).

A TP is a detection which predicts the presence of an object at the correct loca-
tion with sufficiently high confidence. A FP can occur in two situations: (1) A de-
tection with sufficiently high confidence that is predicted at the wrong location.
(2) A detection with sufficiently high confidence that is predicted at the correct
location, but there exists another detection with higher confidence which already
detects the corresponding groundtruth object.

Another important quantity is false negatives (FNs) which are groundtruth in-
stances which have not been detected with sufficiently high confidence. Since the
absolute numbers are often not easy to interpret, TPs, FPs, and FNs are commonly
expressed in terms of precision and recall. Precision is the fraction of all detections
which are indeed correct. Recall is the fraction of all object instances that have been
sucessfully detected.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

It remains to be resolved what qualifies as correct location and sufficiently high
confidence. We measure the degree of overlap between two bounding boxes B1 and
B2 using the intersection over union (IoU) criterion

IoU(B1,B2) =
|B1 ∩ B2|
|B1 ∪ B2|

(2.3)

where |B1∩B2| represents the size of the area enclosed by the intersection of the
bounding boxes B1 and B2 and |B1 ∪ B2| the size of the area enclosed by the union
of both bounding boxes. A detection is defined to have correct location if it has an
IoU ≥ 0.5 with a groundtruth instance.

Sufficiently high confidence is hard to define since the desired level of confidence
in a detection will vary depending on the application. For some applications, it

18 CHAPTER 2. DATASETS AND NETWORK STRUCTURES

might be acceptable to have a large number of false positives as long as all relevant
objects are detected while for other applications it might be important that every
returned detection is indeed correct. Since it is hard to specify a single confidence
threshold which covers all application scenarios we evaluate precision and recall over
all possible confidence thresholds.

We can plot the precision and recall values for all confidence thresholds. This is
known as a precision-recall (PR) curve. To compute a single number which measures
the overall quality of the detector we use the measure of Average Precision (AP)
which is the area under the PR-curve. We compute AP from the precision and recall
values using the trapezoidal rule.

So far, we have only considered single-class detection problems. In a multi-class
problem, TPs and FPs need to be defined slightly differently: A TP is defined
as detection of the correct class with sufficiently high confidence at the correct
location. FPs come in three types instead of two: (1) A detection with sufficiently
high confidence at a wrong location. (2) A detection with sufficiently high confidence
of the correct class and at the correct location, but there exists another detection
with higher confidence which already detects the corresponding groundtruth object.
(3) A detection with sufficiently high confidence at the correct location but with the
wrong class.

The evaluation framework can be extended to multi-class problems in a fairly
straightforward way: We simply treat a multi-class detection problem as a series of
single class detection problems. This means we filter the set of groundtruth instances
and the set of detections for a particular class label. We can apply the single class
evaluation framework to this set and obtain an (AP) for each class. The final score
of the detector over all classes is measured by mean Average Precision (mAP) which
is simply the mean over all APs.

Note, that this evaluation protocol automatically takes care of type (3) FPs. By
filtering the detections by class, an FP at the correct location but with incorrect
class will not be counted as a TP for the correct class. It will, however, be counted
as an FP when the incorrectly predicted class is being evaluated.

Efficient computation

Since precision and recall must be evaluated over a large number of thresholds,
we briefly discuss how the PR curve is efficiently computed in the FlickrLogos-47
evaluation script. We start by assigning detections to groundtruth items. For each
detection, we determine the groundtruth instance with the largest intersection over
union (IoU). If the largest IoU is greater or equal 0.5, we assign the detection to
this groundtruth instance. Although this requires an exhaustive search over all
groundtruth instances in the same image, this does not represent a problem since
both the number of detections and the number of groundtruth instances per images
are small.

2.1. THE FLICKRLOGOS-47 DATASET 19

GT 1

GT 2

GT 3

GT 4

Det 1 (0.9)

Det 2 (0.8)

Det 3 (0.7)

Det 4 (0.6)

GT 1

GT 2

Det 5 (0.9)

Det 6 (0.8)

Det 7 (0.7)

Image A

Image B

(a)

GT 1

GT 2

GT 3

GT 4

Det 1 (0.9)

Det 2 (0.8)

Det 3 (0.7)

Det 4 (0.6)

GT 1

GT 2

Det 5 (0.9)

Det 6 (0.8)

Det 7 (0.7)

Image A

Image B

(b)

GT 1

GT 2

GT 3

GT 4

Det 1 (0.9)

Det 2 (0.8)

Det 3 (0.7)

Det 4 (0.6)

GT 1

GT 2

Det 5 (0.9)

Det 6 (0.8)

Det 7 (0.7)

Image A

Image B

(c)

GT 1

GT 2

GT 3

GT 4

Det 1 (0.9)

Det 2 (0.8)

Det 3 (0.7)

Det 4 (0.6)

GT 1

GT 2

Det 5 (0.9)

Det 6 (0.8)

Det 7 (0.7)

Image A

Image B

(d)

Figure 2.4: Computing the PR curve. (a) Build a graph assigning detections to GT
instances based on IoU. (b) Situation after processing the three strongest detections.
TPs are marked in green, detected instances in grey and undetected instances (FNs)
in blue. (c) State after processing the five strongest detections. FPs are marked in
red. (d) All detections have been evaluated.

The result of this assignment can be interpreted as a bipartite graph. Detections
and groundtruth instances are represented by nodes and assignments are represented
by edges. In such a graph, a groundtruth (GT) node with at least one incoming edge
represents an object instance that has been successfully detected while a GT node
with no incoming edges represents a false negative. If a GT node has more than
one incoming edge, only one of the associated detections (the one with the highest
confidence score) can be counted as true positive, all others must be counted as false
positives (FPs). Detection nodes with no outgoing edges also represent FPs. Nodes
of GT instances that carry the difficult flag are removed from the graph along with
all detection nodes that have been assigned to them.

After the graph has been built, we sort the list of detections by descending con-
fidence score. By traversing the sorted list, we can incrementally compute precision
and recall for a situation in which we set the confidence threshold to include the
n most robust detections. In order to correctly count FPs, we need to keep track
which GT instances have already been assigned to another detection. This can be
done efficiently through data structures which are commonly used to implement set
operations such as hash tables or binary trees.

This process is illustrated in Figure 2.4. It allows us to compute the complete
PR curve by traversing the list of detections exactly once. In each step, we update
the number of TPs, FPs, and FNs accordingly and therefore compute a point in the
PR curve.

20 CHAPTER 2. DATASETS AND NETWORK STRUCTURES

2.2 The VGG16 Network

2.2.1 Architecture and Nomenclature

After the success of AlexNet [49] on the ImageNet [15] classification challenge, much
research went into alternative network architectures to improve results even further.
This has lead to a large zoo of different network architectures with OverFeat [71],
Inception [74] and deep residual networks (ResNets) [36] being just a few prominent
examples.

In this work, we will refer almost exclusively to the VGG16 [72] architecture.
Like the examples mentioned above, the VGG16 and VGG19 architectures [72] were
born in the wake of AlexNet. With 16 and 19 trainable layers, these networks
were considered to be very deep architectures at the time which pushed the limit of
what was considered to be trainable. New ideas allow more modern architectures
like ResNets to be much deeper than VGG19. The reason we are choosing VGG16
over more modern network architectures is that we found it to produce the best
results on our FlickrLogos-47 dataset (an observation we will discuss in more detail
in chapters 4.1 and 4.2).

The VGG16 architecture is composed of only three different building blocks:
Convolutional layers, max-pooling layers, and fully-connected layers. In the follow-
ing, we will refer to the output of fully-connected layers as features since they contain
a representation of the image content that is in some way useful for the task the
network is trying to solve. By contrast, we will refer to the output of a convolutional
layer as a feature map because unlike fully-connected layers they explicitly retain
spatial information.

A feature map Fb,c,y,x can be seen as a 4-dimensional array with the spatial
indices x and y and the channel index c. Training usually happens on small subsets
of the dataset (so-called mini-batches). Therefore, we also index the items of a
mini-batch in b. Because most operations in a network are applied independently
for each item of a mini-batch, we will sometimes omit the batch index for clarity.

Often we will also use the term pixel with regard to a feature map. In this
context, a pixel refers to a specific spatial location in the feature map. Analogous
to an image where every pixel is associated with values for three color channels, the
term pixel values refers to the vector of values in the channel dimension when used
in the context of feature maps.

VGG16 consistently uses convolutional layers with 3 × 3 kernels. Inputs to
convolutional layers are zero-padded at the borders by 1px so that the convolutions
do not modify the size of the input. Downsampling is performed exclusively by
max-pooling layers with 2 × 2 kernels with a stride of 2. The output size after a
max-pooling operation is therefore

⌈
n
2

⌉
for an input side length of n. The final layers

of the network are composed of fully-connected layers which act as the classifier for
the features extracted by the convolutional layers.

2.2. THE VGG16 NETWORK 21

conv3_3

conv2_2

128

conv1_2

64

conv1_1

64

Batch-
Norm

224

224

128

112

112

conv3_2

256

conv3_1

256 256

conv2_1

conv4_3

conv4_2

512

conv4_1

512 512

Max-
Pool

56

56

28

28

conv5_3

conv5_2

512

conv5_1

512 512

14

14
Batch-
Norm

Max-
Pool

Batch-
Norm

Max-
Pool

Batch-
Norm

Max-
Pool

Batch-
Norm

Max-
Pool

FC
6

4096

FC
7

4096

FC
8

1000

Figure 2.5: Architecture of our modified VGG16 network for ImageNet classification.
The difference to the original architecture is the inclusion of batch normalization
layers after each convolution group which simplifies the future addition of additional
network branches. Batch normalization layers follow the post-activation placement
and are located directly before the ReLU of the last convolutional layer in each
group.

The network structure of VGG16 is also responsible for one of its most appealing
characteristics: Because of the consistent padding and downsampling, there exists
a simple mapping between image coordinates xI and feature map coordinates xF
which is given by xF = α−1

F xI . Here, αF represents the downsampling factor
of the feature map F , which expresses how much smaller the height/width of F
is compared to the input image. The downsampling factor is determined by the
number of max-pooling operations nF that preceded F . In the VGG16 architecture,
the downsampling factor is given by αF = 2nF . For other network structures like
AlexNet, the lack of padding makes this relationship much more complicated.

Figure 2.5 shows the network structure of VGG16. The convolutional layers are
organized in groups of two or three before downsampling occurs. In this work, we
will often not refer to the convolutional layers individually, but to the group into
which they belong: When we mention to the conv2 layer, we actually refer to the
group of layers composed of the conv2 1 and conv2 2 layer. Sometimes – depending
on the context – the mention of conv2 will also refer to the output of the last layer
in the conv2 group. With the exception of the last convolution group, the number
of channels doubles from each convolution group to the next.

As can be seen from Figure 2.5, our network architecture differs slightly from the
original VGG16 network architecture [72]: We introduce batch normalization [43]
layers between each convolution group. More specifically, we add batch normaliza-
tion layers directly after the last convolution in each convolution group, but before
the ReLU and max-Pooling layers. This design corresponds to the original idea
from Ioffe et. al. [43] which is known as post-activation placement. Based on the
experiments of He et. al. [37], newer ResNet architectures often place the batch
normalization layer in front of the convolutional layer. This design in which the
batch normalization is followed by a ReLU which is followed by the convolutional
layer is known as pre-activation placement. Pre-activation placement has been re-

22 CHAPTER 2. DATASETS AND NETWORK STRUCTURES

ported [37] to produce marginally better results for Image classification with deep
residual networks.

During training, batch normalization normalizes the activations of a feature map
F in in the following way

F bn
b,c,y,x =

F in
b,c,y,x − µc√
σ2
c + ϵ

(2.4)

where ϵ represents a small positive constant designed to prevent division by zero
and

µc = γ
∑
b,y,x

F in
b,c,y,x

σ2
c = γ

∑
b,y,x

(Fb,c,y,x − µc)
2 (2.5)

with γ being a normalization factor based on the number of summed items.
Informally speaking, batch normalization performs a channel-wise standardization
with respect to the current mini-batch. In combination with variance scaling initial-
ization [35] (also known as MSRA initialization), this allows us to directly pre-train
the network on ImageNet from scratch. Batch normalization also helps us in training
multi-arm networks (as we will discuss in chapter 3.5.4).

Batch normalization can be seen as a way to regularize activations. As a regu-
larization mechanism, it constrains the expressive power of the network. To counter
this problem, batch normalization is usually followed by an additional scale and
shift layer which allows the network to learn a scale factor and an additive offset. In
principle, this arrangement allows the network to undo the effects of the batch nor-
malization and restore the expressive power of the original network without batch
normalization. Since our primary purpose for employing batch normalization is to
normalize feature maps for multi-arm training, we omit this scale and shift layer in
our network architecture.

The model defined by the network is very large and consists of a total of
138× 106 trainable parameters (excluding parameters introduced by batch nor-
malization which adds 8× 103 parameters to the network). It is important to
note that most parameters are concentrated in the fully-connected layers of the
network which account for 123× 106 of all parameters. Almost all parameters of
the fully-connected layers can be found in the fc6 layer which contains 103× 106

parameters.

2.2.2 Receptive Field

In the context of introducing the VGG16 architecture, we also want to introduce the
concept of the receptive field because it will be used frequently in this work. The
receptive field of a feature map F is defined as the set of pixels in the input image
that can potentially influence a single output neuron in F .

2.2. THE VGG16 NETWORK 23

For example, the size of the receptive field of a hypothetical network consisting
of a single 3× 3 convolution will be 3× 3. If we look the receptive field of a network
consisting of two subsequent 3× 3 convolutions, the receptive field is 5× 5. Since in
all cases in this work the receptive field is quadratic we will refer to a s×s receptive
field as a receptive field of size s.

To calculate the receptive field of a network, it makes sense to look at the in-
dividual operations or layers in terms of kernel size and stride. If we enumerate
the layers in a network L1 . . . Ln from the last layer L1 to the to first Ln, we can
compute the receptive field r = rn as follows:

r0 = 1
ri = ri−1s(Li) + k(Li)− s(Li)

(2.6)

where s(Li) represents the stride and k(Li) the kernel size of the layer Li. While
it is possible to extend the definition of a receptive field to fully-connected layers (see
Chapter 2.2.3) it is common to limit the application of this concept to the part of the
network responsible for feature extraction. Used in such a way, the receptive field
of the VGG16 network is synonymous with the receptive field of the pool5 feature
map which has a receptive field of 212px.

2.2.3 Usage as fully-convolutional Network

In its original form for ImageNet classification, VGG16 is a network which takes an
image with fixed dimensions as input and outputs a vector of fixed length containing
the predictions. While this arrangement can be used for some of the approaches dis-
cussed in this work (e.g., in R-CNN discussed in chapter 4.1), some object detection
approaches like SSD (Chapter 5) require the ability to process images of arbitrary
size.

The reason why the VGG16 network has to operate on a fixed-size input are
the fully-connected layers. Convolution operations are agnostic to size: If the input
size increases, the output size increases as well. Fully-connected layers, on the other
hand, pose a problem: Their input and output size are directly tied to the number of
weights. Once trained, this number cannot change. Therefore, the fully-connected
layers limit the input and output size of the network. A fully-convolutional archi-
tecture is required to handle inputs of arbitrary size.

There are two ways in which VGG16 can be converted to a fully-convolutional
network: The easiest way is simply to remove the fully-connected layers. If a fixed-
sized output is still required (as is the case during ImageNet pretraining), global
average-pooling can be used to reduce a feature map of arbitrary size to a feature
map of size 1× 1.

If removing the fully-connected layers is undesirable, they can be converted to
convolutional layers in the following way: Let us assume H ×W to be the spatial
dimensions of an input to a fully-connected layer that has N output neurons. The

24 CHAPTER 2. DATASETS AND NETWORK STRUCTURES

H

Input
(CxHxW)

C

N

Fully-connected
 Output neurons: N

Output
(N)

(a)

H

C Convolution
 Num Filters: N
 Kernel Size: HxW

Input
(CxHxW)

N

Output
(Nx1x1)

(b)

Figure 2.6: Conversion of a fully-connected layer to a convolutional layer. In both
cases, the input is a feature map of dimensions C×H×W (only one spatial dimension
shown). (a) Each line represents a weight in a fully-connected layer producing N
output neurons. (b) The weights are re-interpreted as coefficients of N different
convolution kernels. This allows pre-trained networks to process inputs of arbitrary
size.

Receptive
Field

Convolution
Kernel: 3x3
Stride: 1
Pad: 1

Convolution
Kernel: 3x3
Stride: 2
Pad: 1

(a)

Convolution
Kernel: 3x3
Stride: 1
Pad: 1

Convolution
Kernel: 3x3
Stride: 2
Pad: 1

Receptive
Field

Stride

(b)

Figure 2.7: Convolutional neural network as filter. The filter size is equal to the
receptive field of the network while the stride between filter applications is deter-
mined by the downsampling factor of the network. This examples shows a fully-
convolutional network with a downsampling factor of α = 2. Two neighboring
output neurons are computed as two filter applications.

output can be interpreted as the result of N convolutions (without padding) with a
kernel size of H ×W as figure 2.6 shows.

By this method, any network that is terminated in fully-connected layers can
be converted into a fully-convolutional network. A fully-convolutional network can
be viewed as a (highly non-linear) filter that is applied to the image in a strided
fashion: The kernel size of the filter is given by the size of the network’s receptive
field. The stride of the filter application is given by the downsampling factor of the
network. This is shown in figure 2.7.

This conversion of VGG16 to a fully-convolutional network is a powerful mech-
anism which we will use multiple times in this work.

Part II

Two-Stage Object Detection

25

26

Overview

The first large-scale application of deep convolutional neural networks [49] to the
problem of image classification on the ImageNet [15] dataset did prove to be very
successful. Inspired by this success, many efforts were undertaken to make this – at
that point previously unseen – classification performance useful for object detection.

In addition to classification, object detection also aims to determine the location
of an object in an image. However, both tasks are closely related. Given the
existence of a classifier which can classify images, it is – in principle – also possible
to solve the problem of object detection by applying this classifier to every location
and aspect ratio in an image. However, it is computationally expensive to evaluate
a classifier at every position and aspect ratio in the image.

A possible solution is to limit the evaluation of the classifier to pre-selected image
regions which are likely to contain objects. We categorize approaches which follow
this idea as two-staged object detection approaches. These approaches are charac-
terized by two separate stages called the object proposal stage and the classification
stage. The task of the object proposal stage is to identify image regions that are likely
to contain objects quickly. We often refer to these selected image regions as object
proposals. The task of the classification stage is to classify these object proposals.

Two-staged object detection approaches inherently limit the maximum possible
recall and thereby also the maximum achievable mAP: Object instances that do not
have a strong intersection over union with at least a single object proposal are lost
and cannot be detected by any classifier – no matter how well the classifier performs.

On the other hand, two-staged object detection can also offer a potential benefit.
They can improve the overall detection performance if a classifier produces a lot of
false positives by limiting the number of image regions where the classifier needs to
be evaluated.

In this chapter, we will first take a look at the criteria for good objects proposals
and discuss evaluation metrics. We will then discuss several algorithms for generat-
ing object proposals together with their strengths and weaknesses as well as possible
strategies to improve their performance.

27

28

Chapter 3

Proposal Stage

3.1 Criteria for good object proposals

The purpose of object proposals is to select image regions which are likely to contain
objects which are to be classified later. As a result, it should be true that every
object instance is covered by at least a single proposal out of the set of object
proposals. A failure to do so limits the maximum achievable recall of the detection
pipeline.

On the other hand, this selection needs not be perfect: Not every object proposal
is required to contain an object. However, a good object proposal algorithm is
characterized by its ability to cover all object instances in an image with a small
number of object proposals since it limits the number of regions that need to be
considered by the classifier.

Another useful property of an object proposal algorithms is tight localization:
It is likely that the classifier will perform better if the proposal stage can provide it
with well-localized bounding boxes. This means providing a bounding box with a
large intersection over union with the object instance.

For these reasons, we use two different metrics to measure the quality of object
proposals: Recall and mean average best overlap (MABO). In order to define recall,
we need to define what we regard as a true positive: We define a true positive
to be an object proposal whose maximum intersection over union (IoU) with any
groundtruth instance is greater or equal to a certain threshold t.

recall(t) =
1

|G|
∑
g∈G

[
max
p∈P

IoU(g, p) ≥ t

]
(3.1)

whereG is the set of all groundtruth instances, P is the set of all object proposals,
[.] denotes the Iverson bracket, and IoU(g, p) represents the intersection over union
between a groundtruth instance g and the proposal p. Both groundtruth instances
and object proposals are described by their bounding boxes.

29

30 CHAPTER 3. PROPOSAL STAGE

For a given IoU threshold t and a given number of object proposals, this metric is
able to capture the algorithms ability to find objects. However, it does not capture
the ability of the algorithm to localize objects precisely.

For this reason, we plot IoU threshold against recall and measure the area under
curve which we call average recall (AR).

AR =
1

1− tl

∫ 1

tl

recall(t)dt (3.2)

where tl represents the minimum acceptable IoU a proposal is allowed to have
with an object to count as a true positive example. This value is usually set to
tl = 0.5, and we also follow this commonly accepted threshold. Since the maximum
achievable value for this integral depends on the integration boundaries, we introduce
the normalization constant 1

1−tl
. This results in a metric where every perfect (recall

and localization) object proposal generator has an AR = 1.0, regardless of the choice
of tl.

In the literature [77, 83, 50] we often also find another metric called mean average
best overlap (MABO) which was introduced by [77] and which we also provide for
easier comparison. The computation of MABO starts with the average best overlap
(ABO):

ABOc =
1

|Gc|
∑
g∈Gc

maxp∈P(IoU(g, p)) (3.3)

where Gc represents the set of all object instances for a particular class c.

While the ABO metric is only defined for a single object class c, the MABO
metric is defined on the complete dataset as the mean over all ABO measurements
for each class.

MABO =
1

|C|
∑
c∈C

ABOc (3.4)

where C represents the set of all object classes.

3.2 Selective Search

Selective Search [77] is a heuristic approach for generating object proposals. It
starts with an initial over-segmentation of the image. Each of these segments can
be represented by a bounding box and represents an object proposal. Selective
Search iteratively merges the most similar adjacent regions in the image. Similarity
is defined as a sum of multiple similarity metrics which we discuss in the following
chapter. This process continues until only a single region remains, which covers
the complete image. After each merger of two regions, a new object proposal is

3.2. SELECTIVE SEARCH 31

Figure 3.1: Gabor filterbank used by Selective Search for measuring texture simi-
larity between image regions.

generated which is the bounding box of the newly merged regions. This process
results in a hierarchical grouping of image regions.

3.2.1 Similarity Metrics

Since even objects of the same class can vary strongly in appearance, the similarity
metrics used by Selective Search to determine similar image regions need to take
this variability into account. For a heuristic approach like Selective Search, which
only relies on hand-crafted features, a single similarity metric is unlikely to produce
the desired result. In order to diversify the similarity search, Selective Search uses
four different similarity metrics to cover the visual variability of object appearances:

Color similarity For each pair of image regions (rk, rl), Selective Search uses
color histograms to compute the color similarity. For each region rk, three his-
tograms H i,k

col = (hi,k
col,0, . . . , h

i,k
col,B−1) with B = 25 bins each are used, one for each

color channel i. The color histograms H i,k
col are normalized by concatenating the

histograms for all color channels into a single histogram which is L1 normalized.
We will refer to the normalized histograms as H̃ i,k

col = (h̃i,k
col,0, . . . , h̃

i,k
col,B−1). This

concatenated and normalized histogram forms the color descriptor for this region.
Color similarity scol(rk, rl) between two image regions (rk, rl) is computed using the
histogram intersection:

scol(rk, rl) =
∑
i∈C

B−1∑
b=0

min(h̃i,k
col,b, h̃

i,l
col,b) (3.5)

Texture similarity In order to measure texture similarity, Selective Search uses a
similar approach as for color similarity. Each color channel of the image is separately
convolved with a set of Gabor filters [29]. We limit ourselves to gaussian directional
derivatives in D = 8 directions as shown in Figure 3.1. For each color channel i and
directional derivative d we construct a histogram H i,d,k

tex = (hi,d,k
tex,0, . . . , h

i,d,k
tex,B−1) with

B = 10 bins. The texture histograms are concatenated into a single histogram which
is L1 normalized. This ensures equal contribution of color and texture similarity.
We denote the normalized histograms as H̃ i,d,k

tex = (h̃i,d,k
tex,0, . . . , h̃

i,d,k
tex,B−1)

32 CHAPTER 3. PROPOSAL STAGE

Again, we use the histogram intersection to measure texture similarity stex(rk, rl)
between two image regions (rk, rl):

stex(rk, rl) =
∑
i∈C

D−1∑
d=0

B−1∑
b=0

min(h̃i,d,k
tex,b, h̃

i,d,l
tex,b) (3.6)

Region size One way to visualize the grouping strategy of Selective Search is to
view it as a tree. Each node in this tree represents an image region which has two
child nodes: The two image regions which have been merged in a previous iteration
of Selective Search. The leaf nodes represent the regions that have been identified
through the initial segmentation of the image. In order to prevent degeneration of
this binary tree, Selective Search encourages that small regions be merged first. This
is done by introducing region size ssize into the similarity metric:

ssize(rk, rl) = 1− size(rk) + size(rj)

size(im)
(3.7)

where size(rk) refers to the size of the image region rk in pixels and im represents
a region which encompasses the whole image.

Region fill Since the only criteria considered so far are similarity and region size,
it is possible that the merging process will create gaps. If for example, three regions
encompass each other it is possible that the outer regions are being merged first,
leaving a gap in the center. In order to introduce a preference for filling space
Selective Search introduces a term sfill into the similarity metric:

sfill(rk, rl) = 1− size(bb(rk ∪ rl))− size(rk)− size(rl)

size(im)
(3.8)

where bb(rk) represents the bounding box around the image region rk. For consis-
tency with ssize the term is normalized by size(im).

3.2.2 Diversifying object proposals

The previously discussed similarity metrics look at different aspects of image regions.
To capture a diverse range of objects, these similarity metrics are used in different
combinations during multiple runs of Selective Search. The final similarity stotal
between a pair of image regions (rk, rl) is given as:

stotal(rk, rl) =

⎛⎜⎜⎝
αcol

αtex

αsize

αfill

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

scol(rj, rk)
stex(rj, rk)
ssize(rj, rk)
sfill(rj, rk)

⎞⎟⎟⎠ (3.9)

3.2. SELECTIVE SEARCH 33

Figure 3.2: Illustration of Selective Search. From left to right: Input image. Ini-
tial oversegmentation. Iterative hierarchical grouping of image regions. With each
merger of adjacent regions, a new proposal is generated whose bounding box covers
the merged region.

αcol, αtex, αsize, αfill ∈ {0, 1} are binary weights that determine which of the
individal similarity metrics are active in the current run of Selective Search.

We implement the ’fast’ Selective Search mode proposed by [77] which executes
Selective Search eight times on each image: The algorithm is executed on both the
RGB and HSV representation of the image, using two different initial segmentations
for each and using two combinations of similarity metrics for each segmentation. Fol-
lowing [77], we use: (αcol, αtex, αsize, αfill) = (1, 1, 1, 1) and (αcol, αtex, αsize, αfill) =
(0, 1, 1, 1) as configurations for the similarity metrics.

3.2.3 Ranking object proposals

Since Selective Search can generate a large number of object proposals it is desirable
to rank these proposals by relevance. Selective Search uses a simple heuristic to rank
proposals: Image regions that are merged at a later stage in the algorithm are more
likely to contain objects.

If after the initial segmentation there are K image regions, Selective Search will
need K−1 iterations to merge all of them. For each merger, Selective Search records
the iteration i at which the proposal pi was generated. The relevance score vi for this
proposal is given by vi = RND · (K− i), where RND is a random number from the
interval [0, 1]. Aside from the random element, this will result in a score of vK−1 = 1
for the final merger (generating a proposal that covers the complete image) and a
score vi > 1 for all the other proposals. Proposals are sorted by ascending relevance
score to obtain the final ranking.

A problem with this strategy is that Selective Search is usually run multiple times
to diversify object proposals. However, since Selective Search is biased towards large
objects, every run tends to displace small objects from the top-scoring positions of
the result list. The random element introduced by RND is designed to counteract
this problem.

34 CHAPTER 3. PROPOSAL STAGE

3.3 Edge Boxes

Another popular heuristic for generating object proposals is Edge Boxes [85]. While
Selective Search [77] uses the principle of grouping similar image regions, Edge Boxes
operates on dissimilarities between image regions – so-called edges. The intuition
behind this approach is that object instances are likely to be found at image regions
that are enclosed by edges – so-called contours.

Edge Boxes is able to compute an objectness score which is based on the number
of edges that are enclosed by the bounding box of the proposal minus the number
of edges which overlap the box’s boundary. This objectness score allows Edge Boxes
to rank proposals directly based on image content while Selective Search relies on
the order of merger as an indirect ranking mechanism.

The algorithm behind Edge Boxes itself is a heuristic approach. However, the
underlying edge detection algorithm [16] used by [85] is not, since it makes use of
a random forest. Since any algorithm which is able to generate probabilistic edges
(i.e., edges associated with a confidence value) can be used, we still feel justified in
calling Edge Boxes a heuristic approach.

3.3.1 Finding and grouping edges

In principle, it is possible to use any algorithm that is able to find probabilistic edges
in images in conjunction with Edge Boxes. These edge detectors might themselves
be based on heuristics. However, the original Edge Boxes implementation by [85]
uses a trainable edge detector – called a structured forest [16] edge detector – which
is based on a random forest classifier which takes an image patch as input. The
classifier predicts whether the center of the image patch is located on an edge or
not.

The structured forest detector returns an edge map which for every pixel contains
a confidence value that this pixel is located on an edge and an orientation estimate of
that edge. This edge map is binarized using a threshold, and the resulting hard edges
are grouped into clusters to speed up the computation of the scoring function. Edge
Boxes [85] uses a simple greedy grouping algorithm which is outlined in Appendix B:
For each edge that has not been previously assigned to a group, the algorithm looks
at the neighboring 8-group of edges, which is added to a set of discovered edges.
The algorithm then picks the edge with the smallest difference in orientation from
the discovered set and adds this edge to the group. The algorithm continues with
the 8-neighborhood around the edge that was just selected until a threshold on total
angular difference within a group is reached.

The output of the edge grouping algorithm are groups of edges Gi. Each edge
group Gi is represented by its mean pixel position pi and its mean orientation θi.
Based on this information an affinity matrix Ai,j is built between edge groups Gi

and Gj as follows:

3.3. EDGE BOXES 35

Figure 3.3: Visualization of edge groups. First row: Input images. Second row:
Output of the structured forest edge detector. Third row: Visualization of edge
groups. Each color represents an edge group. Proposal scores are based on the
number of enclosed edge groups by the candidate box.

Ai,j =

{
|cos(θi − θi,j)cos(θj − θi.j)|γ if d(i, j) < td

0 otherwise
(3.10)

θi,j represents the enclosed angle between mean edge group positions pi and pj.
d(i, j) stands for the euclidean distance between edge group positions (as represented
by pi) and td represents a distance threshold. Typically, td is set to td = 2 which
results in a very sparse affinity matrix. γ controls the sensitivity of the affinity to
differences in orientation and is set to γ = 2.

3.3.2 Scoring function

The grouping of edges allows for a fast computation of the scoring function which
serves to rank proposals. For a given proposal (as represented by a bounding box
b), the intuition behind the scoring function is for a given object proposal to count
the number of enclosed edges.

For this purpose, a value wb(Gi) ∈ [0, 1] is computed for every edge group Gi ∈ G
which represents the degree to which Gi is contained by the box b. A value of
wb(Gi) = 0 represents an edge group Gi that is not enclosed by b. Ideally, every
edge group Gi that is fully enclosed by b should get a value of wb(Gi) = 1. However,

36 CHAPTER 3. PROPOSAL STAGE

since edge detection is not perfect, a conceptual edge that exists in the original image
may end up being split into two edge groups that are located closely to each other.
Therefore it is advisable to take the affinities between edge groups into account when
calculating the value wb(Gi).

To compute the wb value for a proposal b, Edge Boxes partitions the set of edge
groups G into three disjoint subsets Nb ∪ Ib ∪ Eb = G. Ib represents the subset of
edge groups that intersect with the boundary of the proposal b. Nb and Eb represent
the subset of edge groups which are wholly located outside and inside of the box b,
respectively. The wb values are set as follows:

wb(Gi) =

{
0 if Gi ∈ Nb ∪ Ib

1−maxT
∏|T |−1

k=1 Ak,k+1 if Gi ∈ Eb

(3.11)

where T represents a path of edge groups that starts at Gi ∈ Eb and ends at
some Gj ∈ Ib. T , therefore, represents a sequence of edge groups (indexed by k)
that connects Gi most strongly to an edge group that intersects with the boundary
of the box b. Note, that wb(Gi) = 1 in the case of an edge group in Gi ∈ Eb that
has no connection to an edge group on the box boundary.

The score sb for a proposal b is determined by summing over the wb values
weighted by the magnitudes of the edges m(Gi) in the following way:

sb =

∑
Gi∈Gwb(Gi)m(Gi)

2(bw + bh)κ
(3.12)

where m(Gi) represents the sum of edge magnitudes in edge group Gi. bw and
bh represent width and height of box b, respectively. Since edges have a width of
one pixel regardless of scale, Edge Boxes normalizes the score by the perimeter of
the box rather than its area. However, the number of edge groups contains in a box
is proportional to its area. Therefore, the scoring function is biased towards larger
boxes. κ = 1.5 is supposed to counteract this bias.

The authors [85] propose an extension to the scoring function which produces
slightly better results. They observe that edges located at the center of a proposal
box are not as important as edges near the boundary. In order to award more
importance to edges at the boundary they propose to amend sb by removing edges
near the center of the proposal box from the scoring function in the following way:

s∗b = sb −
∑

p∈bc mp

2(bw + bh)κ
(3.13)

where bc is a proposal box of width bw
2
and height bh

2
that is centered within the

original proposal box b. mp refers to the magnitude of the edge at location p.

We also adopt this extended scoring function s∗b for all our experiments.

3.3. EDGE BOXES 37

3.3.3 Search strategy and proposal refinement

The scoring function provides a heuristic which allows ranking the likelihood of
any given proposal containing an object. The boxes are obtained through a sliding
window search.

For a given box size, the horizontal stride dw between two proposal boxes is given
by

dw =
bw(1− δ)

1 + δ
(3.14)

where bw is the width of the box. This results in two neighboring boxes with an
intersection over union of δ. The vertical stride dh is similarly given by substituting
bw with the height of the box bh. We follow the original authors [85] recommendation
by settings δ = 0.65.

The sliding window approach is repeated for different scales and aspect ratios.
Aspect ratios α are selected from a set α ∈

{
1
k
, k|k = 1 . . . τ

}
. We follow the original

authors in using τ = 3. Scales are defined through proposal box area. As minimum
object size, a proposal box area of σmin = 1000 pixels – which corresponds to a side
length of approx. 32px for an aspect ratio of 1 – is used and the maximum size σmax

is set to the area of the image. The scale space is sampled in such a way that two
consecutive scales σa and σb are related by σb = ασa. α controls density of the scale
space sampling and is usually set to α = 2 resulting in Ns scales:

Ns =

⌈
log2

σmax

σmin

⌉
(3.15)

For a typical 1024px × 1024px image in the FlickrLogos-47 dataset this corre-
sponds to Ns = 11 scales. With a stride between two proposal boxes based on
δ = 0.65 this results in approx. 47, 000 proposal boxes. For τ = 3 we need to
consider 5 aspect ratios which results in approx. 235, 000 proposal boxes per image
for which we need to evaluate the scoring function.

Additionally, proposal boxes which have received a score s∗b >= 0.01 are being
subjected to a box refinement step which aims to provide better localized proposals.
The refinement is a greedy recursive search over deformations of the original box
while in each recursive step the search window is reduced. Initially, the width of
the original box is extended by dv

2
, once to the left and once to the right. Likewise,

the height of the original box is extended by dh
2
, once to the top and once to the

bottom. This results in four deformed versions of the original box. Each of these
deformed boxes is scored using the metric described in chapter 3.3.2. If one of the
deformed boxes receives a higher score as the original box, we select the box with
the highest score. The process is repeated using this selected box as a reference in
combination with reduced search windows of dv

4
and dh

4
, respectively.

38 CHAPTER 3. PROPOSAL STAGE

3.3.4 Discussion of Selective Search and Edge Boxes

On the face of it, both object proposal algorithms operate on similar principles:
Without a semantic understanding of the image content, heuristic object proposal
algorithms can only operate on low-level features such as region similarity.

However, both algorithms use these features in different ways: While Selective
Search explicitly defines similarity metrics between image regions, Edge Boxes op-
erates on edges which are broadly defined as strong dissimilarities between image
regions. Edge Boxes never explicitly defines a measure of dissimilarity between image
regions. Instead, the dissimilarity is implicitly measured through an edge detector.
The original work uses an edge detector based on a structured forest classifier, which
operates on small image patches. Therefore the implicit measure of dissimilarity has
no semantically palpable interpretation.

Furthermore, in order for the edge grouping algorithm to work, the obtained
edges need to be binarized which involves setting a confidence threshold. This
threshold may somewhat limit the sensitivity of Edge Boxes for objects that are not
clearly delineated from the background through strong edges. By contrast, Selective
Search has no such hard limitation. Instead, the similarity between two regions –
which is explicitly defined – determines the order of merger. Image regions which
are not too dissimilar to each other are typically merged first, while image regions
which are most dissimilar will be merged later.

The downside of Selective Search is the lack of a scoring mechanism which is
based directly on image content. Instead, the scoring is based on the order of
merger. Regions which are merged later tend to receive a higher score. Objects
tend to have a high dissimilarity with the background which controls the order of
merger and only indirectly influences the score of the proposal.

To summarize, in Edge Boxes the measure of dissimilarity is defined indirectly
while the scoring of proposals is defined directly. For Selective Search it is precisely
the opposite: The measure of dissimilarity (or rather the measure of similarity) is
defined explicitly while proposal ranking is defined indirectly.

3.4 Heuristic object proposals on FlickrLogos

3.4.1 Performance Evaluation

We have evaluated the performance of the two aforementioned object proposal algo-
rithms on the FlickrLogos-47 dataset individually. Figure 3.4 shows the performance
of Selective Search and Edge Boxes. On the left side, we show recall as a function
of IoU. On the right side, we show the average recall for a fixed maximum number
n of proposals.

While the two algorithms exhibit very similar overall performance as measured by
average recall (AR), the maximum achievable recall tends to be higher for Selective
Search than for Edge Boxes. Edge Boxes, however, tends to offer better localization.

3.4. HEURISTIC OBJECT PROPOSALS ON FLICKRLOGOS 39

0.5 0.6 0.7 0.8 0.9 1.0
Overlap Threshold (IoU)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
Selective Search: Overlap vs Recall

n = 100
n = 500
n = 1000
n = 2000
n = 3000

1000 2000 3000
of Proposals

0.0

0.2

0.4

0.6

0.8

1.0

AR

Selective Search: AR vs. Proposals

0.5 0.6 0.7 0.8 0.9 1.0
Overlap Threshold (IoU)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Edge Boxes: Overlap vs Recall

n = 100
n = 500
n = 1000
n = 2000
n = 3000

1000 2000 3000
of Proposals

0.0

0.2

0.4

0.6

0.8

1.0

AR

Edge Boxes: AR vs. Proposals

Figure 3.4: Performance of Selective Search and Edge Boxes on the FlickrLogos-47
dataset for different number of proposals.

Runtimes of the two algorithms are also very comparable. Selective Search aver-
ages around 0.90s per image and is slightly faster than Edge Boxes which averages
around 0.98s per image1.

Aside from better localization, another benefit of Edge Boxes is that it tends
to work better if we only allow a small number of proposals. This property is not
surprising, since contrary to Selective Search, Edge Boxes employs a scoring function
that operates directly on the content of the proposals. However, this advantage of
Edge Boxes quickly disappears if we allow more than 1000 proposals.

A common property of both algorithms is that increasing the number of proposals
beyond n = 2000 only yields minor improvements. If not otherwise indicated, all
following experiments use n = 2000 proposals.

1Runtimes were measured as single-core performance on an Intel Xeon E5-2680 @ 2.5 GHz

40 CHAPTER 3. PROPOSAL STAGE

3.4.2 Selective Search Error Modes

As an object proposal algorithm, Selective Search is designed to replace an exhaus-
tive sliding window search over all possible object positions and scales. In order to do
so, it has to employ heuristics which may fail under some circumstances. Although
it is based on heuristics, Selective Search is able to achieve an impressive recall on
the FlickrLogos-47 dataset. However, there are cases, where Selective Search per-
forms rather poorly or even has conceptual problems. In the following, we are going
to analyze the most common error modes of Selective Search.

Selective Search relies on two major assumptions: One of them being that an
object can be distinguished from the background by the employed similarity metrics.
The other assumption is that the object can in principle be built up by iteratively
merging only adjacent regions. As we will see in the following, especially the second
assumption will turn out problematic in the context of company logo detection.

Error Mode (A): Spatially divided components on uniform background
One of the most common failure modes can be observed when an object consists of
multiple spatially divided regions on a uniform background. This situation is not
as common in real-world pictures as it is with company logos where it can often be
observed for text-based logos. An example of this case can be seen in Figure 3.5.
Selective Search will be able to generate a proposal for each individual letter. Once
all letters are identified, Selective Search has no other option besides merging one
letter with the background, since Selective Search only considers adjacent regions.
However, once the region corresponding to a letter is merged with the background,
Selective Search is highly unlikely to generate the correct proposal. The only way
for Selective Search to recover from this situation is when the background region
happens to roughly match the shape of the object. In this particular example, it is
impossible to produce the correct proposal because from this level in the hierarchy
on, all bounding boxes must be at least as large as the background. This is a concep-
tual problem with Selective Search that cannot be addressed within the framework
of the algorithm (e.g., by adding more sophisticated similarity metrics).

Error Mode (B): Partially occluded objects A less common error mode is
objects which are partially occluded by a partially transparent structure (e.g., a
metal gaze). An example of this error mode can be seen in Figure 3.5. Although the
setting of the image is different, this error mode is closely related to the previous
one since the underlying problem is the same: The metal gaze itself is relatively
uniform, meaning regions on the gaze are likely to be merged first. However, at
some point during the algorithm, a region needs to be merged with the region of the
surrounding gaze. Once this has happened, Selective Search is unlikely to find the
correct proposal.

3.4. HEURISTIC OBJECT PROPOSALS ON FLICKRLOGOS 41

Figure 3.5: Illustration of Selective Search error modes. Top: Error mode (A). Once
a letter is merged with the background, further iterations are unable to generate the
correct object proposal. Bottom: Error mode (B). Once a region is merged with
the foreground mesh, Selective Search is unlikely to recover.

3.4.3 Object Proposals for Text-based Company Logos

We have shown some instances where Selective Search has difficulties producing
the correct object proposal. These error modes are often connected to text-based
company logos and arise from the fact that Selective Search only considers adjacent
regions for merging.

Edge Boxes does not have this shortcoming since it uses a dense grid of candidate
boxes of fixed scales and aspect ratios and scores them by counting the number of
enclosed contours in a given candidate box. Therefore, Edge Boxes is in principle
able to capture text-based logos, provided a suitable candidate box is defined by
the grid. However, text-based logos often are associated with rather extreme aspect
ratios. A way to counter this problem would be to modify the grid of candidate boxes
to include these aspect ratios. This approach quickly leads to an overwhelmingly
large number of candidate boxes. In the following, we will propose a simple algorithm
to explicitly model text-based logos. We call this algorithm, designed to address
error mode (A) of Selective Search, VH-connect.

The VH-connect Algorithm

VH-connect starts by computing the morphological gradient of the greyscale input
image.

Gm(x, y) = [f ⊕ b] (x, y)− [f ⊖ b] (x, y) (3.16)

42 CHAPTER 3. PROPOSAL STAGE

(a) (b) (c) (d)

Figure 3.6: Illustration of the VH-connect algorithm. (a) Input image. (b) Morpho-
logical gradient. (c) Binarized image after applied Otsu threshold. (d) Result after
a single closure step in horizontal direction. Each connected component becomes a
candidate for an object proposal.

where ⊕ represents the dilation and ⊖ the erosion operation using an ellipti-
cal structuring element b. We use Otsu’s method [62] for determining a threshold
for binarizing the gradient image Gm(x, y) into G(x, y), maximizing the intra-class
variance between edge values and non-edge values.

Text usually produces strong gradients at the edges of individual letters. For a
given scale and text direction, these gradients are usually spaced apart reasonably
regularly. In order to identify regions containing text, we need to close these char-
acteristic spacings. In order to do so, we apply a morphological closing operation •
to the binarized gradient image G(x, y). In order to capture text on multiple scales
as well as vertical and horizontal text, we repeatedly use this closing operation with
multiple rectangular structuring elements kl for different scales l. For each scale l
the structuring elements have the form 1× l and l × 1.

Ckl(x, y) = [G • kl] (x, y) = [(G⊕ kl)⊖ kl] (x, y) (3.17)

After each closure step, we retrieve connected components ci as candidates for
object proposals. These candidates are filtered by the following heuristic which is
similar to the region fill metric used in Selective Search (see chapter 3.2.1).

size(ci)

bb(ci)
> t (3.18)

where size(ci) refers to the number of pixels in the connected component ci and
bb(ci) refers to the number of pixels within the bounding box around ci. We found
t = 0.3 to be a suitable threshold.

A visualization of the algorithm can be found in Figure 3.6. On average VH-
connect generates between 200 and 400 proposals per image.

3.4. HEURISTIC OBJECT PROPOSALS ON FLICKRLOGOS 43

0.5 0.6 0.7 0.8 0.9 1.0
Overlap Threshold (IoU)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
Recall vs. IoU

SS
EB
SS+EB (0.75)
SS+EB (0.5)
SS+EB (0.25)

1000 2000 3000
of Proposals

0.0

0.2

0.4

0.6

0.8

1.0

AR

AR vs. Proposals

Figure 3.7: Performance gain by combining object proposals generated by Selective
Search and Edge Boxes for different mix ratios (n = 2000). The ratios refer to the
fraction of Selective Search boxes compared to all boxes. Color code is identical for
both plots.

3.4.4 Improving heuristic Object Proposals

As we have shown in chapter 3.4.1 both Selective Search and Edge Boxes have similar
performance when evaluated individually. We also have demonstrated some of the
error modes of Selective Search in chapter 3.4.2, and we have speculated that Edge
Boxes might provide better performance in these circumstances.

In the following we want to evaluate two things: If we limit ourselves to n = 2000
proposals, can we benefit from diversifying our object proposal strategy? That is:
Can we increase performance when we incorporate proposals from both Selective
Search and Edge Boxes? Can we further improve proposal performance by explicitly
modeling text logos by including proposals from the VH-connect algorithm?

Diversifying object proposals In order to investigate this possibility, we select
the top proposals from both approaches with different proportions so that the total
number of proposals is n = 2000. The results of this experiment are shown in
Figure 3.7. We abbreviate Selective Search as SS and Edge Boxes as EB. When
mixing proposals from multiple sources we include the fraction of Selective Search
proposals relative to all proposals. For example, the label SS+EB (0.75) refers to a
mixture of 75% Selective Search proposals and 25% Edge Boxes proposals.

As it can be seen from Figure 3.7 it is almost always beneficial to combine propos-
als from both Selective Search and Edge Boxes. Both the localization and maximum
achievable recall show improvements. There are two noteworthy exceptions to this
pattern:

If only few proposals are allowed, Edge Boxes by itself tends to perform better
(measured by AR) than a mixture of different proposals. This is not surprising since
because of its scoring algorithm, Edge Boxes has an advantage in selecting the most

44 CHAPTER 3. PROPOSAL STAGE

Proposals Ratio SS Ratio EB Ratio VH MR AR MABO

SS 1.00 (2000) 0.00 (0) 0.00 (0) 0.857 0.483 0.722
EB 0.00 (0) 1.00 (2000) 0.00 (0) 0.802 0.498 0.722

SS+EB 0.75 (1500) 0.25 (500) 0.00 (0) 0.874 0.549 0.753
SS+EB 0.50 (1000) 0.50 (1000) 0.00 (0) 0.862 0.554 0.749
SS+EB 0.25 (500) 0.75 (1500) 0.00 (0) 0.839 0.543 0.734

SS+EB+VH 0.70 (1400) 0.20 (400) 0.10 (200) 0.888 0.574 0.767
SS+EB+VH 0.45 (900) 0.45 (900) 0.10 (200) 0.874 0.570 0.764
SS+EB+VH 0.20 (400) 0.70 (1400) 0.10 (200) 0.856 0.568 0.752

Table 3.1: Performance measures of combined object proposals. MR (max. recall)
refers to the recall at IoU = 0.5. In all cases the total number of proposals is
n = 2000. Ratios are always given with respect to n. Diversification of object
proposals clearly is beneficial in all performance measures, as is the inclusion of
VH-connect. For best performance the fraction of Selective Search proposals should
be larger than the fraction of edge box proposals.

promising proposals. If we mix Selective Search boxes into this list, it will displace
some of the highly-scored boxes in Edge Boxes. Since in the case of few proposals
Selective Search on average performs worse than Edge Boxes, the average recall is
bound to suffer.

Another exception is when edge box proposals make up the majority of propos-
als. Since Selective Search on its own can deliver a very high maximum recall, the
maximum achievable recall suffers when many edge box proposals are used.

However, for n = 2000 proposals and a Selective Search ratio of 0.75 the com-
bination of Edge Boxes and Selective Search outperforms the performance of each
individual proposal algorithm in all metrics. This is shown in Table 3.1.

Evaluating VH-connect In order to demonstrate the benefits of the VH-connect
algorithm, we select the top-ranked object proposals from Selective Search, Edge
Boxes and VH-connect with different proportions while keeping a maximum of n =
2000 proposals. Table 3.1 shows the results of this experiment.

It becomes clear that the inclusion of VH-connect is always beneficial under all
metrics despite the fact that the number of proposals from Selective Search and Edge
Boxes need to be reduced in order to keep a maximum of n = 2000 proposals. Similar
to the situation with Selective Search and Edge Boxes only, the diversification is most
successful when a majority of object proposals are taken from Selective Search.

3.5. TRAINABLE OBJECT PROPOSALS 45

3.4.5 Conclusions

Both Selective Search and Edge Boxes are able to deliver acceptable proposal perfor-
mance for the task of company logo detection. We have analyzed the error modes of
Selective Search and have shown how Edge Boxes can complement Selective Search
in principle. We have experimentally verified that diversifying proposals by using
multiple proposal algorithms is beneficial to the overall proposal performance. Fi-
nally, we were able to show that explicitly modeling text-based logos can further
increase the performance of object proposals.

3.5 Trainable Object Proposals

All object proposal algorithms we have evaluated so far were heuristic approaches.
Edge Boxes, for example, uses the number of enclosed contours as a heuristic for
determining likely object locations. Selective Search uses the order of merger based
on hand-crafted similarity measurements to identify potential object locations.

In this chapter, we want to extend our examination of object proposal algorithms
to include machine learning-based approaches to object detection. In contrast to
heuristic approaches, we do not rely on hand-crafted features, scoring functions or
similarity metrics. For a given region of interest, we want to directly learn a mapping
from the pixel data to the likelihood of it containing an object. Specifically, we want
to look at one particular approach for generating object proposals: Region Proposal
Networks (RPNs).

3.5.1 Region Proposal Networks

On an abstract level, Region Proposal Networks (RPNs) place a dense grid of bound-
ing boxes of various scales and aspect ratios across the input image. Each of these
bounding boxes is a potential object proposal and is called an anchor box. Conse-
quently, the grid is often called the anchor grid.

The task of an RPN is two-fold: One task is to predict a score for each anchor
box which measures the likelihood of the box containing an object. Another task is
to refine the boundaries of each anchor box to cover the nearest object better. This
process is called bounding box regression.

RPNs are implemented as a fully-convolutional neural network. Most often, a
traditional classification network such as VGG16 [72] or a Resnet [36] are used as
a basis for RPNs. After pre-training on classification tasks such as ImageNet [15],
these networks are usually cut off after the last convolutional layer.

The RPN consists of three convolutional layers that are added to the last feature
map, which for VGG16 is the conv5 feature map. One layer is a convolution with
a 3× 3 kernel which is directly attached to the conv5 feature map. The number of
channels can vary and is usually set to the same number as the feature map to which
it is attached. The other two layers are 1 × 1 convolutions which are attached in

46 CHAPTER 3. PROPOSAL STAGE

parallel to the newly added layer: One layer is responsible for predicting a score for
each anchor box, and the other layer predicts the values used for the bounding box
regression. We will describe these layers in greater detail in the following subsections.

The Anchor Grid

In the following, we will introduce the anchor grid more formally. For clarity, we will
distinguish coordinates on the feature map F from coordinates on the input image
I. We denote image coordinates as xI = (xI , yI)

T and feature map coordinates
of the network as xF = (xF , yF)

T . Both coordinate systems have their origins at
the upper-left corner of the image with the positive x-axis extending across the
image width and the positive y-axis covering the height of the image. Since deep
neural networks usually employ downsampling, the image coordinate system and the
feature map coordinate system are related through a downsampling factor α > 1.

We need to associate every coordinate on the feature map F with the center
of an anchor box. Since anchor boxes need to be specified in image coordinates,
we need to establish a mapping between feature map coordinates and image coor-
dinates. Because only integer values can serve as valid coordinates, the mapping
I → F induced by the downsampling factor α is not injective: Therefore, the in-
verse mapping F → I is ill-defined since every pixel in F would be mapped to a
group of pixels in I. To obtain an inverse mapping F → I we need to pick a single
representative from this group of pixels. An obvious choice for this representative
is the central pixel of each pixel group in I that is mapped to the same pixel in F .

Since the downsampling factor is usually a multiple of 2, a central pixel often does
not exist. In this case, we settle for the closest pixel on the upper right. Therefore
the mapping fI : F → I from the feature map F to a coordinate on the image I is
given by the following relationship:

xI = fI(xF) = αxF +
⌊α
2

⌋
1 (3.19)

Anchor boxes are characterized by a set of scales S and a set of aspect ratios A.
At every location xI a set of anchor boxes based on S×A is constructed with xI as
their center. We choose to parametrize the anchor box scales in terms of

√
area and

the aspect ratio in terms of height/width. Therefore, the upper-left and lower-right
vertices xul and xlr of the anchor boxes for a given feature map position xF , scale
s ∈ S and aspect ratio a ∈ A are given by:

xul = fI(xF)−
s

2

(√
a
−1

√
a

)
xlr = fI(xF) +

s

2

(√
a
−1

√
a

) (3.20)

3.5. TRAINABLE OBJECT PROPOSALS 47

To see why these vertices results in an anchor box of aspect ratio a and scale√
area we look at the diagonal d = (dx, dy)

T of the anchox box which is given by:

d = xlr − xul = fI(xF) +
s

2

(√
a
−1

√
a

)
− fI(xF) +

s

2

(√
a
−1

√
a

)
= s

(√
a
−1

√
a

)
(3.21)

The aspect ratio is given by the height dy and width dx of the diagonal:

dy
dx

=
s
√
a

s
√
a
−1 =

√
a
2
= a (3.22)

The scale s is defined as
√
area which can also be obtained from d by

√
dxdy =

√
s
√
a
−1
s
√
a =
√
s2 = s (3.23)

This mapping allows us to associate every position in the feature map with a set
of anchor boxes in image coordinates. For every anchor box defined in this manner,
we compute the maximum intersection over union (IoU) with any groundtruth an-
notation, regardless of its class. If the maximum (IoU) is greater or equal 0.5 we
classify this anchor box as a positive example and as a negative example otherwise.

Anchor Score Prediction

The anchor grid defines a set of anchor boxes (in image coordinates) for every posi-
tion of the feature map. We can divide these anchor boxes into positive and negative
examples based on their intersection over union with the groundtruth annotations.
In this chapter, we will discuss how RPNs use this information to predict the likeli-
hood that these anchor boxes contain objects.

As mentioned in chapter 3.5.1, RPNs add three additional convolutional layers
to the last feature map of an existing network, resulting in two additional network
outputs. One of these layers is responsible for predicting anchor box scores. This
score prediction layer outputs predictions with the same spatial resolution as the
final feature map, and the number of channels is chosen according to the number
of anchor boxes to predict at each location. Since we need to predict a probability
distribution over the outcomes background and object for every anchor box, we
employ two output neurons per anchor box. If S represents the set of scales and
A the set of aspect ratios, the score prediction layer, therefore, needs to output
2|S × A| channels.

In order to obtain a probability distribution from the predictions, they are fed
into a softmax operation. However, since every location of the feature map pro-
duces multiple probability distributions – one for each anchor – there exists no axis
across which the softmax can be performed. Therefore, the predictions need to
re-interpreted before the softmax can be applied:

48 CHAPTER 3. PROPOSAL STAGE

Anchor 1 Anchor 2 Anchor 3 Anchor 4Feature Map

Reshape1x1
Conv

Softmax-
Axis

Bg Obj Bg Obj Bg Obj Bg Obj

Bg Obj

Bg Obj

Bg Obj

Bg Obj

Width

Height

Channels

Figure 3.8: Score prediction for Region Proposal Networks (RPNs). For every lo-
cation on the feature map, the RPN predicts a probability distribution over the
outcomes background (Bg) and object (Obj) for every anchor. Predictions are re-
interpreted through a reshape operation to expose the softmax axis.

Let HF and WF represent the height and width of the feature map F . If the
shape of the network output is HF ×WF × (2|S ×A|), a reshape operation changes
the output interpretation to HF×WF×|S×A|×2. After the reshape operation the
softmax can be applied across the last dimension. This is illustrated in Figure 3.8.

The softmax allows the network output for each anchor to be interpreted as a
probability distribution p = (pbg, pobj) where pbg and pobj represent the probabilities
of an anchor belonging to the background and object class, respectively. During
testing, we are only interested in pobj which we use as a confidence score for the
proposal. During training, we need to define a loss function on this output which
compares our predicted probability distribution with a target distribution. Since
we know the correct class labels for each anchor box with certainty, the values of
the target probability distribution p̂ = (p̂bg, p̂obj) are binary: The correct class has
probability 1 while the other class has probability 0. A common way to define a loss
function on pairs of probability distributions is the cross-entropy loss H(p, p̂):

H(p, p̂) = −
∑

i∈{bg,obj}

p̂i log pi (3.24)

Since anchor score prediction is a binary classification problem there exists an
alternative problem formulation with sigmoid functions: In this formulation, it suf-
fices to use a single output neuron per anchor instead of two. The shape of the
network output would therefore be HF ×WF × (|S × A|). In such a case, the net-
work output does not need to be reshaped to apply the softmax. Instead the output
for an anchor y is squashed into the interval]0, 1[by a sigmoid function such as the
logistic function L(y):

3.5. TRAINABLE OBJECT PROPOSALS 49

L(y) =
1

1 + e−y
(3.25)

L(y) can be interpreted as the probability pobj in our previous example and since
we have a binary classification problem pbg = 1−pobj is implicitly defined. The cross-
entropy loss can now be applied in the same way as above. While this approach
might seem more natural, the original approach by [66] uses a softmax cross-entropy
loss. We examine these two options in the context of a simple regression problem in
Appendix C and conclude that a two output neuron model for a binary classification
problem is more desirable since it tends to converge faster.

Bounding Box Regression

The score prediction layer of the RPN is able to score anchor boxes from the anchor
grid by their likelihood of containing an object. Object proposals generated by this
method are limited in size and shape by the specification of the anchor grid. While
often being able to identify regions of interest, the object box proposals are often not
well localized and have a poor fit. Bounding box regression is designed to overcome
this problem by allowing individual anchor boxes to be modified in position and
shape.

For this purpose, we predict four values for every anchor box at every location.
Two of these values encode an offset in x- and y-direction and two values encode
scale factors by which to scale the width and height of the bounding box. We
follow the parametrization by [66] in which the offsets are predicted relative to the
width and height of the bounding box and the scale factors for width and height are
predicted on a logarithmic scale:

tx =
xgt − xa

wa

ty =
ygt − ya

ha

(3.26)

tsw = log
wgt

wa

tsh = log
hgt

ha

(3.27)

Here, tx and ty are the regression targets for the offsets and tsw and tsh are the
regression targets for the scale factors. (xgt, ygt) and (xa, ya) refer to the position of
the groundtruth annotation and the associated anchor box, respectively. (wgt, hgt)
and (wa, ha) represent width and height of the groundtruth and the anchor. In this
context, bounding box positions are measured by their centers.

This parametrization ensures that the mean value for each of these regression
targets is approximately zero: The offsets are expected to be distributed according
to a Gaussian distribution around zero while the scale factors are expected to follow
a Gaussian distribution around one. Therefore, the logarithmic scaling maps the
expected mean value of the scale factors to zero. All values are predicted relative
to the width or height of the anchor box which naturally limits the value range of

50 CHAPTER 3. PROPOSAL STAGE

the regression targets since the deformation are usually small compared to the size
of the anchor box.

In terms of network architecture, the bounding box regression is realized as
an additional convolutional layer which is attached to the last feature map of the
network. This convolutional layer outputs predictions of the same spatial resolution
as the feature map and 4|S × A| channels. During training, the Huber loss [41]

Lδ
hub(y, ŷ) =

{
1
2
(y − ŷ)2 if |y − ŷ| ≤ δ

δ(|y − ŷ|)− 1
2
δ else

(3.28)

is used. In contrast to the more traditional L2-loss whose derivative can produce
arbitrarily strong magnitudes, the Huber loss has an upper limit on the value of its
derivative. The Huber loss (often also called smooth L1-loss) provides a constant
slope of ±δ if the predicted value y differs strongly from the actual value ŷ. This
is a desirable property for fine-tuning neural networks since strong gradient magni-
tudes could destroy the pre-trained weights, especially during the first few training
iterations.

Training protocol

We use our batch-normalized VGG16 network which has been pre-trained on Im-
ageNet as a basis for our RPN. Training of the RPN consists of fine-tuning the
VGG16 network with attached RPN module for 40000 iterations. We start with a
learning rate of λ = 0.001 and perform a learning rate reduction by a factor of 10
after 25000 iterations. In each iteration, we process a single image.

When training a network for image classification (e.g., on ImageNet), images are
usually grouped into mini-batches. Gradients are computed with respect to such
a mini-batch. The number of images in this mini-batch is usually called the batch
size. In a classification scenario, every image corresponds to a training example.
Therefore, this definition of batch size seems intuitive. However, fully-convolutional
networks such as RPNs can produce many predictions for a given image: Every loca-
tion on the feature map and every anchor constitutes a potential training example.
As we will discuss below, we only use a subset of potential examples during training.
We call the examples which are used for training active examples. Examples which
are not used for training are called inactive examples. Therefore, we define batch
size as the number of active examples per image.

During training we need to address the large class imbalance between anchor
boxes of class background and class object : If we were to draw an anchor box from
the anchor grid randomly, the probability to draw a box from the background class
is overwhelming. This imbalance can pose a problem for the classifier: By merely
classifying all anchor boxes – regardless of content – as background, the classifier can
easily minimize its loss function without learning to solve the problem.

In order to counter this effect we sample from the negative examples using the
following strategy: We choose the total number of training examples ntotal = 128

3.5. TRAINABLE OBJECT PROPOSALS 51

(positive and negative) to consider for each iteration. Our batch size is therefore
equal to ntotal. If we have identified n̂pos positive examples in an image we sample
npos = min {n̂pos, ntotal/2}. We choose nneg = ntotal − npos negative examples.

For the object proposal stage, we use a simple random sampling strategy instead
of a more sophisticated hard negative mining or even hard example mining strategy.
Hard negative mining specifically selects negative examples that have been confi-
dently classified as positive for training. Hard example mining is an extension of
hard negative mining which additionally selects positive examples which have confi-
dently been classified as negative. The reason for this decision is that hard negative
mining tends to reduce the false positive rate (FPR) of a detector.

FPR =
FP

FP + TN
(3.29)

While a low false positive rate is typically desirable for an object detection
pipeline, it is not necessarily beneficial for object proposals. False positives (FPs)
are only a problem for an object proposal algorithm if a FP prevents a correct
proposal from appearing on the list of proposals. As we will see in Chapter 3.5.2,
RPNs do not suffer from this problem as they generally require very few proposals
to reach their maximum performance. However, by focusing on correctly classifying
negative examples, hard negative mining can potentially increase the miss rate or
false negative rate (FNR) of the classifier.

FNR =
FN

FN + TP
(3.30)

Therefore, the potential performance benefits of hard negative mining are almost
non-existent while the potential drawbacks are a very real possibility. Mining for
positive examples is also unlikely to yield any benefits because for most images the
number of positive anchor boxes is very small. We rarely exceed ntotal/2 positive
examples which means that while processing a mini-batch, we effectively already
use all positive examples for training anyways. We therefore apply hard example
mining only to the classification stage.

Pruning proposals

The raw output of an RPN during testing consists of a set of bounding boxes B =
{b1, . . . , bN}. Each bounding box is associated with a confidence score s : B → [0, 1].
Every bounding box originates from an anchor box which has undergone bounding
box regression. Therefore N equals the number of anchor boxes on the anchor grid.
The confidence score indicates the likelihood of the bounding box containing an
object instance with sufficient IoU.

Depending on the size of the image and the choice of scales S and aspect ratiosA,
N can be quite large. In order for RPNs to provide usable object proposals, this

52 CHAPTER 3. PROPOSAL STAGE

Algorithm 1 Non-maximum suppression

1: procedure nonmax suppression((B, s), tnms)
2: Bnms ← ∅ ◃ Result set
3: while B ̸= ∅ do
4: b̂← argmax

b∈B
s(b) ◃ Select most highly scored proposal

5: Bnms ← Bnms ∪ b̂ ◃ Add proposal to result set
6: R ← ∅ ◃ Set of proposals to remove
7: for bi ∈ B do ◃ Suppress all proposals which overlap strongly
8: if IoU(b̂, bi) ≥ tnms then
9: R ← R∪ bi
10: B ← B −R ◃ Note that R always contains b̂ for tnms ≤ 1.0

return Bnms

set of bounding boxes needs to be pruned. This proposal pruning happens in three
steps.

To speed up subsequent post-processing steps as much as possible, the first prun-
ing step consists of removing all but the most highly-ranked proposals. We limit
ourselves to the top 8000 proposals.

These filtered proposals undergo a non-maximum suppression (see Algorithm 1).
The non-maximum suppression removes bounding boxes which have a high inter-
section over union (IoU) with a higher-scored proposal. The maximum amount of
allowed overlap between two bounding boxes is controlled by the non-maximum
threshold parameter tnms. While a low value for tnms can be used to limit the num-
ber of proposals, it is important not to choose this parameter too low because it also
limits the number of positive examples for the classification stage. If tnms is chosen
too low, it can also make the detection of objects which are partially occluded by
other objects impossible.

A hard lower bound for the choice of tnms is the non-maximum suppression of the
classification stage: Typically, every classification pipeline performs another non-
maximum suppression before outputting the final detections. The non-maximum
threshold of the proposal stage must not be lower than the non-maximum threshold
of the classification stage. For all our experiments with RPNs we set tnms = 0.7
which seems to work quite well.

The final pruning step is a hard limit on the number of proposals. If not ex-
plicitly stated otherwise we always use the n = 2000 highest ranked non-maximum
suppressed proposals.

3.5.2 Evaluating RPNs on FlickrLogos

In the original implementation [66] Region Proposal Networks use an anchor grid
with aspect ratios Aorig = {0.5, 1.0, 2.0} and scales Sorig {128px, 256px, 512px}.
This is not a suitable anchor grid to use for the FlickrLogos-47 dataset since a

3.5. TRAINABLE OBJECT PROPOSALS 53

0.5 0.6 0.7 0.8 0.9 1.0
Overlap Threshold (IoU)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
Recall vs. IoU

SS
EB
SS+EB+VH
RPN

1000 2000 3000
of Proposals

0.0

0.2

0.4

0.6

0.8

1.0

AR

AR vs. Proposals

Figure 3.9: Performance of proposals generated by an RPN using anchor grid scales
Sext. For n = 2000 proposals RPNs cannot offer better localization or maximum
recall compared to our improved heuristic. However, RPN performance is a lot less
sensitive to the number of proposals than heuristic approaches. RPNs are able to
retrieve almost all relevant objects using very few proposals.

large fraction of logo instances are quite a bit smaller than 128px (see Chap-
ter 2.1.2). We therefore adjust the anchor grid to include more suitable scales
Sext = {32px, 64px, 128px, 256px} while still following the same powers-of-two
scheme as [66].

This adjustment yields vastly better results. The RPN performance for this set
of scales Sext for various number of object proposals is shown in Figure 3.9. It is
clear from the graph that RPN performance is not very sensitive to the number
of proposals: In fact, the performance is almost identical for any setting in which
n ≥ 500 proposals. The measurements make it clear that RPNs offer the remarkable
ability to retrieve almost all relevant object instances with only a few proposals.

Figure 3.9 also shows a direct comparison of object proposals from RPNs with
object proposals from heuristic approaches like Edge Boxes and Selective Search.
For a fair comparison, we allow enough proposals (n = 2000), so that the heuristic
approaches operate near their maximum performance. Surprisingly, RPNs do not
offer superior performance in term of AR or max. recall. They also do not outper-
form Edge Boxes when it comes to object localization. Nevertheless, RPNs are the
preferred method for generating object proposals for multiple reasons: (1) RPNs
can archive the same performance than heuristic methods with fewer proposals.
(2) RPNs can generate object proposals two orders of magnitude faster than Selec-
tive Search or Edge Boxes.

This advantage in speed is not due to lower computational complexity: Since
RPNs are deep convolutional neural networks, they tend to be very compute in-
tensive. The reason for the speedup is two-fold: (1) Deep neural networks are
usually executed on GPU which speeds up the computation dramatically. (2) In
most application scenarios, the computational effort for feature extraction through

54 CHAPTER 3. PROPOSAL STAGE

0 20 40 60 80 100
sqrt(area)

0

20

40

60

of

 in
st

an
ce

s

Instances found vs. object size (IoU 0.5)

RPN
SS
EB
GT

(a)

0 20 40 60 80 100
sqrt(area)

0

20

40

60

of

 in
st

an
ce

s

Instances found vs. object size (IoU 0.7)

RPN
SS
EB
GT

(b)

Figure 3.10: Number of retrieved object instances by size using RPN proposals. (a)
IoU required for a detection is 0.5. (b) IoU required for a detection is 0.7. Number
of proposals is n = 2000 in both cases. RPNs have difficulties in detecting small
objects. Plots were generated from histograms with a bin width of 2px. Small object
are not localized as accurately as large objects.

a convolutional neural network has to be spent anyways. When viewed from this
perspective, the computational effort for a few additional convolutional layers on
top of the existing layers is negligible. In contrast, traditional heuristic proposal al-
gorithms usually need to be executed in addition to the existing processing pipeline.

While RPNs do offer competitive performance, a closer analysis reveals some
weaknesses: Figure 3.10 shows the successfully retrieved object instances as a func-
tion of object size. It is clear that RPNs do have difficulties retrieving small object
instances. In the following chapter, we want to analyze RPNs more closely to iden-
tify the reason for this bad performance.

3.5.3 Analyzing the Anchor Grid

RPNs are fully-convolutional neural networks. As such, they can be thought of as
a big non-linear filter that is applied to the input image in a strided fashion. The
stride d between two filter applications is determined by the downsampling factor
d−1 of the network while the size of the filter is equal to the receptive field of the
network.

This means that the center coordinates of two adjacent anchor boxes centers are
separated by d pixels. Since we use intersection over union (IoU) with groundtruth
boxes as a criterion to divide anchor boxes into positive and negative samples the
granularity of the anchor grid becomes important for small object instances. An
anchor grid that is too coarse might fail to produce an anchor box with sufficiently
high IoU. During training, such a case would result in a failure to use all available

3.5. TRAINABLE OBJECT PROPOSALS 55

Bgt

d

d
sgt

sa=sgt

Ba

sgt

sa=sgt

(a)

Bgt

Basgt

sa

sgt

sa

(b)

Figure 3.11: The situations shown above are used in our analysis of the RPN anchor
grid. (a) A groundtruth instance Bgt and an ideal anchor box Ba of the same scale
and aspect ratio. We look at the maximum displacement between these boxes by
the anchor grid. (b) We examine the maximum difference in scale two boxes are
allowed to have to produce a given intersection over union.

training examples. If we assume that the RPN can perfectly learn the task of
predicting anchor boxes of sufficiently high IoU, the RPN will miss such an instance
at evaluation time. Therefore, it makes sense to analyze the theoretical limits of the
anchor grid with respect to its resolution.

For this purpose, we consider the situation depicted in Figure 3.11. We assume
a quadratic groundtruth instance Bgt of side length sgt. Since we only want to look
at the effect of feature map resolution, we assume the best possible anchor grid:
Namely, that the anchor grid defines an anchor box Ba of identical scale and aspect
ratio. The downsampling factor d−1 induces a stride of d between two neighboring
anchor boxes on the grid. This means that in the worst case, Bgt and Ba are displaced
against each other by d

2
in each direction.

As can be seen in Figure 3.11a, the intersection over union between two such
boxes Bgt and Ba can be calculated by

IoU(Bgt,Ba) =
|Bgt ∩ Ba|
|Bgt ∪ Ba|

=
(sgt − d

2
)2

2s2gt − (sgt − d
2
)2

(3.31)

In order to get a relationship between stride d and the minimum groundtruth
instance size we solve the inequality tovl ≤ IoU(Bgt,Ba) for sgt. tovl represents the
minimum IoU an anchor has to have with an object in order to classify the object
as detected and is commonly set to t = 0.5. Solving the quadratic expression above
for sgt while assuming d > 0 and 0 < tovl < 1 and ignoring negative solutions we
obtain

d(tovl + 1) + d
√

2tovl(tovl + 1)

2− 2tovl
≤ sgt (3.32)

56 CHAPTER 3. PROPOSAL STAGE

The VGG16 [72] network has a downsampling factor of d−1 = 16 for the conv5
feature map. Using tovl = 0.5 we obtain a minimum detectable object size of sgt ≈
44px. For the conv4 and conv3 feature map we obtain a minimum detectable
object size of sgt ≈ 22px and sgt ≈ 11px, repectively. It should be noted, that these
estimates assume an anchor grid that contains anchor boxes of precisely the right
size and aspect ratio. These values are therefore a lower bound on what object sizes
can reasonably be expected to be detected. In practice, the minimum detectable
object size can be much larger and depends on the configuration of the anchor grid.

We will now look at the impact of the anchor grid configuration. More specifi-
cally, we will look at the choice of scales. Since we define an anchor box as a positive
example for an object if the IoU with any groundtruth instance is greater or equal
0.5, we will assume that we can train a classifier which can learn this concept with
perfect accuracy. We ask the question, how far can we space scales apart without
running the risk of missing any objects.

To answer this question, we consider the situation in Figure 3.11b. We assume a
groundtruth box Bgt of height hgt and width wgt and an anchor box Ba of height and
width ha and wa, respectively. Furthermore, we assume w.l.o.g. that hgt ≤ ha and
wgt ≤ wa. Finally we assume the the side length of the boxes are related through a
scale factor a ≥ 1 by ha = αhgt and wa = αwgt.

Under these conditions, we can move Bgt anywhere inside of Ba without changing
IoU(Bgt,Ba). In this case, we can express the IoU as the ratio between the areas
enclosed by these boxes.

IoU(Bgt,Ba) =
|Bgt ∩ Ba|
|Bgt ∪ Ba|

=
wgthgt

waha

=
wgthgt

α2wgthgt

=
1

α2
(3.33)

If we require tovl ≥ IoU(Bgt,Ba) for a positive classification we find that α ≤√
t−1
ovl. Therefore, in order to not miss any objects, the maximum factor by which the

scale of the anchor box and the groundtruth box are allowed to deviate is α =
√
2

for tovl = 0.5. If the scale of a groundtruth item deviates more than a factor of α
from the anchor box, it should be picked up by another anchor box on a smaller
scale. Therefore, the maximum theoretical amount by which two neighboring anchor
scales are allowed to differ is by a factor of α2. This would support the anchor grid
as proposed by [66].

However, this scheme of scales assumes that a classifier will be able to learn the
visual difference between an IoU of 0.49 and 0.51 fairly reliably. It seems quite
unlikely that in practice a classifier will be able to learn such a hard distinction
for two reasons: (1) Training examples with an IoU near 0.5 will look visually
similar but may carry conflicting class labels. This tends to result in low-confidence
classifications. (2) Object annotations are only given in the form of a bounding box
which is only a rough approximation of the object shape.

In the following, we will empirically examine how well an RPN performs in
practice as the object size differs from the anchor size. To perform this examination,

3.5. TRAINABLE OBJECT PROPOSALS 57

Figure 3.12: Creating the Ftest,x datasets. The image is recursively split into 2 × 2
image patches until each patch only contains a single object which is then scaled
to the desired size. Image patches need to be small to fit into GPU memory, yet
they also need to contain background for meaningful RPN measurements. Split
candidates (displayed in pink) are based on the vertices of groundtruth boxes (green).
Splits near the image center are preferred.

we use the FlickrLogos dataset to create new datasets with tightly controlled object
sizes. In order to be able to scale the objects to a specific size, we first need to
make sure that every image in the dataset contains precisely one object instance. In
principle, we could easily archive this by directly cutting out the individual objects
and scaling them to the desired size. However, since we are interested in evaluating
object proposals, we need to include as much background as possible in each image.

At the same time, we need to limit the size of the images. Often, objects instances
can be very small compared to the image. Scaling the object to a particular size
might increase the size of the image to a point where we are unable to fit it into
GPU memory. For this reason, we aim to cut up the individual images into smaller
images, each of which roughly covers a fourth of the area. We achieve this by finding
points near the image center (which we call split candidates) which split the image
into four sub-images without intersecting any groundtruth instances. Figure 3.12
illustrates this.

We construct the dataset in the following way: In the simplest case, the image
only contains a single object instance. In this case, we can just scale the image so
that the

√
area of the object has the desired size. After the scaling operation, the

image might need to be cropped not to exceed the desired dimensions.

In case that an image contains multiple object instances, we find a set N =
{n1, n2, . . . , nm} of pairwise non-overlapping groundtruth boxes. If N = ∅ we
discard the image. Each groundtruth box ni is represented by its four vertices
ni = (vi,1,vi,2,vi,3,vi,4). We then construct the set VN = {v1,1, . . . ,vm,4} which
contains the vertices of all the groundtruth boxes in N . From VN we build a set
of split candidates C =

{pk+pl

2
|(pk,pl) ∈ VN × VN

}
. Each element in C defines a

potential axis-parallel split which splits the image into four sub-images. We try to
find a split which is as close as possible to the image center but does not intersect
any groundtruth boxes. In case no such split can be found, we discard the image.

58 CHAPTER 3. PROPOSAL STAGE

This process is repeated recursively on each of the four sub-images until each
image contains at most one object instance. Images containing no object instances
are discarded. This process is illustrated in Figure 3.12. The result is a dataset in
which every image contains exactly one object whose

√
area has been scaled to a

specific size.

We create 11 differently scaled versions of the FlickrLogos-47 test set using this
algorithm. In the following, we will refer to these datasets as Ftest,x where x ∈ {10i+
20|i = 0 . . . 10} represents the target object size measured in

√
area. Additionally,

we use the same algorithm to create a single dataset Ftrain which contains objects
scaled in such a way that the object scales are evenly distributed in the interval
[20px, 120px].

We choose the anchor scales S = {32px, 45px, 64px, 90px} and train a RPN
specifically for each of these scales. For a given scale, we then evaluate the trained
RPN on all datasets Ftest,x while always limiting the max. number of proposals to
n = 2000. Furthermore, we repeat this process using features from different feature
maps conv3, conv4 and conv5.

The results of these experiments are shown in Figure 3.13. Focusing on the results
obtained from the conv5 feature map – which is the feature map that is commonly
used for RPNs – we notice a general trend of decreasing RPN performance when we
go to smaller objects. This effect can be explained through the lack of resolution of
the conv5 feature map. Although we do observe a noticeable drop in performance as
we move away from the anchor scale, the powers-of-two scheme for selecting anchor
scales seems to be sufficiently dense for the conv5 feature map.

We want to examine, whether we can improve RPN performance for smaller
objects when using higher-resolution feature maps. As Figure 3.13 shows, this is
clearly the case. The gains in performance are quite noticeable for small anchors
up to a scale of 64px. However, we also notice that RPN performance becomes
more sensitive to scale when using conv3 or conv4 features. It becomes clear that
in this case, the powers-of-two scale selection scheme does not provide an adequate
sampling of the scale space. We, therefore, propose to double the number of anchor
scales so that two neighboring scales are separated by a factor of

√
2 instead of 2.

An interesting observation is that earlier layers are able to predict small objects
just as well as deeper layers can predict large objects. This is remarkable because
deeper networks are generally regarded as superior to shallow networks since deeper
networks represent more complicated model functions. At least for our task and our
network structure, it seems that deeper networks are not necessarily associated with
better results.

From our analysis, we, therefore, take note of two design principles for RPN-
based small object proposals: (1) We should not rely on conv5 features alone to
reliably capture small object instances since the resolution of the associated anchor
grid is too coarse. (2) If we use features from earlier feature maps such as conv3 and
conv4, we need to increase the density of scale space sampling for anchor boxes.

3.5. TRAINABLE OBJECT PROPOSALS 59

20 40 60 80 100 120
Object size in sqrt(area)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
AB

O
Object size vs. MABO

32 (conv3)
32 (conv4)
32 (conv5)
45 (conv3)
45 (conv4)
45 (conv5)
64 (conv3)
64 (conv4)
64 (conv5)
90 (conv4)
90 (conv5)

Figure 3.13: Analysis of the scale sensitivity of the RPN anchor grid. Each plot
shows the RPN performance as a function of object scale for given anchor box scale
and feature map. RPN performance of conv5 features decreases for small objects.
Higher-resolution feature maps alleviate the problem, but require a denser scale
space sampling.

3.5.4 Improving RPN object proposals

From our previous theoretical and empirical analysis of the anchor grid we have iden-
tified two promising approaches to improve RPN performance: (1) Higher-resolution
feature maps offer better predictions for small objects than deeper feature maps
while deep feature maps are better for predicting large objects. (2) A denser sam-
pling of the scale space is likely to improve performance. However, the performance
gains are likely to be more noticeable for higher-resolution feature maps than for
deep feature maps.

Denser scale-space sampling

For our initial evaluation of RPNs we used the extended anchor set Sext × A with
the aspect ratios A = {0.5, 1.0, 2.0} and Sext = {32px, 64px, 128px, 256px}. This
extended anchor set better reflected the large variations in scale in the FlickrLogos-
47 dataset compared to the anchor set of the original implementation.

Our analysis from Chapter 3.5.3 (see Figure 3.11) revealed that – especially
for small object instances – the scale space sampling of the anchor grid is insuf-
ficiently dense. We therefore propose a new anchor set Sprop × A with Sprop =
{32px, 45px, 64px, 90px, 128px, 181px, 256px}. This new anchor set covers the same
range of scales as Sext but doubles the density of scale space sampling. Each scale
is separated by a factor of

√
2 from the next scale.

60 CHAPTER 3. PROPOSAL STAGE

Score
Reg

RPNconv5

ActNorm
1x1

conv5
3x3

conv2
3x3

conv3
3x3

Score
Reg

ActNorm
1x1

RPNconv3

conv4
3x3

Score
Reg

RPNconv4

ActNorm
1x1

conv1
3x3

Pool
2x2

Pool
2x2

Pool
2x2

Pool
2x2

Figure 3.14: Network architecture for improved region proposals. Proposals are
generated by multiple RPNs attached to feature maps of different resolutions –
each using their own loss functions. Activations need to be normalized between the
different feature maps for training.

High-resolution feature maps for small objects

In order to exploit higher resolution feature maps, we propose the following mod-
ified RPN architecture which is shown in Figure 3.14: Instead of a single RPN
module attached to the last feature map, we attach additional RPN modules to
higher-resolution feature maps. Each RPN module is responsible for predicting a
different range of anchor scales. In the following, we will refer to these modules by
subscripting them with the feature map to which they are attached. E.g., RPNconv3

refers to the RPN modules attached to the conv3 convolution block of the VGG16
network.

Weighting and Normalization Every RPN module requires its own loss func-
tions – one for classification and bounding box regression. This introduces the
problem of weighting the influence of each individual loss functions. Since each loss
function is responsible for its own range of object scales and all object scales are
equally important to predict correctly, it is tempting to assign the same weight to
each loss function.

However, assigning equal weights to loss functions does not necessarily mean
that each loss function contributes equally to the training progress. In order for loss
functions to have the same influence, several conditions must be fulfilled: (1) The loss
functions must be of the same type (e.g., Softmax cross-entropy loss). (2) They must
operate on the same network output. (3) The same number of training examples
must be considered by each loss function.

None of the above-mentioned conditions are met in the case of our network
architecture. On each arm, we have a softmax cross-entropy loss Lcls for classification
and a Huber-loss Lreg for bounding box regression which violates requirement (1).
The different branches of the network violate Requirement (2). Finally, condition (3)
is violated because it is almost certain that for any given image, not all object scales
are present.

3.5. TRAINABLE OBJECT PROPOSALS 61

Problem (1) is solved in the following way: We balance the softmax cross-entropy
loss Lcls and the Huber-loss Lreg by introducing a factor λ. The total loss is given by
Ltotal = Lcls + λLreg. We follow the recommendation by [66] to set λ = 10 although
[66] can show that the performance is largely unaffected by the actual value of λ for
a wide range of scales.

Problem (3) is also easily addressed by normalizing the losses Lcls and Lreg by
the number of training examples. Since the default behavior of the loss functions is
to normalize by the sum of the loss weights and our loss weights are binary vectors
marking the active samples, this requires no intervention on our part.

Problem (2) is more difficult to address. Since all object sizes are equally impor-
tant, we do not want to change the weighting of the loss functions between different
branches. Instead, we normalize the features on which the different branches oper-
ate. This introduces an implicit weighting of the gradients from every loss function.

As data passes through a deep convolutional neural network, the variance of the
activations tends to decrease as the activations grow sparser. Paired with the fact
that activations are typically mean-centered (before applying ReLU) this means,
that the energy of earlier feature maps is typically higher than the energy of later
feature maps. The normalization, therefore, tends to produce a scaling factor which
downscales activations from earlier layers and upscales activations from later layers.
During the backward pass, this automatically scales the gradients coming from the
loss functions.

This normalization is absolutely crucial for training such a multi-branch network.
A failure to introduce normalization can even lead to divergence during training.

Anchor Assignment Another question that needs to be addressed is which an-
chor scales from Sprop = {32px, 45px, 64px, 90px, 128px, 181px, 256px} should be
predicted by which RPN module. As we will show in Chapter 4.2.3 the classifica-
tion performance is maximized when the receptive field of a network matches the
object size that it is trying to detect. For object proposals, this means that every
anchor should be predicted by a feature map whose receptive field is approximately
the same size as the anchor scale.

The receptive fields for the RPN modules shown in Figure 3.14 are 40px (conv3),
92px (conv4) and 196px (conv5). It is immediately apparent that the feature map
with the largest receptive field of the network is insufficiently large to accommodate
the largest anchor scale. Nevertheless, this is exactly the situation in the original
RPN implementation by [66] whose anchor scales Sorig {128px, 256px, 512px} contain
an even more extreme mismatch between receptive field and anchor scale. We choose
the conv3 feature map to predict the anchor of scale 32px and 45px. The conv4
feature map is responsible for the anchor scales 45px, 64px and 90px. The conv5
map is responsible for predicting the entire range of anchor scales Sprop.

As it can be seen from the assignment, there is some overlap between the layers’
responsibilities: In particular, the last layer is responsible for predicting all anchor
boxes. This choice makes our multi-featuremap RPN a true extension to the orig-

62 CHAPTER 3. PROPOSAL STAGE

0.5 0.6 0.7 0.8 0.9 1.0
Overlap Threshold (IoU)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall vs. IoU

ext (conv5)
prop (conv5)
prop (multires)
SS+EB+VH

1000 2000 3000
of Proposals

0.0

0.2

0.4

0.6

0.8

1.0

AR

AR vs. Proposals

Figure 3.15: Impact of the proposed improvements to the RPN. Our proposed anchor
set (prop) with denser scale space sampling improves both localization and max.
recall compared to the default powers-of-two anchor set (ext). Utilizing additional
higher-resolution feature maps (multires) can improve the max. recall even further.

inal approach. If we were to remove the additional RPN modules, the network
architecture is identical to the original approach by [66].

Combining Predictions Since all RPN modules generate independent predic-
tions, the results of all RPN modules need to be combined into a single list of object
proposals. This is particularly true because some anchor boxes are predicted by
multiple layers.

We apply a bounding box pruning – as described in Chapter 3.5.1 – separately
for each RPN module: For each RPN module, we limit ourselves to 8000 pre-NMS
proposals. We perform non-maximum suppression with a NMS threshold tnms ≥ 0.7
and perform a final limit of 2000 proposals per RPN module.

Finally, we concatenate the proposals generated by every RPN module into a
single list and run another non-maximum suppression. Our final proposal is the
NMS output, limited to 2000 proposals. Because the conv5 feature map still predicts
all anchor boxes using the same pruning process as in the original approach, all
performance gains must stem from proposals generated from the other feature maps.

Evaluating the improved RPN

To evaluate our RPN improvements, we first test our proposed anchor set Sprop using
the original network architecture with a single RPN module attached to the conv5
feature map. Figure 3.15 shows the results of this evaluation. Clearly, the proposed
anchor set improves both the maximum recall and the localization abilities of the
RPN.

To test the effects of incorporating higher-resolution feature maps for predict-
ing small objects we use our proposed anchor set in conjunction with the network

3.5. TRAINABLE OBJECT PROPOSALS 63

n = 300 n = 1000 n = 2000 Time /
F. map Scales MR MABO MR MABO MR MABO img

conv5 Sext 0.822 0.672 0.856 0.698 0.869 0.710 0.09s
conv5 Sprop 0.826 0.690 0.864 0.721 0.880 0.733 0.09s
multires Sprop 0.844 0.695 0.889 0.728 0.903 0.741 0.30s

Table 3.2: Performance of proposed improvements for RPNs for different number
of proposals. MR (max. recall) refers to the recall at IoU = 0.5. Our proposed
anchor set does offer improved performance compared to the powers-of-two anchor
scales Sext in all cases. Performance can be enhanced even further by incorporating
additional feature maps with higher resolution (multires).

architecture discussed in chapter 3.5.4 (multires). The benefits are not as obvious
as for the Sprop anchor set. While the maximum recall is clearly better than all
other methods (including our best heuristic proposals), the same cannot be said
for the localization properties. Still, the multires approach outperforms the conv5
approach in terms of average recall (AR) and mean average best overlap (MABO),
shown in Table 3.2. In terms of MABO, we are also able to outperform Selective
Search and Edge Boxes individually (see Table 3.1 in Chapter 3.4.3). However, com-
bining proposals from Selective Search and Edge Boxes still yields superior MABO
performance.

The average runtime per image for generating proposals is also obviously superior
to all previously discussed heuristic approaches. However, it is important to keep in
mind, that this improved runtime is not due to the lower computational complexity
of RPNs but due to the fact that the feature extraction is being run a GPU. In fact,
the runtime is mainly dominated by the non-maximum suppression (running on a
CPU) which is evident when comparing the runtimes of the conv5 with the multires
approach.

3.5.5 Conclusion

We have evaluated two heuristic object proposal algorithms, Selective Search and
Edge Boxes, on the FlickrLogos-47 dataset. Without any of our modifications, Selec-
tive Search offers high maximum recall while Edge Boxes offers better localization.
We have identified common failure modes of Selective Search and suggested that
diversifying our source of object proposals might be beneficial. In particular, we
have suggested that Edge Boxes might be able to complement Selective Search. We
have validated our conjecture through experiment and have shown that by employ-
ing both Selective Search and Edge Boxes we can achieve better maximum recall
and localization than both algorithms individually.

We have discussed potential deficiencies of both algorithms for generating pro-
posals for text-based company logos. In order to address these problems, we have

64 CHAPTER 3. PROPOSAL STAGE

introduced the VH-connect algorithm which provides a fast and simple heuristic to
improve the recognition of text-based logos. By incorporating VH-connect to our
combined Selective Search and Edge Boxes proposals, we were able to achieve even
better maximum recall and localization.

Because of the prohibitively long runtimes of heuristic object proposals we have
evaluated Region Proposal Networks (RPNs) – an approach to object proposals that
can be directly integrated into a DCNN. While being two orders of magnitude faster
than heuristic proposals, we found the performance of RPNs to be lacking. We have
investigated the reasons for this poor performance and have identified two problems:
(1) Insufficiently dense scale space sampling and (2) lacking anchor grid resolution
for small objects. We have addressed these problems by proposing an improved set
of anchor boxes and by utilizing additional higher-resolution feature maps for the
anchor prediction. We were able to show that each of these improvements can boost
both the maximum recall and the localization of the generated proposals.

Comparing our improved heuristics with our improved RPN-based proposals,
we can make this final evaluation: While we were unable to improve the localiza-
tion properties of RPN-based proposals to a point where they can beat our best
heuristic object proposals, we were at least able to achieve competitive localization
performance. Regarding maximum recall we were able to improve RPN-based object
proposals so that they actually surpass our best heuristics. Combined with the fact
that even our most elaborate RPN-based approach is still an order of magnitude
faster than our most elaborate heuristic, we feel justified in recommending RPN-
based object proposals over heuristic approaches – even for small object instances
as they typically appear in company logo detection.

Chapter 4

Classification Stage

The first deep convolutional networks (DCNNs) like AlexNet [49] and VGG16 [72]
were designed for the task of image classification. Image classification seeks to assign
a class label to a given image. Usually, this class label refers to the presence of an
object in the image.

Object detection goes a step beyond image classification: Not only are we inter-
ested in the presence/absence of an object in the image, we also want to know the
location of the object instances which may occur multiple times in the same image.

However, the task of image classification and object detection are closely related.
Given a classifier that performs image classification, we can apply this classifier to
any patch of our image to predict its content. This is the role of the classification
stage in a two-stage object detection pipeline: It takes image patches proposed by
the object proposal stage and predicts class labels for each patch. The classification
stage provides the class label, and the proposal stage provides the (approximate)
location.

In older object detection pipelines [24] the classification was performed over a
dense grid of image regions of different scale and aspect ratios. Because the first
DCNN-based classifiers were extremely compute-intensive, this dense evaluation was
replaced with a sparse evaluation based on object proposals.

Aside from utilizing computational resources more efficiently, the proposal stage
can also potentially help the classifier: A classifier which tends to produce many
false positives can be assisted by the proposal stage which already excludes many
image patches from being processed by the classification stage.

4.1 R-CNN

4.1.1 The R-CNN detection pipeline

R-CNN [31] was amoung the first approaches that applied DCNNs to the task of
object detection. In the original implementation [31], R-CNN used AlexNet [49] as
classifier.

65

66 CHAPTER 4. CLASSIFICATION STAGE

In order to be able to use a standard classification network such as AlexNet,
Girshick et al. had to overcome two problems: (1) Since AlexNet was originally
designed for the ImageNet classification challenge [15], it contains 1000 output neu-
rons – one for each class of the ImageNet dataset. The set of ImageNet classes may
not completely overlap with the set of classes in the object detection task. One
prominent example is that ImageNet does not contain a person class while most
popular object detection challenges like PASCAL VOC [22] or MSCOCO [55] do.
(2) The AlexNet architecture uses fully-connected layers which require fixed-size
image patches as input. Since for an object detection task the objects are allowed
to have arbitrary size, this mismatch needs to be handled.

R-CNN solves the two above-mentioned problems in the following ways: The last
layer of the network which produces the classification is removed from the network.
Instead the output of the previous layer is interpreted as a feature vectors which
is used as input for a series of Support Vector Machines (SVMs) [78] [13]. Each
SVM is responsible for identifying a single class, i.e., solves a binary classification
problem of distinguishing one class against the background and every other class.
The DCNN is therefore not directly used for classification but for feature extraction.

Additionally, R-CNN performs a bounding box regression to refine the location of
each object proposal to better match the object’s location. The method used by R-
CNN is inspired by the method used in deformable part model-based detectors [24]:
For every class c a simple linear regression model Lc is learned through least-squares
fitting which predicts four deformation terms t based on the feature vector x. The
deformation terms predict an offset in x- and y-direction, a scaling factor for width
and height and are parametrized in the same way as the regression targets for RPNs
(as discussed in section 3.5.1).

t = (tx, ty, tsw , tsh)
T = Lcx (4.1)

It is important to note that the DCNN used for feature extraction does not
necessarily need to be trained to recognize the specific classes of our FlickrLogos-47
dataset. We have observed that a DCNN that has been pre-trained on ImageNet
will extract features which generalize well to our task. This observation is also in
line with the observation of Razavia et al. [64] who was among the first to notice
the power of DCNNs to extract features which generalize well over a wide range of
datasets and computer vision tasks. However, detection performance is improved if
the pre-trained network is fine-tuned on the specific classification task.

The mismatch between the size of the object proposals and the input size of the
network is resolved by simply warping the image patch corresponding to the object
proposal to the input size of the network. This may cause significant distortions
for object classes with an extreme aspect ratio. However, this is not necessarily a
problem because all object instances of the same class will have similar aspect ratios
and therefore undergo the same warp.

4.1. R-CNN 67

Aldi (yes/no)

BMW (yes/no)

Fosters (yes/no)

Warped Region

Conv

SVMsDCNN

FC-Layers

Figure 4.1: Outline of the R-CNN detection pipeline. An object proposal algorithm
identifies regions of interest. These image patches are resized to the input dimensions
of a DCNN which extracts features. These features are classified by a series of SVMs
for the final prediction.

The original implementation of R-CNN [31] used selective search [77] as source
for object proposals. An overview of the R-CNN pipeline is depicted in figure 4.1.

4.1.2 Implementation Details

Our implementation of the R-CNN pipeline differs from the original implementa-
tion [31] in a few key areas:

Data augmentation Since our dataset contain many small object instances, most
object proposals will get upscaled when the image patch is scaled to match the
network input dimensions. To create a diverse training set for small objects, we
perform data augmentation by creating small resized copies of images containing
only large objects. We use this augmented dataset along the original data for fine-
tuning the network to our specific dataset. We only focus on images containing
large objects because if we downsample images containing small objects we might
create object instances that do not contain enough visual information for a reliable
classification anymore. This might confuse the classifier instead of enriching the
dataset. More specifically, we define a minimum object sidelength of smin = 20px
and only resize images for which the following relation holds true:

smin < min
g∈G

[min (height(g),width(g))] (4.2)

where G represents the set of all groundtruth instances for the image. If an image
fulfills the above-mentioned condition, it is resized by a factor of α = 0.5.

Object Proposals Unlike the original R-CNN implementation, we do not solely
rely on selective search [77] to generate object proposals. Instead, we make use of
our findings from chapter 3.4.4 and use an ensemble of boxes generated by Selective
Search, Edge Boxes and our VH-connect extension. We generate up to 2000 object

68 CHAPTER 4. CLASSIFICATION STAGE

proposals per image using up to 1400 Selective Search proposals, 400 Edge Boxes
proposals, and 200 VH-connect proposals. This mixture archived the best proposal
performance as discussed in section 3.4.4. Extracting object proposals in such fash-
ion results in approximately 2.9× 106 proposals on the augmented trainval set and
another 5.9× 106 proposals on the no-logo training set.

Furthermore, we do not implement the bounding box regression of the original
approach to refine detections.

Training Procedure We train out R-CNN implementation in two stages: In the
first stage, we fine-tune the network and then train the Support Vector Machines
(SVMs) in the second stage.

For fine-tuning, we use all positive examples – defined as proposals with an
IoU ≥ 0.7 – and sample negative (background) examples. The ratio of positive to
negative examples is 1 : 5. In this case, negative examples are defined as proposals
with 0.1 ≤ IoU ≤ 0.3 resulting in approximately 2.8× 104 of positive and 5.6× 103

number of total samples.

The reason for this rather uncommon definition for negative samples is because
we do not employ hard-negative mining at this stage, yet we still want the network to
focus on classifying hard examples. Since hard negative examples are often proposals
which do overlap with a groundtruth object but not sufficiently to be classified as a
positive example, this heuristic helps to focus the network on the relevant examples.

We run the fine-tuning for 20000 iterations using a batch size of 256 (which
corresponds to approximately 150 epochs). The initial learning rate of λ = 0.001 is
reduced by a factor of 10 after 10000 iterations.

After fine-tuning the network, we train the SVMs on the features extracted
from the network. We train one SVM per logo class c ∈ C to solve the binary
classification problem of distinguishing one specific class from all other logo classes
and the background. In this formulation of the classification problem, each proposal
requires the evaluation of |C| SVMs, each of which outputs a confidence score of the
proposal belonging to a specific class. The confidence of the classification is given
by the SVM that yields the highest score, and the proposal is assigned to the class
belonging to the highest-scoring SVM.

Since all SVMs are trained separately from each other, we cannot guarantee
that the confidence scores between SVMs are comparable. To mitigate the problem,
we L2-normalize the features before using them in the SVM, which works well in
practice.

For our evaluation, we exclusively use SVMs with linear kernels. We have exper-
imented with more complex kernel functions such as the RBF kernel, but we have
found the results to be virtually identical with linear kernel functions. It is therefore
hard to justify expending the additional computational complexity of such kernels.

SVM training happens in three learning rounds, the initial training and two
rounds of hard negative mining. Initially, we use all proposals with an IoU ≥ 0.7

4.1. R-CNN 69

VGG16 CaffeNet

Proposals Features Time Features Time
SS EB VH pool5 fc6 fc7 / img pool5 fc6 fc7 / img

2000 0 0 0.718 0.713 0.712 15.7s 0.715 0.716 0.702 5.3s
1400 600 0 0.737 0.725 0.721 16.6s 0.723 0.729 0.715 6.3s
1400 400 200 0.747 0.740 0.738 16.6s 0.737 0.742 0.730 6.3s

Table 4.1: Evaluation of our R-CNN implementation on FlickrLogos-47. Detection
performance is given as mAP for different feature maps. The performance differ-
ences between the different feature maps are mostly marginal. Improved object
proposals also translate to better detection performance. However, the source of
object proposals can have a significant impact on the total runtime.

with an instance of the current class as positive examples. Negative examples for the
initial training are sampled in a ratio of 1 : 1 from all proposals with 0.1 ≥ IoU ≥ 0.3.

For hard negative mining, we limit ourselves to the n = 4 top detections per
image per round. To ensure diverse examples, we additionally require that these
detections do not have an IoU ≥ 0.2 with each other. We first evaluate the SVMs
on the trainval set of the FlickrLogos-47 dataset. Object proposals are added as
hard negatives for class c in two cases: (1) If the predicted class does not agree with
the groundtruth class of the proposal. (2) If the predicted class does agree with the
groundtruth class of the proposal, but the IoU ≤ 0.3.

For hard negative mining, we do not distinguish between symbol and text sub-
classes: If, for example, the predicted class is Adidas (Symbol) and the groundtruth
class is Adidas (Text) criterium (1) would not be sufficient to categorize the proposal
as hard negative.

After classifying the trainval set, we continue mining for hard negatives on the
logo-free image set. On this set, we add the n = 4 top detections per image that
do not overlap by more than 0.2 with each other to the hard negative set of the
predicted class.

4.1.3 Evaluation

We perform the evaluation of our R-CNN implementation using features from dif-
ferent feature maps and object proposals. We evaluate features from the pool5, fc6
and fc7 map for the VGG16 network and for CaffeNet (which is a slightly modified
version of AlexNet [49]).

Table 4.1 shows the result of this evaluation. The performance of the different
feature maps is almost identical. However, the pool5 feature map consistently scores
slightly better than all other features for VGG16. For CaffeNet, the fc6 features
consistently score best. The dimensionality d of a pool5 feature vector is much
higher than the dimensionality of a fc6 or fc7 feature (dpool5 = 25088 vs. dfc6 =

70 CHAPTER 4. CLASSIFICATION STAGE

dfc7 = 4096). Although a high-dimensional feature vector translates to a slower
SVM evaluation, the added computational cost is negligible since we use a linear
SVM which can be evaluated very quickly. Most of the runtime is spent during
feature extraction.

It is important to note that the timing results in Table 4.1 are not directly
measured but calculated runtimes which are composed of the average runtime for
proposal generation, the average runtime for feature extraction and the average
runtime for classification. The runtime per image is extremely high when we use
the VGG16 network for feature extraction. It is possible to use a much simpler
network like AlexNet [49] which achieves almost identical performance as VGG16
but with sharply reduced runtime (approx. 5s / img). In any case, the time required
for feature extraction dominates the total runtime of this approach. Although the
detection performance of VGG16 is of little interest under these circumstances, we
still choose to include them because we will use the VGG16 architecture for the
detection pipelines in Chapters 4.2 and 4.3. These measurements allow comparing
the different approaches directly.

In Appendix D we show example detections.

4.2 Fast R-CNN

4.2.1 Network architecture and Detection pipeline

While R-CNN is able to produce impressive results in terms of detection perfor-
mance, its long processing time makes it unattractive for most real-world applica-
tion. The two main factors for R-CNNs long processing time are the number of
proposals to evaluate and the network structure itself.

While both factors can certainly be optimized, the architecture of the R-CNN
pipeline itself can often limit the efficiency of the approach as the following example
illustrates: Let us assume 2000 proposals per image and a VGG16 [72] network as
feature extractor. Since the VGG16 network has an input size of 224px × 224px,
every proposal – no matter how small and how much they overlap with each other
– needs to be resized to these dimensions. This configuration requires the network
to approximately process the equivalent of a single 10000px × 10000px image. As
most images in our dataset only have a size of 1024px× 1024px it becomes evident
that much redundant computation must be involved in this approach.

Fast R-CNN [30] improves on R-CNN in two ways: (1) It eliminates most of this
redundant computation by extracting features only once for the entire image. (2) It
removes the SVMs as classifiers and uses the network itself to generate the predic-
tions. This allows for joint optimization of the classifier and the feature extractor
and simultaneously speeds up evaluation.

Fast R-CNN exploits the fact that the convolution operation is not intrinsically
tied to its input or output size: As the size of the input increases, so does the size of

4.2. FAST R-CNN 71

Figure 4.2: Illustration of ROI-Pooling: Input image I and feature map F are
related through a downsampling factor α. An object proposal (red) is projected
onto a corresponding region on the feature map. The feature map entries within
this region are pooled into a fixed-size feature. The ROI-pooled features p have user-
specified spatial dimensions wout and hout and share the same number of channels
as F . Each bin of p originates from a max-pooling operation with a variable-sized
kernel (blue).

the output. Therefore, convolutional layers of the network can be resized as desired,
according to the size of the input image.

ROI-Pooling Fast R-CNN uses the fully-connected layers of the network as clas-
sifiers. Since the networks are typically pre-trained on a classification task such as
ImageNet [15] which has 1000 classes, the last fully-connected layer of the network
is replaced with a layer that has the desired number of output neurons for the de-
tection task. Aside from the number of output neurons, fully-connected layers are
also tied to the number of inputs. Unlike the number of output neurons, the input
size is not known in advance, since the input image can vary in size.

In order to solve this problem, Fast R-CNN introduces a so-called ROI-Pooling
Layer which maps arbitrarily-sized regions from the feature map to a fixed-size
representation p. Similarly to feature maps, p can be regarded as a 3-dimensional
array which has a certain number of channels and a user-specified spatial resolution.
We therefore index the individual elements pc,y,x of p in the same way as feature
maps: c refers to the channel index, while y and x describes a spatial location in p.
In the following, we will refer to a single spatial location (x, y) as a bin.

On an abstract level, ROI-Pooling works similar to a max-pooling operation:
Each output bin of an ROI-Pooling operation is obtained by computing the channel-
wise maximum over a given input region. Unlike traditional max-pooling where
the size of the input region (the kernel size) is fixed, the output size is fixed in
ROI-Pooling. The spatial resolution of the output is determined by user-specified
parameters wout and hout, which refer to the number of bins in x and y direction,
respectively. The number of output channels is determined by the number of chan-
nels in the input feature map. Since the spatial output dimensions are fixed but the

72 CHAPTER 4. CLASSIFICATION STAGE

input is allowed to have arbitrary size, ROI-Pooling requires a variable kernel size
which depends on the size of the input region and the number of output bins.

More formally, an ROI-Pooling layer takes four inputs: (1) The output of the
last convolutional layer F . (2) A list of n object proposals. Each proposal is charac-
terized by its upper-left and lower-right vertex xI

ul = (xI
ul, y

I
ul)

T and xI
lr = (xI

lr, y
I
lr)

T

The proposal coordinates are specified in image coordinates which we indicate by the
superscript I. (3) The downsampling factor α between the image and the feature
map F . (4) The desired spatial size of the output feature representation (hout, wout).

First the coordinates of the proposals are mapped onto the corresponding feature
map coordinates (indicated by the superscript F) using the downsampling factor α.

xF
ul = (xF

ul, y
F
ul)

T = α−1xI
ul xF

lr = (xF
lr, y

F
lr)

T = α−1xI
lr (4.3)

The ROI-Pooling layer performs a max-pooling operation for every output bin

pc,y,x = max poolFc

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⌊
xF
ul +

x(xF
lr−xF

ul)

wout

⌉
⌊
yFul +

y(yFlr−yFul)

hout

⌉
⌊
xF
ul +

(x+1)(xF
lr−xF

ul)

wout

⌉
⌊
yFul +

(y+1)(yFlr−yFul)

hout

⌉

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.4)

where max poolFc(f) computes the maximum value in an area f on channel c
of the feature map F . The area f is specified by a rectangle defined by the upper
left and lower right vertices in feature map coordinates. ⌊.⌉ denotes the operation
which rounds to the nearest integer. This process is illustrated in Figure 4.2.

Bounding Box Regression Aside from classifying the image content of an ob-
ject proposal, Fast R-CNN also performs a bounding box regression to refine the
object’s location further. In contrast to the R-CNN pipeline, Fast R-CNN integrates
bounding box regression directly into the network. This is done by adding a separate
fully-connected layer which operates on the same features as the classification layer.

The bounding box regression in Fast R-CNN is very similar to the regression
used by RPNs (discussed in Chapter 3.5.1). Most notably, the parametrization of
the regression targets is identical and the Huber loss [41] is used during training. A
crucial difference to the regression mechanism of RPNs is that Fast R-CNN performs
a class-specific bounding box regression: If there are C different (positive) classes,
the fully-connected layer for the bounding box regression needs to have 4C output
neurons.

During training, the regression target for a proposal is only applied to the 4
output neurons associated with the correct class. This is achieved by introducing
binary weights for the Huber loss: The loss weights for all outputs are set to zero

4.2. FAST R-CNN 73

FC-Layers

RoI
projection

Feature map

RoI
Pool

FC

FC

Classification

Bounding Box
Regression

Image

Object Proposals
(supplied externally)

Conv-Layers

DCNN

Figure 4.3: Principle of the Fast R-CNN detection pipeline. Feature extraction is
performed only once for the whole image through the convolutional layers. Classi-
fication and bounding box regression are integrated into the network through fully-
connected layers. An ROI-Pooling layer maps variably-sized regions on the feature
map to fixed-size features for the fully-connected layers.

except for these 4 outputs. The loss is always normalized by the number of active
outputs. Should a batch contain no active outputs for bounding box regression, the
loss is set to zero.

Summary Figure 4.3 provides an overview of the Fast R-CNN pipeline. We use
the VGG16 network as an example to show, how a DCNN used for ImageNet clas-
sification can be turned into a Fast R-CNN compatible object detection network:
(1) Remove the last fully-connected layer of the pre-trained network. (2) Add two
new layers at the end which are randomly initialized using Gaussian noise: One for
classification and one for bounding box regression. If there are C different (positive)
classes, the classification layer requires C + 1 output neurons (C positive classes
and the background class), and the regression layer requires 4C output neurons (4
regression targets per positive class). (3) Replace the last max-pooling layer with
an ROI-Pooling layer. It is crucial to choose (hout, wout) of the ROI-Pooling layer to
match the number of output neurons of the original max-pooling layer. In the case
of the VGG16 network, this is equal to a 7× 7.

Aside from the improvements in runtime, Fast R-CNN offers another benefit.
Since classification, bounding box regression are all integrated into the network,
Fast R-CNN can be trained end-to-end.

4.2.2 Fast R-CNN on FlickrLogos-47

We perform our evaluation of Fast R-CNN on FlickrLogos-47 in two parts: First,
we evaluate how different numbers of object proposals affect the performance of
the classification stage. Second, we want to ascertain, whether our improved object
proposals from Chapter 3.4 translate to better detections. For direct comparison,

74 CHAPTER 4. CLASSIFICATION STAGE

VGG16 CaffeNet

Proposals Performance Runtime Performance Runtime
Total SS EB VH (mAP) / img (mAP) / img

300 300 0 0 0.589 0.97s 0.557 0.92s
1000 1000 0 0 0.637 1.00s 0.598 0.94s

2000 2000 0 0 0.643 1.04s 0.606 0.94s
2000 1400 600 0 0.658 2.02s 0.624 1.93s
2000 1400 400 200 0.661 2.02s 0.623 1.94s

Table 4.2: Evaluation of our Fast R-CNN implementation on FlickrLogos-47. De-
tection performance is given as mAP for different feature maps. Compared to the
R-CNN pipeline, the detection performance is noticably lower. The overall runtime
could be reduced significantly and is mostly dominated by the object proposal stage.

we perform this evaluation with the same composition of object proposals which we
used to evaluate R-CNN in Chapter 4.1.3.

Training Procedure We use our batch-normalized VGG16 network which has
been pre-trained on ImageNet as a basis for our Fast R-CNN implementation. As
described in Chapter 4.2.1, the pool5 layer is replaced by a ROI-Pooling layer and the
fc8 layer is replaced by two fully-connected layers which are both attached to the fc7
layer: One layer with 48 output neurons (47 logo classes + 1 background class) for
classification. The other layer with 188 output neurons for bounding box regression
(4 regression targets for each of the 47 logo classes). The training consists of fine-
tuning the VGG16 network for 60000 iterations. We use an initial learning rate of
λ = 0.001 with a learning rate reduction by a factor of 10 after 40000 iterations. In
every iteration, we draw two images from the dataset at random. For each of these
images, we perform data augmentation by randomly flipping the image along the
vertical axis. Each of these images is associated with a set of object proposals from
which we sample a batch of 256 proposals in total – 64 positive and 192 negative
examples. We consider a proposal to be a positive example if it has an IoU ≥ 0.5
with an object instance.

Training examples are partially drawn at random. However, we also employ
both hard positive and hard negative mining (often called hard example mining) for
the classification task. Hard positives are those positive examples which have been
classified with the lowest confidence. From the 64 positive examples in each batch,
16 examples (25%) are hard positives. Hard negatives are those negative examples
which have been classified as an object instance with the highest confidence. From
the 192 negative examples in each batch, 48 examples (25%) are hard negatives.
Since there are no positive or negative examples for a regression task, there is no

4.2. FAST R-CNN 75

hard example mining for the bounding box regression. We always use all proposals
which have an IoU ≥ 0.5 with an object instance for training.

Evaluation We first look at the influence of the number of proposals on the clas-
sification performance. In our first experiment, we train Fast R-CNN using 2000
proposals and evaluate its performance using 300, 1000 and 2000 proposals. The
results of this evaluation is shown in Table 4.2. It is evident that more object
proposals tend to improve detection performance. We have limited ourselves to a
maximum number of 2000 proposals because we have established during our evalu-
ation of heuristic object proposals (see Chapter 3.4) that increasing the number of
proposals beyond 2000 hardly translates into increased recall anymore. More pro-
posals, therefore, are unlikely to be hugely beneficial to the classifier. This is also
evident in the difference in performance between 2000 and 1000 proposals, which
is not nearly as large as the difference between 1000 and 300 proposals. Too many
proposals can also be detrimental to the classifier’s performance: Since the classifier
has a certain false positive rate, more proposals can lead to more false positives.
Because the recall has not much room to improve, the performance is bound to
decline.

It also becomes clear, that Fast R-CNN is able to reduce the runtime compared
to R-CNN significantly. For R-CNN most of the time is spent on feature extraction.
For Fast R-CNN the runtime is mostly dominated by the object proposal generation.
Given the proposals (n = 2000), a single image takes only 0.14s to process for VGG16
and 0.05s for CaffeNet.

For R-CNN, the classification performance of CaffeNet was almost on par with
the performance of VGG16. The dramatically lower runtime might convince some
users to use R-CNN in conjunction with CaffeNet instead of VGG16. For Fast
R-CNN the results are different: The difference in runtime between VGG16 and
CaffeNet is mostly insignificant while the difference in detection performance is not
negligible. However, both for CaffeNet and for VGG16 the detection performance
is noticeably lower with Fast R-CNN as when using R-CNN.

This last observation requires a more in-depth investigation: Conceptually, the
differences between R-CNN and Fast R-CNN seem minor, yet the difference in de-
tection performance is quite severe. (1) Both approaches use the same network
architecture for feature extraction. (2) R-CNN uses an SVM for classification while
Fast R-CNN integrates the classification into the network. While it is reasonable to
expect a difference in performance when exchanging the classifier, it seems unlikely
that this can fully account for the magnitude of the change. (3) The ROI-Pooling
layer produces the same output as a max-pooling layer if we prepare the image
patches in the same way as for R-CNN.

Therefore, it seems that the fact that R-CNN resizes the input patches has
a beneficial effect on the detection performance. However, this conclusion seems
strange for two reasons: (1) The original approach [30] reports an improvement
in both runtime and detection performance compared to R-CNN for the task of

76 CHAPTER 4. CLASSIFICATION STAGE

general object detection. (2) Since most of the logo instances on our dataset are
small, R-CNN on average needs to upsample the proposals to fit the network input
dimensions. However, upscaling does not add new information to the image.

It seems strange that resizing the inputs to the network should be the cause
for the performance difference. In the following, we will analyze our suspicion in
greater detail and will answer the question of why Girshick [30] was able to report
an improvement in detection performance.

4.2.3 Receptive field and object size

To analyze the performance of Fast R-CNN on FlickrLogos-47 more deeply, we
plot the size distribution of correctly detected objects in Figure 4.4. Figure 4.4
makes it obvious that large object instances are detected almost perfectly, while
only a relatively small fraction of small objects are detected. This discrepancy can
be made smaller at the cost of lower precision which indicates that small object
instances tend to be detected with lower confidence than large objects.

Object size vs. Detection Performance In order to test our suspicion that
object size plays an important role, we perform the following experiment: We upscale
all images by a constant factor and re-run training and evaluation on these upscaled
images. We choose a specific level of precision (in this case 0.98) and plot the size
distribution of detected objects in Figure 4.4. It becomes clear that by upscaling
images by a factor of 1.8 we can detect roughly the same number of objects at a
precision of 0.98 as by processing the unscaled images at a precision of 0.90.

For comparison with our results in Table 4.2 in Chapter 4.2.2, we are able to
achieve a mAP of 0.692 and 0.710 using a scale factor of 1.4 and 1.8, respectively
(using SS+EB+V H proposals). Because of limited GPU memory, we are unable to
upscale images beyond a scale factor of 1.8 with our current network architecture.
However, the aforementioned results do suggest that by upscaling the images we
can build a Fast R-CNN pipeline which at least rivals the detection performance of
R-CNN. Since upscaling does not add new information to the images, these experi-
ments suggest, that the size of the object itself indeed has an influence on detection
performance.

We can also observe from Figure 4.4 that only small object instances benefit
from this upscaling. Object instances larger than approx. 120px do not tend to
benefit. Upscaled by a factor of 1.8, this means that these objects have a size of
approx. 216px in the upscaled image. As mentioned in Chapter 2.2.1, the receptive
field of the VGG16 network is 212px wide (at the pool5 layer). This observation
provides a first hint to understanding this phenomenon: Maybe it is the case that
objects are detected best when they have the same size as the receptive field of the
network.

In order to confirm this observation and to test whether we can potentially
exploit this discovery by reducing the receptive field of the network, we follow up

4.2. FAST R-CNN 77

0 100 200 300 400
Instance size in sqrt(area)

0.00

0.02

0.04

0.06

0.08

0.10

Re
l.

Fr
eq

ue
nc

y
TPs vs. object size

GTs
Precision 0.98
Precision 0.95
Precision 0.90

(a)

0 100 200 300 400
Instance size in sqrt(area)

0.00

0.02

0.04

0.06

0.08

0.10

Re
l.

Fr
eq

ue
nc

y

TPs vs. object size (@Precision: 0.98)

GTs
Scale 1.0x
Scale 1.4x
Scale 1.8x

(b)

Figure 4.4: Analysis of correctly detected objects using Fast R-CNN by size. (a) Es-
pecially for small object instances there exists a large discrepancy between detected
objects and total objects. This gap can be closed at the cost of lower precision.
(b) For a given level of precision, another way of partially closing this gap is by
upscaling the images. Graphs were generated from histograms with a bin width of
40px. For all graphs, the instance size is given with respect to the original image
(Scale 1.0).

by performing another experiment: We step back from the complexities of object
detection and consider a simple classification problem.

The importance of the receptive field In order to test the influence of the
receptive field on image classification, we create multiple versions of the VGG16
classification network (introduced in section 2.2.1) with different receptive fields
by removing pooling layers. Since in the VGG16 architecture all downsampling is
performed by pooling layers, this is the most effective way to influence the receptive
field. Since pooling layers do not contain trainable parameters, this also has the
added benefit that in removing them we do not affect the depth of the network.
In the context of this experiment, we refer to the original VGG16 architecture as
V GG16212 which indicates its receptive field of 212px (calculated from a neuron on
the last feature map). Furthermore we create a V GG16108 and a V GG1658 network
by removing the pool1 and the pool2 layer. In order to ensure that the weights of
each network are optimally adapted to objects of a specific size, each network is
pre-trained on an appropriately1 scaled version of ImageNet [15].

We tightly cut out logo instances from the FlickrLogos-47 dataset and scale them
to a specific size. In this way we create five datasets: D256, D128, D64, D32 and D16

1The V GG16212 network was pre-trained on images of size 224px × 224px. Pre-training on
V GG16108 was done with 112px × 112px images. V GG1658 was pre-trained on images of size
56px× 56px.

78 CHAPTER 4. CLASSIFICATION STAGE

165_0_3 267_0_4 280_2_0 314_0_5 373_0_7 438_0_8 528_0_10

Figure 4.5: Examples from the datasets used to test classification performance as
a function of object size and receptive field. First row: Instances from the D256

dataset. Second row: Instances from the D128 dataset (zero padding). Third row:
Instances from the D128 dataset (random padding).

with an object size of 256px, 128px, 64px, 32px and 16px, respectively. Each dataset
version consists of the same image corpus which is split into a training and test set.

We want to train and evaluate each network with each of the dataset versions.
To do this, we need to pad images which are smaller than the receptive field of
the network to the correct dimensions. We perform two types of paddings: zero
padding and random padding, where we paste the object instance into a random
image containing no logos. Examples of the dataset are shown in Figure 4.5.

We then fine-tune each network once for every dataset version and record the
classification performance as top-1 accuracy on the corresponding test set. Table 4.3
shows the results of this evaluation. We can see a consistent pattern where the clas-
sification performance is always maximal when the object size fits right into the
receptive field of the network, which confirms once more our initial observation. It
is also apparent that a network with a small receptive field can achieve comparable
performance on small objects as a network with a large receptive field on large ob-
jects. This observation is important since it shows a way to improve the performance
of Fast R-CNN.

A comparison between the results of zero-padded and random-padded images
also gives us insights into why the receptive field of a network is important: When
there is an extreme mismatch between receptive field and object size, the networks
trained on randomly-padded images often do not converge. A failure to converge
manifests itself the following way: The activations of the last feature maps – and
therefore the input to the classification layers – consist of constant zeros, for any
input image. Neurons which do not activate under any circumstances are unable to
update their weights anymore, and the training process is stuck.

Although we have also observed this behavior with zero-padded images, we most
often have found it to be associated with randomly-padded images. Because of this

4.2. FAST R-CNN 79

Zero padding Random Padding
V GG16212 V GG16108 V GG1658 V GG16212 V GG16108 V GG1658

D256 0.867 0.870
D128 0.883 0.879 0.879 0.880
D64 0.879 0.886 0.878 0.875 0.882 0.877
D32 0.866 0.872 0.878 0.063∗ 0.064∗ 0.879
D16 0.798 0.065∗ 0.845 0.748 0.063∗ 0.824

Table 4.3: Classification performance (top-1 accuracy) of networks with different
receptive fields on objects of a particular size. Generally, classification performance is
strongest when objects fit right into the receptive field of the network. Networks with
large receptive fields have difficulties adapting to extremely small objects (especially
when objects are embedded in a noisy context) and may even fail to converge (∗).

observation, we speculate that a properly-sized receptive field helps the network to
separate the signal (the object) from the noise (the surroundings).

The failure of a network to converge can be fixed by replacing the activation
function in the last layers with a leaky ReLU [58] (lReLU) during fine-tuning.

lReLU(x) =

{
γx if x < 0

x if x ≥ 0
(4.5)

However, this has to be done carefully: If we replace the activation function of
too many layers or if we choose the slope γ for the negative half-space too large,
the gradient magnitudes in the first iterations can be very large which results in the
destruction of the pre-trained weights. We found that replacing the conv5 activation
functions with lReLU using γ = 0.01 works well in practice.

Difference to general object detection It remains to be addressed, why Gir-
shick [30] was able to report improvements in both detection performance as well as
in runtime for Fast R-CNN compared to R-CNN. As we have seen in Chapter 4.2.2,
we were also able to report substantial improvements in runtime, but we found the
detection performance of Fast R-CNN to be inferior to R-CNN. Since unlike R-CNN,
Fast R-CNN offers an end-to-end trainable pipeline and thus a joint optimization
over feature extraction and classification, it intuitively makes sense that Fast R-CNN
has the potential to offer superior detection performance compared to R-CNN which
needs to optimize classifier and feature extractor separately. However, we have also
shown in this chapter, that object size plays a vital role for the performance of the
Fast R-CNN pipeline as small object are not detected nearly as well as large objects.

In the original paper, Girshick was working on general object detection using the
PASCAL VOC dataset [23] for his experiments. The PASCAL VOC dataset differs
from the FlickrLogos-47 dataset in two critical ways: (1) Objects in the PASCAL

80 CHAPTER 4. CLASSIFICATION STAGE

VOC dataset tend to be larger than in the FlickrLogos-47 dataset. The mean object
size in the FlickrLogos-47 dataset is 103px (measured in

√
area) while the mean

object size in PASCAL VOC is 140px. (2) The average image size is significantly
smaller in PASCAL VOC (384px×473px) than in FlickrLogos-47 (708px×1001px).
Therefore, not only the objects itself tend to be larger in PASCAL VOC, but also
the object size in relation to the image.

In the original implementation by Girshick [30] the images are resized in such a
way that the smaller side of the image is scaled to 600px. However, this rescaling
is limited such that the larger side will not exceed 1000px. If we examine how this
rescaling affects the average object size in the dataset, we find, that after this resize
operation the average object size is 231px. This represents a significant difference
to the 103px in the FlickrLogos-47 dataset. Scaling our objects in the same way as
Girshick would result in images which would not fit into GPU memory2 anymore
and is therefore not a viable strategy. In Chapter 4.4 we will discuss an alternative
strategy.

4.3 Faster R-CNN

4.3.1 Network architecture

As we have seen in previous chapters, Fast R-CNN is able to improve the processing
time per image compared to R-CNN substantially. However, the runtime per image
is still in the range of seconds and is dominated by the object proposal stage. As we
have seen in Chapter 3.5.2, RPNs can generate object proposals extremely fast and
are therefore a promising way to reduce processing time. Although its localization
properties are not on par with the examined heuristic object proposals, they offer a
higher maximum achievable recall.

Both properties have the potential to affect the performance of the classification
stage: (1) The inferior object localization might negatively affect the classifier. A
classifier is more likely to produce a correct classification with high confidence when
it is presented with an image patch in which the object in question is not truncated
and potentially even centered. (2) On the other hand, objects proposals with high
recall give the classification stage the opportunity to detect more objects. Faster
R-CNN [66] combines the fast classification of Fast R-CNN with the speed of object
proposals by RPNs. It remains to be seen which of the properties of RPN-based
proposals has a stronger influence on the classifier.

In order to achieve this goal, Faster R-CNN adopts the network structure of
the Fast R-CNN classification stage without any modifications. Faster R-CNN in-
troduces an RPN which operates after the last convolutional layer of the VGG16
network (see Figure 4.6). The RPN outputs a list of proposals which are then used in
the same way as for Fast R-CNN: The regions on the feature map which correspond

2We are using an nVidia Titan X (Pascal) with 12GB of GPU memory for our experiments.

4.3. FASTER R-CNN 81

FC-Layers

RoI
projection

Feature map

RoI
Pool

FC

FC

Classification

Bounding Box
Regression

Image

Conv-Layers

DCNN
Score

Regression

RPN

Figure 4.6: Overview of the Faster R-CNN object detection pipeline. The classifi-
cation stage of Fast R-CNN is adopted without modifications. Instead of externally
supplied object proposals, proposals are generated inside the network by an RPN.

to the proposals are subjected to ROI-Pooling. Each ROI is classified separately
and undergoes a class-specific bounding box regression.

By virtue of this design, Faster R-CNN inherits the same problems regarding
object size – as discussed in Chapter 4.2.3 – from Fast R-CNN. Therefore, the same
strategies for improving detection performance also hold true for Faster R-CNN. In
particular, our selective magnification strategy, which we will discuss in Chapter 4.4
can in principle also be applied to Faster R-CNN. In this chapter, we are concerned
solely with the differences in detection performance between Fast R-CNN and Faster
R-CNN on unscaled images.

4.3.2 Results on FlickrLogos-47

Training Procedure For training, we use our batch-normalized VGG16 network
as base network. We extend this network by adding layers for FlickrLogos-47 clas-
sification and bounding box regression in the same way as for Fast R-CNN (see
Chapter 4.1.1). We also attach a Region Proposal Network (RPN) to the conv5
feature map of the VGG16 network. We adopt the Approximate Joint Training
approach proposed by Ren et al. [66] which requires the joint optimization of four
separate loss function: (1) The Softmax cross entropy loss for the ranking of object
proposals. (2) The Huber loss [41] used for the bounding box regression of the object
proposal stage. (3) The Softmax cross entropy loss for predicting the class label of
the object proposals. (4) The Huber loss used for bounding box regression of the
classification stage. This approach avoids the cumbersome alternating optimization
in which the RPN stage and classification stage are trained separately while the
other stage is being held fixed.

This approach is close to a full joint optimization of the model. However, it
is still an approximate optimization because it ignores gradients which might flow
from the ROI-Pooling layer back into the RPN. In order to allow a full optimization,

82 CHAPTER 4. CLASSIFICATION STAGE

Proposals n = 300 n = 1000 n = 2000
F. Map Scales mAP Runtime mAP Runtime mAP Runtime

conv5 Sext 0.642 0.11s 0.639 0.13s 0.637 0.18s
conv5 Sprop 0.668 0.10s 0.667 0.13s 0.662 0.18s
multires Sprop 0.687 0.31s 0.680 0.34s 0.672 0.40s

Table 4.4: Detection performance of Faster R-CNN on FlickrLogos-47 for different
anchor sets. Our improved region proposals clearly translate into improved detection
results. Large numbers of proposals tend to be detrimental to detection performance.

the ROI-Pooling layer would need to be differentiable with respect to the proposal
coordinates. This is a difficult task and does not constitute a promising route for
further improvements since Ren et al. [66] compare several modes of optimization
with each one yielding comparable results.

We employ the same sampling strategies that we have discussed in the context
of RPNs (see Chapter 3.5.1) and Fast R-CNN (see Chapter 4.2.2) and train the
network for 60000 iterations. We start with an initial learning rate of λ = 0.001 and
reduce the learning rate after 40000 iterations by a factor of 10.

Results For our evaluation of Faster R-CNN on the FlickrLogos-47 dataset, we
make use of our improved object proposals from Chapter 3.5.4 and want to ascertain
whether the improved recall can translate into better detections. We compare three
different sources for object proposals which we have already used in our evaluation
of the RPN: (1) Object proposals which have been generated from a single feature
map (conv5) using the Sext set of anchor scales. Sext = {32px, 64px, 128px, 256px}
uses the same powers-of-two scale space sampling as in the original Faster R-CNN
implementation [66] but the scales have been adopted to fit the object sizes in
the FlickrLogos-47 dataset. (2) Object proposals which have been generated from a
single feature map (conv5) but using our improved Sprop set of anchor scales (Sprop =
{32px, 45px, 64px, 90px, 128px, 181px, 256px}). (3) Object proposals generated from
multiple features maps (multires) using our improved anchor set Sprop.

The results of this evaluation are shown in Table 4.4. In a direct comparison using
2000 proposals during evaluation we can see that the detection performance of Faster
R-CNN is approximately on par with the performance of Fast R-CNN (see Table 4.2
in Chapter 4.2.2). When Fast R-CNN is used in conjunction with our improved set
of anchor scales Sprop we can achieve a slightly better detection performance as
when using Fast R-CNN with our best-performing heuristic proposals. In addition
to slightly improved detection performance, Faster R-CNN is also able to improve
the runtime significantly.

Another interesting result from Table 4.4 is that reducing the number of pro-
posals during test time is actually beneficial to the performance. This behavior can
easily be explained through an observation we have discussed when evaluating RPN-

4.4. SELECTIVE MAGNIFICATION 83

based proposals in Chapter 3.5.2: RPN-based object proposals are able to retrieve
most relevant object with very few proposals. We have observed that the recall does
not improve significantly anymore if we increase the number of proposals beyond
300 proposals. Therefore, the classification stage does not have more opportunities
to detect objects with more proposals. However, it does have the opportunity to
make more mistakes. Increasing the number of proposals, therefore, cannot lead to
more true positives, but more false positives which negatively affects the detection
performance.

In conclusion, Faster R-CNN is able to improve detection performance slightly
and significantly reduces the runtime compared to Fast R-CNN. However, neither
Fast R-CNN nor Faster R-CNN can rival the detection performance of R-CNN.

4.4 Selective Magnification

In chapter 4.2.2 we have seen that the detection performance of Fast R-CNN falls
strongly behind the performance of R-CNN. We analyze the problem in chapter 4.2.3
and have identified the receptive field as one cause of the inferior performance of Fast
R-CNN on FlickrLogos-47. In this chapter, we want to make use of our observations
and investigate methods to improve our detections.

This chapter is based on our work Saliency-guided Selective Magnification for
Company Logo Detection [19]. Most graphs and results are taken directly from this
paper. It should be noted that these results have been generated with an older
version of the detection pipeline and an older version of the FlickrLogos-47 dataset
than in Chapter 4.2.2. In particular, the old dataset version did not have annotations
for difficult and truncated logo instances. The old detection pipeline did not have
support for excluding difficult object instances from training. Additionally, while we
also used VGG16 as base network for detection, this network did not include batch
normalization [43]. Therefore, the results are not directly comparable to the results
reported in chapter 4.2.2. However, in this chapter, we will provide the relevant
baselines generated with the old version of the detection pipeline for comparison.

4.4.1 Overview

Our previous experiments suggest that we could increase the performance for small
objects if we reduce the size of the receptive field. However, doing this would come
at the cost of reliably detecting objects larger than the receptive field.

One possibility to address this problem would be to create a separate network
with a smaller receptive field. Object proposals could be partitioned into two sets,
small and large. The classification stage could be executed twice, once for each
set of object proposals. The small proposal set could be processed by the network
with a small receptive field while the network with a wide receptive field could be
responsible for processing the large proposal set.

84 CHAPTER 4. CLASSIFICATION STAGE

0 100 200 300
Instance size in sqrt(area)

0.000

0.025

0.050

0.075

0.100

0.125

Re
l.

Fr
eq

ue
nc

y

Size distribution of Detected instances
(@Precision 0.98)

GT
Scale 1.0
Scale 2.5

0 100 200 300
Instance size in sqrt(area)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f d

et
ec

te
d

in
st

an
ce

s

Recall by size
(@Precision 0.98)

Scale 1.0
Scale 2.5

Figure 4.7: Detected objects using Fast R-CNN by size. Plots were generated from
histograms with a bin width of 12px. Small objects tend to be detected with a
lower confidence score. Magnifying the image improves detection performance for
small objects, even for high-precision detections. For objects with a sidelength up
to approx. 100px magnification tends to be beneficial while larger objects do not
benefit from magnification.

While this approach would work in principle, there are some practical problems
with implementing it. One problem is that creating a network with a smaller re-
ceptive field implies less downsampling between the feature maps. Because of the
increased resolution of the feature maps, this also increases memory usage and com-
putational effort. Another problem with this approach is that it would also require
duplicating the fully-connected layers which contain almost all model parameters.
Since the standard model already contains 122× 106 parameters in the fc6 and the
fc7 layers, such an inflated model is hard to justify. This is especially true when
considering that the number of training examples which can be used for each net-
work is essentially reduced by half. Although it would be possible to counter this
problem by data augmentation, we propose a different approach.

Instead of duplicating the network, we propose to keep a single network but to
run the classification on two scales: One time with the original image and one time
with an upsampled version of it.

As we have seen in Chapter 4.2.2, upsampling the images tends to improve de-
tection performance. Figure 4.7 breaks down these performance gains by object
size. Small object instances tend to be classified with lower confidence than large
objects. This results in many objects not being detected, especially when high pre-
cision is required. For objects with a sidelength up to 100px a clear trend is visible:
Magnification tends to be beneficial for detection. For larger object instances, no
such trend is visible.

This is in line with our observations about the receptive field in Chapter 4.2.3
which suggest that a classifier works best when the object to be classified has ap-

4.4. SELECTIVE MAGNIFICATION 85

proximately the same size as the receptive field of the network: Since the receptive
field of the VGG16 network is 212px we would expect objects up to a maximum size
of 85px to benefit from a magnification by a factor of 2.5.

However, upsampling the image is not without its downsides. Because the com-
putational effort of applying the network is dominated by the feature extraction in
the convolutional layers, magnifying the image by a factor of α increases the com-
putational effort for running the classification approximately by a factor of α2. The
same problem exists for memory which especially on GPUs is a scarce resource. In
order to reduce memory and computational effort, we propose to upsample only
parts of the image which are likely to contain objects.

To predict which regions are likely to contain objects, we take the original image
and run the classification stage with all proposals, regardless of size. For every
proposal, the ROI-Pooling layer generates a fixed-dimensional feature representation
which we use in two ways: (1) We run the features through the classification and
bounding box regression layers to obtain a list of detections that is identical to the
original Fast R-CNN implementation. (2) We use an SVM [13] to predict whether
the image patches which correspond to these features are likely to contain an object.

Proposals which have been deemed interesting enough to warrant closer exami-
nation are then magnified and fed again into the classification stage. The detection
results from the original image and the magnified proposals are merged into a single
list of detections. A non-maximum suppression is run on them to produce the final
detection.

The intuition behind this idea is that even if there exists a low-confidence de-
tection on the original image, magnifying the input to better fill the receptive field
of the network might generate another detection at the same location with higher
confidence. If another detection with higher confidence is generated through mag-
nification, the non-maximum suppression will suppress the first detection.

4.4.2 Selecting object proposals for magnification

To select proposals for magnification we first need to select a size threshold st for
dividing proposals into small and large proposals. Proposals whose size exceed this
threshold are not considered for magnification. Since the receptive field is the upper
limit beyond which magnification is not beneficial anymore, the threshold itself is
dependent on the magnification factor we want to select.

For the purposes of this evaluation we choose a factor of 2.5 for several reasons:
Upsampling an 1024px × 1024px image – which is the largest image size in our
dataset – by a factor of 2.5 corresponds to the maximum image size we are able to
fit into GPU memory. Since we want to compare our selective magnification strategy
with brute force upsampling we require such a baseline for comparison. Figure 4.7
shows the benefits of brute force upsampling.

86 CHAPTER 4. CLASSIFICATION STAGE

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 B

ox
es

Average Reduction in Bounding Boxes

ROI-Pool 1x1
ROI-Pool 3x3

(a)

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.00

0.05

0.10

0.15

0.20

Re
du

ct
io

n
Fa

ct
or

Average Reduction in Image Area

ROI-Pool 1x1
ROI-Pool 3x3

(b)

Figure 4.8: Effectiveness of selecting proposals for magnification for different spatial
resolutions of ROI-Pooled features: (a) Average reduction in the number of proposals
and the (b) corresponding reduction in image area as a function of recall3. It is
possible to tune the SVM to prune most proposals while maintaining a large fraction
of relevant proposals.

Together with a receptive field of 212px at the conv5 feature map of the VGG16
network this magnification factor would place an upper bound on our size threshold
at 85px. We select a threshold of st = 80px to provide us with a little headroom.

Object proposals with an IoU ≥ 0.5 with at least one groundtruth instance
and whose sidelength is smaller or equal than st are assigned to the set Ps which
comprises the set of small positive training examples. Object proposals with an
IoU < 0.5 with all groundtruth instances and whose sidelength is smaller or equal
than st are assigned to the set of small negative training examples Ns. We only
consider examples in these two sets for training. Note, that large objects are not
used for either the postive or the negative set. This training mode does not force the
classifier to draw a dividing line between small positive proposals and large positive
proposals. It is of no consequence if some large positive proposals are selected by
the SVM for magnification as long as all small positive proposals can be retrieved.

We use all elements from Ps for training and sample examples from Ns in a 1 : 1
ratio. The SVM is trained in a single round. We do not employ any hard negative
mining because we are not overly concerned with false positives in our classifier.

To extract the features for the SVM, we use an additional ROI-Pooling layer to
provide fixed-size feature vectors with a spatial resolution of 3 × 3. With the 512
channels of the conv5 feature map this results in a 4608-dimensional feature vector
for each proposal.

3Unfortunately, the value for a recall of 1.0 is not available in [19] and the raw-data used to
generate the plot was not available anymore.

4.4. SELECTIVE MAGNIFICATION 87

Figure 4.9: Examples for selective magnification using images containing a large
number of object instances. Groundtruth instances smaller than 80px are marked
in green. Image regions selected selected for magnification are marked in red. Im-
age areas which belong to groundtruth instances smaller than 80px and have been
marked for magnification are displayed in blue.

The reason for including another ROI-Pooling layer is to reduce the dimensional-
ity of the feature vectors compared to the 7×7 ROI-Pooling which is already present
in the Fast R-CNN network. We do this out of practical considerations rather than
necessity: The 7×7 ROI-Pooling which is used for class membership prediction and
bounding box regression produces a very high dimensional feature representation.
In order to train the SVM we need to hold all training examples in memory. To
reduce the memory footprint of the training we reduce the spatial resolution of the
feature vectors.

We have considered features with a spatial resolution of 1× 1, 3× 3 and 5× 5.
We have found that the performance of 5 × 5 features is nearly identical to the
performance of 3× 3 features which is why we use a 3× 3 feature representation.

Only the 3 × 3 ROI-pooled features of object proposals which have a
√
area ≤

80px are fed into a linear SVM which selects proposals that should be examined
on a larger scale. This SVM does not necessarily need high precision. Our only
requirement for the classifier is to maintain high recall while excluding as much of
the image area as possible. As Figure 4.8 shows, we can tune the SVM to prune
most proposals so that the image patches that are classified as positive are sparsely
distributed across the image while still maintaining a large fraction of relevant ob-
jects. Figure 4.9 visualizes the result of this selection mechanism for some example
images. It is apparent that almost all small positive proposals are selected by the
SVM for closer examination (along with some large positive proposals).

4.4.3 Efficient Rectangle Packing

After having identified proposals which warrant closer examination, we want to
apply the classification stage to the magnified image patches, hoping for a more
confident classification. In theory, we could magnify and classify each proposal
separately. However, the considerable degree of overlap between proposals would

88 CHAPTER 4. CLASSIFICATION STAGE

(a) (b) (c)

Figure 4.10: Finding a mininum-area enclosing rectangle using the algorithm by [47]:
Rectangles are placed into an enclosing rectangle, ordered by height. The rectangle
with the largest height is placed first. (a) The algorithm begins with an enclosing
rectangle that is guaranteed to accommodate all rectangles. (b) The width of the
enclosing rectangle is reduced step by step until placement of rectangles within this
enclosing rectangle fails. (c) The height of the enclosing rectangle is increased until
placement of rectangles within this enclosing rectangle succeeds. These steps are
repeated until the enclosing rectangle’s width is equal to the maximum width of
the individual rectangles. The enclosing rectangle of minimum area for which the
rectangle packing succeeded is the used as result.

not be exploited. The Fast R-CNN approach would degenerate into a slower R-
CNN pipeline. In order to avoid redundant computation, we identify connected
components of overlapping proposals. We circumscribe a bounding box around each
of these connected components.

While selective magnification of the connected components is more efficient
than selective magnification of the individual proposals, it still requires to trans-
fer each connected component to GPU memory separately which can be quite time-
consuming. To eliminate the need for multiple GPU transfers we paste all connected
components into a single image which is subsequently magnified and classified.

The computational cost of applying the VGG16 network is dominated by the
feature extraction in the convolutional layers. Since the computational cost of ap-
plying a convolution is dependent on the image area, we want to minimize the image
area into which we paste the connected components. For this purpose, we employ a
rectangle packing algorithm.

The task of a minimum-area rectangle packing algorithm is to position a set of
given rectangles R in such a way that the enclosing rectangle has minimum area. In
general, finding an optimal solution to this problem is NP-hard [47, 48]. However,
there exist near-optimal heuristics which allow for efficient rectangle packing.

We implement a rectangle packing algorithm based on the algorithm by R.
Korf [47] which splits the task of minimum rectangle packing into two sub-tasks:
(1) Placing rectangles within an enclosing rectangle of fixed dimensions. (2) Finding
an enclosing rectangle with minimum area containing all rectangles.

For a description of the algorithm, we will assume for the moment that we
already have a way of placing rectangles into an enclosing rectangle. We will denote
the height and width of a rectangle r ∈ R as h(r) and w(r), respectively. The

4.4. SELECTIVE MAGNIFICATION 89

algorithm starts with an enclosing rectangle r̂ of height h(r̂) = maxr∈R h(r) and
width w(r̂) =

∑
r∈R w(r).

Assuming the existence of an algorithm which can place rectangles into an en-
closing rectangle, this choice of enclosing rectangle guarantees successful placement
of R within it. To search for a minimum area rectangle, the width of r̂ is decreased
in steps until the algorithm placing R within r̂ fails to find a solution.

When this happens, the height of r̂ is increased in steps until the algorithm
which places rectangles in r̂ succeeds again. In subsequent steps, the width of
r̂ is decreased again until rectangle packing fails. These steps are repeated until
w(r̂) ≤ maxr∈R w(r). The configuration with the smallest enclosing rectangle r̂ for
which the rectangle packing has succeeded is returned as solution. This algorithm
is visualized in Figure 4.10.

It remains to be resolved, how to pack rectangles into an enclosing rectangle of
fixed dimensions. Note, that this framework will return a solution, no matter how
this packing algorithm is chosen. However, since we still need to search over many
possible enclosing rectangles, the packing algorithm needs to be fast. Also, the choice
of algorithm affects the quality of the solution. The better the algorithm manages
to concentrate all rectangles in the top-left corner of the enclosing rectangle without
a lot of wasted space between the individual rectangles, the smaller the minimum
enclosing rectangle will be on average. In [47] multiple algorithms for solving this
problem are discussed.

Korf [47] proposes a simple greedy strategy: The rectangles r ∈ R are placed
inside the enclosing rectangle in order of decreasing height. Each time a rectangle
r is placed we choose the leftmost position in the enclosing rectangle where there is
room to accommodate r. If multiple such locations exist, we choose the uppermost
of these locations. Should no such location exist, the rectangle packing has failed,
and we continue our search with an enclosing rectangle of increased height.

While this algorithm is simple to describe, it is not simple to implement effi-
ciently: The packing algorithm needs to solve two problems: (1) Multiple potential
placement locations need to be evaluated. (2) For each potential placement loca-
tion, the algorithm needs to check whether placing a rectangle is actually possible,
i.e., the rectangle to be placed does not overlap with any previously placed rectan-
gles. After a few placed rectangles, the area occupied by the placed rectangles can
look highly irregular. This problem makes checking whether a placement location
is feasible increasingly harder. While in principle these tests could also be acceler-
ated by using an efficient indexing structure (for example through k-d trees [7]) the
algorithm remains difficult to implement.

We use our own heuristic for packing rectangles which uses a similar idea but is
easier to implement since it almost completely eliminates step (2). Our algorithm
is based on a simple search in a binary tree. For each node vi ∈ V in our tree we
store a potential placement location pi = (pix, p

i
y) and the maximum height hi

max of
a rectangle that can be placed at this location. At the beginning, our tree consists

90 CHAPTER 4. CLASSIFICATION STAGE

hmax
1

hmax
2

hmax
0

v0

v1 v2

(a)

hmax
1

hmax
2

hmax
0

hmax
3

hmax
4

v0

v1 v2

v3 v4

(b)

Figure 4.11: Placing rectangles within an enclosing rectangle via tree search. Each
node of the tree corresponds to a potential placement location and records the max-
imum allowed height of a rectangle to be placed at this location. Before placement
of the first rectangle the search tree consists of a single node representing the upper
left corner. Rectangles are placed in order of decreasing height. (a) Each rectangle
placement results in two child nodes being added to the tree. (b) To find a suit-
able placement, the nodes are traversed in-order to find the first node which can
accommodate the height of the rectangle.

of a single node v0 with p0 = (0, 0) and h0
max is set to the height of the enclosing

rectangle.
Similar to the algorithm proposed by [47] we place rectangles in order of de-

creasing height. Each time we place a new rectangle r, we consult our tree for
potential placement locations (we will discuss how such a suitable location is found
in a moment). After we have found a suitable node vi corresponding to a place-
ment location we add two child nodes vi,left and vi,right representing the left and
right child, respectively. For the left child vi,left we set pi,left = (pix, p

i
y + h(r)) and

hi,left
max = hi

max− h(r). For the right child node vi,right we set pi,right = (pix +w(r), piy)
and hi,right

max = h(r).
The result of adding these child nodes is that two new possible positions for

rectangle placements are created: One position corresponding to the left child node is
located directly below the currently placed rectangle. The position corresponding to
the right child node is located directly to the right of the currently placed rectangle.
This is illustrated in Figure 4.11.

To find a suitable location for placing a rectangle, we traverse the tree in-order by
recursively checking the left sub-tree first. If we encounter a leaf node, we have found
a potential placement location. We check whether the height h(r) of the rectangle
to be placed can be accommodated by this placement location. If we can, we place
the rectangle at this location while updating the tree as described above. If this
location cannot accommodate r, we continue with our search. Should we arrive at
the rightmost leaf node without being able to accommodate r, the rectangle packing
has failed, and we need to continue with a different enclosing rectangle. Example
outputs of this algorithm can be seen in Figure 4.12.

While our simple heuristic is likely to produce inferior results to the algorithm
proposed by Korf [47], we can see from the examples in Figure 4.12 that the results

4.4. SELECTIVE MAGNIFICATION 91

Figure 4.12: Selected examples of the output of our rectangle packing algorithm.
Proposals which are marked for magnification by the SVM are displayed in red.
These proposals often overlap. Connected components of overlapping proposals are
represented as a single image patch which is used as input to the rectangle packing
algorithm. Also shown are the bounding boxes of individual proposals within each
connected component.

seem to be adequate. By using this simple algorithm, checking potential placement
locations is reduced to a simple lookup of the remaining height.

4.4.4 Evaluation

To evaluate the effectiveness of our selective magnification strategy we compare
three approaches: (1) An unaltered Fast R-CNN based object detection with no
magnification, which we call Fast R-CNN. (2) A Fast R-CNN based object detection
pipeline in which all input images are upsampled by a factor of 2.5. We will call this
approach Direct Magnification (2.5x). (3) A Fast R-CNN based detection pipeline
in which we employ Selective Magnification as described in this chapter. Again, we
use a magnification factor of 2.5 for the images which are the output of the rectangle
packing algorithm. We call this approach Selective Magnification (2.5x).

Since we are interested in the performance gains of the classification stage, we are
not overly concerned by the source of our object proposals because the proposals we
use are the same for every training mode. However, since we expect magnification
to be particularly relevant for small object instances, we want to make sure that our
proposals adequately cover small objects.

We use our SS+EB+VH approach from chapter 3.5.2 which combines Selective
Search [77], Edge Boxes [85] and VH-connect (see chapter 3.4.3) to generate object
proposals. We use up to n = 8000 proposals per image. The reason for this rather
large number of proposals is to increase the probability that we have object proposals
covering small objects (especially Selective Search is biased towards large objects).

In each case, we train the Fast R-CNN pipeline for 40000 iterations using an
initial learning rate λ = 0.001 and a learning rate reduction by a factor of γ = 0.1

92 CHAPTER 4. CLASSIFICATION STAGE

50 100 150 200 250 300
Avg size in sqrt(area)

0.1

0.0

0.1

0.2

Ch
an

ge
 in

 A
P

Change in AP vs. avg. object size

Selective Magnification (2.5x)
Direct Magnification (2.5x)
Receptive field size

Figure 4.13: Comparing selective magnification to direct magnification. Shown is
the performance gain for each object class (measured as the difference in AP relative
to the AP at magnification factor 1.0) as a function of the average instance size of
this class. Magnification is mostly beneficial to detection performance for small
objects and detrimental for large objects. The receptive field seems to limit the
object size for which magnification is beneficial.

after 25000 iterations. For our Selective Magnification approach, we tune the SVM
so that it retains approx. 5% of the bounding boxes smaller than 80px.

As a result, we obtain for our classical Fast R-CNN approach a mAP of 0.668
with an average processing time per image of 0.82s (excluding object proposals). The
Direct Magnification (2.5x) approach is able to improve the detection performance
to 0.711 (mAP). However, this performance gain comes at the expense of prolonged
processing time. Compared to Fast R-CNN the processing time per image has more
than tripled and is now approx. at 2.83s per image. Selective Magnification (2.5x)
can retain most of the performance gains (mAP 0.702) but requires an only slightly
longer processing time (1.03s per image).

Figure 4.13 plots the differences in AP for every class for both Direct Magnifica-
tion (2.5x) and Selective Magnification (2.5x) compared to the classical Fast R-CNN
approach. We plot the difference in AP as a function of the average instance size
– measured on the original, non-magnified dataset – of an object in this class. It
becomes clear that there is a relationship between the performance gain through
magnification and the object size: Small objects tend to benefit most strongly from
magnification while for large objects it can be detrimental to detection performance.
This correlation is pronounced less strongly for Selective Magnification (2.5x) than
for Direct Magnification (2.5x), but it is still clearly visible with some object classes
gaining more than 0.1 in AP (absolute value) which is a substantial improvement.

Another interesting observation can be made when we plot the regression lines
for these data points. The point where the regression line intersects the x-axis is the
maximum object size for which we can expect any improvements through magnifica-
tion. As we can see from Figure 4.13, the intersection point is very close to an object

4.5. CONCLUSION 93

size of 212px which is the size of the receptive field of the network. This observation
provides another indication for our hypothesis from Chapter 4.2.3 that classification
with neural networks performs best when the object size is approximately equal to
the size of the receptive field.

4.5 Conclusion

We have evaluated three approaches for two-stage object detection: R-CNN, Fast
R-CNN and Faster R-CNN. Both R-CNN and Fast R-CNN make use of heuristic
object proposals, and we were able to show that our improvements regarding these
proposals are able to translate into better detection performance. Faster R-CNN
makes use of RPN-based object proposals. Similar to heuristic proposals, we were
able to show that our RPN improvements allow for better detections using Faster
R-CNN.

When we compare the different approaches against each other, we find that al-
though R-CNN has a very long runtime, it outperforms both Fast R-CNN and Faster
R-CNN by a considerable margin with regard to detection performance. While ana-
lyzing the reasons for this difference in performance we have found that Fast R-CNN
and Faster R-CNN have problems in detecting small objects. We have identified the
receptive field of the network as an important factor to classification performance
and have found that a classifier performs best when the object to be classified has
approximately the same size as the receptive field of the network.

We have shown that simple upscaling of the images can improve the confidence
of the classifier when detecting small objects. Although we are unable to reach quite
the same detection performance as R-CNN by upscaling the images in Fast R-CNN,
we were able to obtain results which are at least comparable to R-CNN. Although
we increase the runtime of Fast R-CNN considerably by upscaling the images, we
were able to show that the runtime still remains lower than for R-CNN. To mitigate
the impact on the runtime even further, we have introduced a selective magnification
strategy. We have shown that our selective magnification strategy is able to retain
most of the benefits of upscaling but only has a low impact on the overall runtime.

Therefore we can conclude that – if runtime is of no concern – R-CNN is the
best choice when trying to detect small objects like company logos. If runtime does
matter we can use Fast(er) R-CNN using a selective magnification scheme which
can deliver a performance which is at least comparable to R-CNN.

94 CHAPTER 4. CLASSIFICATION STAGE

Part III

Single-Stage Object Detection

95

96

Overview

So far, we have only considered two-staged object detection approaches in which
the object proposal stage is responsible for identifying potential locations of object
instances and the classification stage is responsible for assigning a class label and
optionally refining the location through a bounding box regression. Two-stage object
detection pipelines have the advantage that by limiting the evaluation of the classifier
on potentially interesting image regions, they have the potential to generate fewer
false positives. On the other hand, they also have the potential to miss many objects
because they inherently limit the maximum achievable recall of the system.

This trade-off between higher recall in the proposal stage and fewer false positives
in the classification stage is inescapable in two-staged object detection pipelines. We
have already encountered this problem in the case of Faster R-CNN and RPN-based
region proposals: For example, we have observed in Chapter 4.3.2 that Faster R-
CNN performs better in terms of mAP when we use 300 RPN proposals than when
we use 2000 RPN proposals. However, if we were to only look at our measurements
for maximum achievable recall for RPNs in Chapter 3.5.4 we would expect the
opposite. Therefore, it must be the false positive rate of the classification stage that
is responsible for this behavior.

In the case of trainable object proposals, we need to ask ourselves an even more
fundamental question. In two-stage object detection pipelines, two classification
problems need to be solved. One problem is a binary classification problem of as-
signing image patches to two classes: object and background. The other problem is to
distinguish image patches between the individual object classes and the background
class.

It is not immediately obvious which of these problems is easier to solve: On
the one hand, the first classifier only needs to separate the feature space into two
parts. On the other hand, the generic object class of the proposal stage classifier
needs to incorporate all the individual object classes and distinguish them from the
background. Since the individual object classes can vary strongly in appearance,
this means that this classifier needs to deal with lots of variation in the data. It
might be an easier problem to separate the feature space into multiple parts, each
responsible for a single object class.

A single stage object detection approach does precisely that. It does away with
the object proposal stage and directly assigns an image path to the background class
or an individual object class. In the following, we will examine the suitability of

97

98

such an approach for the task of company logo detection. In particular, we will take
a closer look at the Single Shot MultiBox Detector [56] (SSD).

Another well-known approach for single-stage object detection is YOLO [65].
However, we exclude YOLO from our considerations for two reasons: (1) The design
of YOLO inherently limits the approach to input images of fixed size. (2) The
authors of YOLO admit in their paper [65], that YOLO struggles with small object
instances. These two properties of YOLO make it unattractive for our evaluation.

We will see that the lessons we have learned by examining the object proposal
stage and the classification stage can also be applied in the context of the SSD de-
tection framework. Especially our results regarding the relationship between object
size and the receptive field of a convolutional neural network (see Chapter 4.2.3) will
prove to be useful. In both two-staged object detection approaches that we have
examined, we found it difficult to exploit our results effectively and had to resort
to methods like Selective Magnification (Chapter 4.4) which seem contrived. In the
context of SSD, we will see that we are able to integrate our results regarding the
receptive field of a classifier in a very natural way.

Chapter 5

The Single Shot MultiBox
Detector

5.1 Original Implementation

On an abstract level, the Single Shot MultiBox Detector (SSD) works very similar to
Region Proposal Networks (RPNs): SSD places a grid of bounding box candidates
over the image and uses a fully-convolutional network architecture to classify every
bounding box simultaneously. The authors of SSD [56] call these candidate boxes
default boxes. Because this concept of default boxes is identical to the concept of
anchor boxes we have described in the context of RPNs, we refer to these bounding
box candidates as anchor boxes for consistency.

Similar to our multi-resolution approach to RPNs (see Chapter 3.5.4) SSD does
not rely on a single layer for generating predictions. Instead, the network splits into
multiple branches with each branch containing feature maps of a different resolution.
Figure 5.1 provides an overview of the SSD network architecture using VGG16 as
its base network.

Despite all the similarities to RPNs and especially our multi-resolution approach
to RPNs, the network output of SSD is quite different: SSD not only performs an
object versus background classification but directly classifies each bounding box into
the individual object classes and the background class.

Anchor Grid The original SSD implementation by Liu et. al. [56] uses fixed-
sized input images. Liu et al. evaluate input sizes of 300px × 300px and 512px ×
512px. Images whose size or aspect ratio differ from these dimensions are resized
appropriately. Since the input size of the network is fixed, all intermediate feature
maps have fixed sizes as well. Therefore, the anchor grid can be static for all images.
Aside from the anchor grid being static, the definition of the anchor grid in SSD is
identical to the one for RPNs: A set of anchor boxes is assigned to every pixel xF
of a feature map F . The center xI of every anchor (in image coordinates) box for
a given feature map position xF is given by:

99

100 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

conv7

conv5_3

conv5_2

conv5_1

32

32

Max-
Pool

Max-
Pool

conv6

16

16

Max-
Pool

conv8_2

conv8_1

8

8

Max-
Pool

conv9_2

conv9_1

4

4

Max-
Pool

conv10_2

conv10_1
2

2

512 512 512 1024 1024 256 256 128 128 128 128

Max-
Pool

conv11_2

conv11_1

1

1

128 128

Score Reg

ActNorm

CLSconv5

Score Reg

ActNorm

CLSconv7

Score Reg

ActNorm

CLSconv8

Score Reg

ActNorm

CLSconv9

Score Reg

ActNorm

CLSconv10

Score Reg

ActNorm

CLSconv11

VGG16

Figure 5.1: Network architecture of the original SSD implementation by [56] for
an input size of 512px × 512px. The network is based on a VGG16 whose fully-
connected layers have been converted into convolutional layers. Each branch of the
network is responsible for predicting a single scale.

xI = fI(xF) = αxF +
⌊α
2

⌋
1 (5.1)

Again, we assume that the side length of the image l(I) and the feature map

l(F) are related through a downsampling factor α = l(I)
l(F)

. In the case of the VGG16
network, all downsampling is performed through max-pooling layers. Each max-
pooling layer reduces the side length of a feature map by a factor of 2. Therefore,
α is always a power of 2 in the VGG16 network.

From the center of every anchor the upper-left (xul) and lower-right (xlr) vertices
are then calculated as follows:

xul = fI(xF)−
s

2

(√
a
−1

√
a

)
xlr = fI(xF) +

s

2

(√
a
−1

√
a

) (5.2)

where s represents the anchor scale (measured in
√
area) and a ∈ A represents

the aspect ratio of the anchor box. The set of aspect ratios A was originally chosen
to be A =

{
1
3
, 1
2
, 1, 2, 3

}
.

So far, the construction of the anchor grid has been fairly straightforward and is
identical to the RPN anchor grid. The choice of anchor scales, however, is a little
more complicated and in some ways inexplicable: SSD ties the density of the scale
space sampling to the number of feature maps used for prediction. Specifically, if
there are N feature maps used for prediction the scale sk associated with feature
map k is given by:

5.1. ORIGINAL IMPLEMENTATION 101

sk = smin +
smax − smin

N − 1
(k − 1) k ∈ {1 . . . N} (5.3)

where smin and smax refer to the smallest and largest anchor scale, respectively.
Therefore, anchor scales are linearly spaced between smin and smax and have a
direct assignment to a specific feature map. However, this hard link between feature
maps and anchor scales is softened by introducing another intermediate scale s̃k =√
sksk+1. However, this is only done for an aspect ratio of 1 which seems like an

ad-hoc design decision.

Network Architecture The original SSD implementation by Liu et. al. [56]
uses the VGG16 [72] network architecture as basis for its detection pipeline. As
are many network architectures which are used for classification, VGG16 contains
fully-connected layers which limit the input size of the network. Since SSD requires
dense predictions across the whole image, the fully-connected layers fc6 and fc7 are
converted to convolutional layers which we call conv6 and conv7, respectively.

We have discussed how to convert a fully-connected layer to a convolutional layer
in Chapter 2.2.3. However, the number of parameters and the number of output
neurons in the fc6 layer is prohibitively large. The fc6 layer of VGG1G operates
on a 7 × 7 feature map and has 4096 output neurons. Directly converting such a
layer into a convolutional layer (using the method described in Chapter 2.2.3) would
result in 4096 filters, each with a kernel size of 7× 7. Since in SSD these filters need
to be applied densely across the whole conv5 feature map, this is computationally
expensive.

To speed up computation, both the kernel size of the filters and the number of
filters is reduced for the conv6 layer. The number of filters is reduced to 1024 which
is achieved by simply omitting filters from the converted layer. To reduce kernel
size, the filter is subsampled: The 7 × 7 filters which result from the conversion of
the fc6 layer is subsampled to a 3× 3 filter. In order to retain the receptive field of
the 7× 7 filter, an à trous [39] convolution (often also called dilated convolution) is
used with a dilation rate of 3.

It should be noted, that the applicability of SSD is not limited to VGG16. SSD
can be used with almost any network architecture that has the notion of a feature
hierarchy. SSD uses the feature hierarchy of the network to handle objects of dif-
ferent scales: Since the resolution of the feature maps decreases with deeper layers,
large objects are predicted by deep feature maps while shallow feature maps predict
small objects. The original SSD implementation uses up to seven feature maps for
generating predictions as shown in Figure 5.1. The precise number of feature maps
can be adjusted. By default, SSD uses all feature maps between (and including)
conv4 and conv9.

A classification module is attached to every feature map used for prediction.
This classification module consists of a normalization layer and two 1 × 1 convo-
lutions which are responsible for classification and bounding box regression. The

102 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

normalization layer performs a simple lateral L2-normalization across the channels.
The normalized values Nn,c,y,x are obtained from the feature map values Fn,c,y,x as
follows:

Nn,c,y,x = Fn,c,y,x
γ√∑

cF2
n,c,y,x

(5.4)

where γ is a user-specified parameter which determines the L2-norm to which
the vector should be scaled. Liu et. al. set this parameter to γ = 20.

Outputs for classification scores and bounding box regression are computed from
the underlying normalized feature map using a 1×1 convolution for each task. If the
feature map N has height HN and width WN the output size for the classfication
task is HN × WN × (|SN × AN × C+|). Here, C+ represents the extended set of
object classes. This set includes the object classes C and the background class. SN
represents the set of anchor scales, and AN represents the set of aspect ratios which
are predicted at the normalized feature map N .

To convert the classification output into a probability distribution over the object
classes and the background class, a softmax function is used. Similar to RPNs, the
output needs to be reshaped before applying the softmax. The classification output
is reshaped from HN × WN × (|SN × AN × C+|) to HN × WN × |SN | × |AN | ×
|C+|. The softmax is then performed across the last dimension, which contains the
classification outputs of the individual classes. Note that this means, that individual
anchor boxes do not need to compete with each other. Should two anchor boxes
with approximately the same scale, shape and location produce high confidence
detections, the non-maximum suppression will eliminate all responses except the
highest-scoring one.

The bounding box regression is anchor-specific but not class-specific. Therefore
the output size for the regression task is HN ×WN × 4|SN ×AN |.

Training For training, anchor boxes are divided into positive and negative sam-
ples. Each anchor box with an IoU ≥ 0.5 is considered a positive example. Pos-
itive examples are always used for training while negative examples are sampled
through hard negative mining. Negative examples are always sampled deterministi-
cally based on their classification score without any random component. The ratio
of positive to negative examples is 1 : 3.

The loss function L is designed very similar to RPNs and is composed of two ob-
jectives: The classification loss Lcls and the localization loss Lloc. Lcls is responsible
for assigning the correct class labels to an anchor box and is realized as a softmax
cross-entropy loss. Lloc is responsible for the bounding box regression and is realized
as a Huber [41] loss.

L = Lcls + λLloc (5.5)

5.2. IMPROVING SSD FOR COMPANY LOGO DETECTION 103

where λ controls the relative importance of Lcls and Lloc. The original SSD im-
plementation both objectives are weighted equally and therefore sets this parameter
to λ = 1.

To introduce these loss functions more formally, we abbreviate the total number
of anchor boxes for a feature map with N . Therefore, the output shape for the
classification scores can be written as N × (|C| + 1). The output shape for the
bounding box regression can be written as N × 4. Out of these N anchor boxes,
only a few samplesM⊂ {1 . . . N} are used for training. Depending on whether an
example is active or not, it is assigned a loss weight of αi = 1 if i ∈ M and a loss
weight of αi = 0 otherwise. The softmax produces a probability distribution pi over
the object classes and the background class for each anchor box i. The classification
loss can, therefore, be written as

Lcls =
1

|M|

N∑
i=1

αiH(pi, p̂i) (5.6)

where H(pi, p̂i) is the cross-entropy loss between the predicted probability dis-
tribution pi and the target probability distribution p̂i. The target probability for
the correct class is 1 while it is 0 for all other classes. It is possible forM = ∅. In
such a case Lcls is set to zero.

For the localization loss, we define P ⊂ {1 . . . N} as the set of positive examples.
βi is an indicator variable which is set to βi = 1 if i ∈ P and βi = 0 otherwise. For
every positive anchor box, the bounding box regression predicts four deformation
terms which we write as r = (r1, r2, r3, r4). These deformation terms describe the
offset between anchor box and groundtruth item in x and y direction and scale
factors for height and width. The parametrization of these terms is identical to
RPNs (see Chapter 3.5.1). Since positive examples are always used for training, the
localization loss can be expressed as

Lloc =
1

4|P|

N∑
i=1

4∑
j=1

βiLhub(rj, r̂j) (5.7)

where Lhub(rj, r̂j) is the Huber [41] loss between the predicted regression values
rj and the target values r̂j.

5.2 Improving SSD for Company Logo Detection

5.2.1 Analyzing SSD

Liu et. al. [56] report, that SSD is able to achieve superior detection performance
compared to Faster R-CNN [66]. However, SSD takes some design decisions which
seem sub-optimal for the task of company logo detection.

104 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

Fixed input size

One obvious problem with SSD is its limitation to fixed input images: Images which
exceed these input dimensions need to be resized appropriately. From our exper-
iments with Fast R-CNN (see Chapter 4.2.3), we know that Fast(er) R-CNN has
trouble to detect small object instances reliably. It is reasonable to assume that
SSD suffers from similar problems. Another potential problem are images with ex-
treme aspect ratios. The resize operation might cause strong deformations for object
instances.

Anchor grid

In the original SSD implementation, the number of feature maps used for predictions
defines the density of the scale space sampling of the anchor grid. Based on a user-
defined minimum and maximum scale, the scales are spaced linearly across the
different feature maps. There are a few potential problems with this approach:

Linear vs. exponential scale space sampling One potential problem is the
linear spacing of the anchor scales itself. This is a problem for two reasons:

(1) In Chapter 3.5.3, we have analyzed the RPN anchor grid. We have shown
in order not to miss any objects, neighboring anchor scales cannot be spaced apart
by more than a factor of 2. We have also determined through experiment that
a factor of 2 is insufficiently dense for small objects and that a factor of

√
2 is a

more appropriate choice. However, regardless of the choice of scale factor between
neighboring anchor scales, the anchor grid scales follow an exponential pattern. This
is fundamentally incompatible with the linear spacing of SSD. If the large anchor
scales are sufficiently dense sampled, it inevitably means that the small scales are
sampled insufficiently dense and are therefore underrepresented.

(2) Another problem is that the assignment of feature maps to anchor scales is
arbitrary. In its default configuration, the user-specified mininum and maximum
scales are assigned to the conv4 and conv9 layer, respectively. While the dataset
itself dictates the minimum and maximum scales, there is no justification why the
conv4 or conv9 feature map is the optimal – or even a good – choice.

Aspect ratio sampling Another obvious problem in the original SSD implemen-
tation is that not all anchor aspect ratios are predicted for every scale. This is an
odd design choice which can only be explained if the original authors deliberately
tried to keep the number of anchor boxes small. Since for most datasets, the major-
ity of object instances have an aspect ratio of 1 : 1, this decision makes some sense.
However, if we make the (reasonable) assumption that the distribution of aspect
ratios remains fixed across multiple scales, this decision seems sub-optimal.

5.2. IMPROVING SSD FOR COMPANY LOGO DETECTION 105

5.2.2 Addressing the Weaknesses

In the previous section, we have identified a few design decisions in the original SSD
framework which might not be optimal for company logo detection. Now, we want
to discuss how to address these shortcomings.

One of the problems we have observed is the fixed input image size of the orig-
inal SSD implementation. Since all images are resized to a standardized size, it
effectively means that the scales of the anchor grid are defined relative to the image
size. However, it is comparatively easy to address this problem. Since SSD is a
fully-convolutional network architecture, there is no technical reason why a fixed-
size input should be necessary. Most likely, considerations about the detection speed
have contributed to the original design decision. In a fully-convolutional architec-
ture, a larger input image automatically results in a larger output feature map. The
only change that needs to be made is to the anchor grid. In contrast to the original
SSD pipeline, the anchor grid cannot be static anymore. Instead, the size of the
anchor grid needs to be adapted to the size of the feature map. By addressing the
problem in this way, we effectively make our anchor scales absolute.

Another problem that is easily addressed is the problem of aspect ratio sampling.
We can simply add the additional aspect ratios to all scales.

The only problems that remain to be addressed are the problems related to
anchor grid scales. Here, we can apply the results from our previous investigations
and our investigation into the role of the receptive field for classification performance.
We use our results from our analysis of the RPN anchor grid (see Chapter 3.5.4)
and drop the linear scale space sampling in favor of the scale space sampling scheme
we used for our improved RPN. In this scheme, the side length of neighboring scales
are separated by a factor of

√
2. We use the results from our investigation into

the role of the receptive field for classification performance to remove the arbitrary
assignment of scales to feature maps: We assign anchor scales to the feature map
whose receptive field can fully cover the scale of the anchor with the least amount
of slack.

We can see that our experimental results from analyzing the proposal and clas-
sification stage transfer very naturally into the SSD framework. In the following, we
will describe the details of our implementation of the SSD framework and show the
benefits of this design.

5.2.3 Implementation Details

Network architecture

Our SSD implementation greatly resembles SSD in its network architecture. We use
our batch-normalized VGG16 (Chapter 2.2.1) as a base network which is converted
into a fully-convolutional version. However, we perform the conversion to a fully-
convolutional network in a different way: The original SSD implementation aims to
preserve the fully-connected layers of the pre-trained VGG16 network. They achieve

106 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

conv4_3

conv6_2

conv5_3

conv5_2

conv5_1

Max-
Pool

conv6_1

Max-
Pool

conv8_2

conv8_1

512 512 512 256 256

Score Reg

ActNorm

CLSconv5

Score Reg

ActNorm

CLSconv6

Score Reg

ActNorm

CLSconv8

VGG16

Max-
Pool

conv7_2

conv7_1

512 512

Score Reg

ActNorm

CLSconv7

Max-
Pool

conv4_2

conv4_1

Score Reg

ActNorm

CLSconv4

Max-
Pool

512 512 512 512 512

Figure 5.2: Network architecture of our SSD implementation which has been adopted
for company logo detection. The overall structure is identical to the original SSD
implementation. Unlike the original implementation conv4 is our highest-resolution
feature map used for predictions. Also, we do not require as many layers since the
conv8 layer already has a receptive field of sufficient size. Unlike the original SSD
implementation we discard the fc6 and fc7 of the pre-trained network. These layers
are replaced by the conv6 1 and conv6 2 layers which are trained from scratch.

this by discarding filters and by downsampling the remaining ones. This is such a
radical modification of the layer that it is not clear that the pre-trained weights are
of much use in this new configuration. Training a new layer from scratch might be
just as effective. Our network architecture does exactly that: We simply choose to
discard the fc6, fc7 and fc8 layers and replace them with convolutional layers that
are learned from scratch. This also allows us to do away with à trous convolutions
because we are not bound by the requirement that the new convolutional layers
have the same receptive field as the old layers. Figure 5.2 gives an overview of our
adapted network architecture.

Anchor assignment

We introduce a new anchor set Assd which follows the same scale space sampling
scheme as for our improved RPN. Neighboring scales are roughly separated by a
factor of

√
2. Also, we introduce the additional aspect ratios 1

3
and 3 to better cover

text-based company logos which tend to have more extreme aspect ratios. However,
we omit these additional aspect ratios for the smallest and largest scales. Table 5.1
shows the exact specification of this anchor set. The reason for omitting these more
extreme aspect ratios for larger scales is the small number of training examples:
Large objects are comparatively rare in the FlickrLogos-47 dataset and even more
so large objects with extreme aspect ratios. For small objects, the difference in
aspect ratio only leads to a minor difference in the absolute width/height of anchor
boxes. These differences in side lengths are small compared to the variation in

5.2. IMPROVING SSD FOR COMPANY LOGO DETECTION 107

Feature map Anchors
Name Rec. Field Scale ARs Scale ARs Max side length

conv4 92px 35px 1
2
, 1, 2 50px 1

2
, 1, 2 71px

conv5 196px 70px 1
2
, 1, 2 100px 1

2
, 1, 2 141px

conv6 340px 141px 1
3
, 1
2
, 1, 2, 3 200px 1

2
, 1, 2 346px

conv7 628px 200px 1
3
, 3 282px 1

3
, 1
2
, 1, 2, 3 489px

conv8 948px 400px 1
3
, 1
2
, 1, 2, 3 565px 1

2
, 1, 2 800px

Table 5.1: Scales and aspect ratios of the Assd anchor boxes and their assignment
to the individual feature maps. Anchors are assigned to the feature map whose
receptive field can contain the side length of the anchor box with the least amount
of slack space.

annotations. Objects instances do not have pixel-accurate annotations, and it is not
always clear where the boundary of an object instance should be. For these reasons
we refrain from adding more anchor boxes to small scales.

Similar to the original SSD implementation, we use the feature hierarchy of the
network to predict anchors of different scales. The network consists of multiple
prediction branches which operate on different feature maps. Unlike the original
implementation, we assign anchors to these branches based on the receptive field of
the underlying feature map. Each anchor box is assigned to the feature map whose
receptive field can contain the side length of the anchor with the least amount of
slack. Table 5.1 shows the details of this assignment.

Training protocol

We initialize the weights of all newly added layers using MSRA [35] initialization
and the biases with zeros. We train our network for 100, 000 iterations using an
initial learning rate of λ = 0.001 and perform a learning rate decay by a factor of 10
after 80, 000 iterations. Because we have introduced many new randomly initialized
layers, the gradients can have a large magnitude during the first few iterations.
To protect the pre-trained weights during these first iterations, we employ gradient
clipping. After approximately 500 iterations, the newly added layers have adjusted
sufficiently and the magnitude of the gradient hardly ever triggers the gradient
clipping any more.

In every iteration, we process 3 images from the training dataset at once which is
the maximum number of images we can fit into GPU memory at the same time. For
each of these images, we perform data augmentation which we will discuss shortly.
Since our SSD implementation does not use fixed-size images, the sampled images
may differ in size. Therefore, we zero-pad the sampled images to the same size as
the largest image in the batch. We then generate an anchor grid which completely
covers the padded images for every feature map that is used for prediction.

108 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

(a) (b)

Figure 5.3: Two examples of training images before (left) and after data augmenta-
tion (right). Images are rotated, flipped vertically and adjusted in scale to supply
enough training data for all loss function and to ensure enough variation.

Our matching strategy for object instances to anchors is simple: For every an-
chor, we compute the object instance which overlaps most strongly with this anchor.
If the maximum overlap with an object instance is ≥ 0.5, we use this anchor as a
positive example for the corresponding object class. Should no object instance over-
lap with this anchor with an IoU ≥ 0.5, we assign this anchor to the background
class. In the following, we will also refer to these anchors as negative examples.

Not all anchors are used for training during a single iteration. Each branch of
the network has its own loss functions, one for classification and one for bounding
box regression. All loss function are equally weighted. For every branch, we always
use all positive examples for training, while negative examples are sampled in a ratio
of 1 : 1. The sampling of negative examples has no random component. We follow
the original SSD implementation in purely sampling hard negative examples. For
the bounding box regression task, all positive examples are always used for training.

Data augmentation

Our SSD network architecture has multiple loss functions operating on five separate
branches of the network. Each branch is responsible for objects of a certain scale. If
we were to assume our object instances to be uniformly distributed across all scales,
it would mean that each loss function only receives a fifth of all training examples.
Since the object scales do not follow a uniform distribution, the problem is even
more noticeable. Therefore, data augmentation is absolutely critical to counter this
problem.

We perform data augmentation in the following way: After an image is drawn
from the training set, we randomly perform a flip around the vertical axis with a
probability of 0.5. We then randomly rotate it in the interval [−20◦, 20◦]. The in-
terval of allowed rotations is very limited because we use bounding boxes as object
annotations: These bounding boxes are always aligned with the image axes. How-
ever, the transformed bounding boxes are usually not aligned with the image axes
anymore. Therefore, we generate axes-aligned bounding boxes which circumscribe
the transformed bounding boxes. As a result, bounding boxes which were tight

5.2. IMPROVING SSD FOR COMPANY LOGO DETECTION 109

before the augmentation are not necessarily tight after applying the rotation. This
blurs the meaning of concepts like an anchor box having an IoU ≥ 0.5 with an
object instance. Therefore, extreme rotations should not be allowed.

Finally, we a select a random object instance from the image and pick a target
scale st in the interval st ∈ [smin, smax] for this object at random. smin and smax

are the scales of the smallest and largest anchor box, respectively. However, some
restrictions apply: (1) When selecting an object, we prefer to pick non-difficult and
non-truncated objects, provided there is a choice. (2) While we always allow an
object instance to be downsampled, we do not allow upsampling beyond a scale
factor of 4. This restriction protects the network branches which are responsible for
large anchor boxes from overly degraded training images.

Especially the augmentation in object size is crucial for successfully training the
network. However, there is still one more problem to overcome: It is possible that
we select an object instance which is both small with respect to our anchor scales
and small with respect to the image. In such a case, the image can be upscaled by
a maximum factor of 4. Naively scaling the complete images by such a factor poses
problems for our limited GPU memory. Instead, we perform the following transform
T (given in homogeneous coordinates) on the image:

T =

⎛⎝1 0 min(smax

2
, st
sc

lI
2
)

0 1 min(smax

2
, st
sc

lI
2
)

0 0 1

⎞⎠⎛⎝ st
sc

0 0

0 st
sc

0

0 0 1

⎞⎠⎛⎝1 0 −px
0 1 −py
0 0 1

⎞⎠ (5.8)

px and py denotes the position of the selected object instance in the original
image (measured from the object center). The current scale of the selected object
instance is given by sc while the picked target scale is given by st. lI = max(wI , hI)
represents the longer side of the input image I which has width wI and height hI .

We limit the image size after applying T to smax × smax by cropping oversized
images. Informally speaking, this transform scales the image by a factor of st

sc
and

centers the selected object instance at the center of the new image. The translation
operation which centers the object instance distinguishes between the case in which
the scaled image exceeds a side length of smax and the case in which it does not.
Since many images in the FlickrLogos-47 dataset already exceed smax × smax even
without any augmentation, most images fall into the first case and get cropped
during their augmentation. Figure 5.3 shows some examples of augmented image
patches.

Although this augmentation scheme means that the network will always re-
ceive images in which the objects appear in the center of the images, the fully-
convolutional nature of the network provides translation invariance. Training such
a network can best be understood as training a set of highly non-linear filters, each
of which is responsible for detecting objects at a particular scale. At test time, these
filters are then simply applied at every location in the image.

110 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

Predicting object instances

Unlike the original SSD implementation, we do not restrict ourselves to 512px ×
512px images. We can take advantage of the fully-convolutional nature of the net-
work and resize it to fit any input image size. Our network produces probabilities
for class membership and bounding box regression values for all anchor for every
feature map. Figure 5.4 shows some examples of the raw network output. These
predictions need to be converted into detections. Each detection consists of a class
label, a confidence score and a location which corresponds to an anchor box of the
anchor grid that has undergone bounding box regression. To speed up the post-
processing, we try to avoid enumerating the detections for all layers. We perform
a fast test, by determining the maximum value of non-background detection confi-
dence cmax ∈]0.0, 1.0[. This test is conducted directly on the network output, before
its conversion into detections. We exclude features maps from further processing if
cmax does not exceed a certain threshold t. We choose t = 0.01.

For every feature map that is processed, we convert all predictions into detec-
tions. We discard all detections whose confidence is lower than t and perform a
non-maximum suppression in two steps: (1) Since a non-maximum suppression has
a worst-case runtime of O(N2) with N being the number of bounding boxes, we
try to keep N small. Therefore we perform a feature map specific non-maximum
suppression to prune our initial detections. (2) The pruned detections from every
feature map are merged, and another non-maximum suppression is executed on the
merged detections. All non-maximum suppression steps are class-specific, meaning
that we only suppress bounding boxes of the same class.

5.2.4 Evaluation

We first perform a direct comparison between the performance of the original SSD
implementation and our implementation. To do that, we evaluate the original SSD
implementation on the FlickrLogos-47 dataset. The original authors [56] have in-
troduced SSD300 and SSD512 which uses a fixed input size of 300px× 300px and
512px × 512px, respectively. In its default configuration, SSD uses the conv4 to
conv9 layers for predictions. We leave the network definition and the anchor as-
signment to the feature maps of the original implementation unchanged. However,
we do adjust the minimum and maximum anchor scales to match the object sizes
of the FlickrLogos-47 dataset better. For a fair comparison, we want to choose the
minimum and maximum anchor scales to match the anchor scales of the Assd anchor
set.

While this sounds like a straightforward task, it is not as simple to achieve as it
might look on first glance and again reflects one of the weaknesses of the original
implementation: Since all images are scaled to a fixed input size, all anchor scales are
defined relative to the input size of the network. The anchor scale that is responsible
for detecting an object of a given size is therefore not only dependent on the size of

5.2. IMPROVING SSD FOR COMPANY LOGO DETECTION 111

0.00

0.25

0.50

0.75

1.00

(a) (b)

0.00

0.25

0.50

0.75

1.00

(c)

Figure 5.4: Visualization of the detection maps and bounding box regression of SSD.
(a) Input image. (b) Predicted translation component of the box regression. The
vector field indicates the predicted offsets for a single anchor at every location in
the image. (c) Detection map which visualizes the probability of a single anchor
belonging to the correct object class for every location in the image.

the object itself, but also on the size of the original image. In order to approximate
a fair comparison we assume a typical image in the FlickrLogos-47 to have size of
1024px×1024px. This assumption is not completely accurate since the typical image
has a size of 1024px×768px. However, quadratic input images simplify the following
considerations, which is why we use 1024px× 1024px as a basis for our calculations.
For the example of SSD512, this means that – on average – each image is downscaled
by a factor of 2. For a minimum and maximum anchor scale of 35px and 565px,
this corresponds to anchor scales of approximately 17px and 282px. Therefore, we
configure the original SSD512 implementation to use 17px and 282px as minimum
and maximum anchor scale. For SSD300 we adapt the anchor scales accordingly.

In order to get the original SSD implementation to converge, we had to add
gradient clipping to protect the pre-trained network weights during the first itera-
tions. Without gradient clipping, training diverged after a few iterations. Table 5.2
shows a comparison between the detection results of SSD300, SSD512 and our SSD
implementation.

Unsurprisingly, SSD300 yields the lowest mAP score of all three approaches.
However, it performs remarkably well if we consider the small size of the input
images. SSD512 does perform better than SSD300, and its detection performance is
approximately on par with the performance we measured for R-CNN while exhibiting
a runtime which is orders of magnitude lower than R-CNN’s runtime. Interestingly,
the runtimes of SSD512 and SSD300 do not differ by much, even though the areas

112 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

Impl. Input Anchor Scales F. maps Assignment mAP Runtime
size Set min/max min/max / img

orig. 300px orig. 35px∗ conv4 linear+ 0.703 0.03s
565px∗ conv9

orig. 512px orig. 35px∗ conv4 linear+ 0.737 0.03s
565px∗ conv9

ours — Assd 35px conv4 rec. field 0.773 0.08s
565px conv8

Table 5.2: Comparison between the original SSD implementation [56] and our im-
plementation. (+) Note that the anchor grids are not directly comparable since in
the original implementation the density of the scale space sampling is tied to the fea-
ture maps. (∗) The object scales for the original SSD implementation are estimates
based on the assumption of a 1024px× 1024px image (see text for details).

of the input images differ almost by a factor of 3. This is because for such small
input sizes, applying the network to the images is not the bottleneck. Instead,
data preparation and the data transfer between host and GPU memory dominate
the execution time. Since our implementation does not rescale the images and the
images tend to be quite large, it is hard to beat the baseline set by the original
SSD approach. However, we are still able to beat the runtime of all our previous
approaches while outperforming them with regard to detection performance. We
are also able to outperform the original SSD implementation, even though we are
using a smaller network and are using fewer feature maps for prediction.

Unfortunately, it is hard to achieve a side-by-side comparison between the orig-
inal SSD implementation and our implementation that is fair in all aspects. Any
direct comparison between the two approaches would have to use the same anchor
grid. The direct link between network structure and the assignment of anchor scales
to feature maps is fundamentally incompatible with the assignment of anchor scales
based on the receptive field: Our network structure has to be much less deep than the
original SSD implementation because the conv8 feature map already has a receptive
field of 948px which is more than enough to cover the maximum scale in our anchor
set. On the other hand, the network depth in the original SSD implementation
directly influences the density of the scale space sampling.

If we were to use the same linear assignment scheme as the original SSD imple-
mentation in our shortened network, it would result in less densely sampled anchor
scales which puts our implementation at a disadvantage in a direct comparison. Such
a network configuration would result in the smallest anchor scales to be spaced apart
by more than a factor of 2. Since we have shown in Chapter 3.5.3 that a factor of 2
is the theoretical limit if we require an IoU ≥ 0.5 for a correct detection, this exper-
iment is unlikely to produce satisfactory results. Nevertheless, we have performed

5.2. IMPROVING SSD FOR COMPANY LOGO DETECTION 113

Dataset ours Fast-M [4] DeepLogo [42] SCL [73] BD-FRCN-M [61]

FlickrLogos-32 0.837 0.842 0.744 0.811 0.735

Table 5.3: Comparison of our SSD implementation to other approaches to company
logo detection. All values are mAP on the respective datasets. Since FlickrLogos-32
is a retrieval dataset, the evaluation protocols the authors used for detection are
often unclear. Therefore, a comparison between these values should be viewed with
scepticism.

this experiment which yields a mAP of 0.720 which is surprisingly good for such an
ill-defined detection problem.

We also cannot use our Assd anchor set in the original SSD implementation be-
cause our exponential distribution of anchor scales is incompatible with the linear
distribution of anchor scales to feature maps which puts the original SSD implemen-
tation at an unfair disadvantage.

5.2.5 Comparison to other approaches in the literature

We want to compare our re-implemented SSD to other company logo detection
approaches in the literature. Unfortunately, we are not aware of any baselines on
the FlickrLogos-47 dataset. We therefore use the FlickrLogos-32 [68] dataset which
is often used in the literature for the evaluation of company logo detection pipelines.

We compare our approach to four other approaches: (1) DeepLogo [42] by Iandola
et al. was among the first to apply an object detector built on Fast R-CNN to
company logo detection. (2) BD-FRCN-M [61] by Oliveira et al. is another Fast
R-CNN based approach which employs data augmentation. (3) SCL [73] by Su et
al. used a Faster R-CNN based detector on FlickrLogos-32 whose training set has
been expanded with synthetically generated training images. (4) Fast-M [4] by Bao
et. al. is a multi-scale approach to Fast R-CNN.

All of the papers mentioned above evaluate their approaches on the FlickrLogos-
32 dataset. Although FlickrLogos-32 has object-level annotations, it has been de-
signed as an image retrieval dataset. It, therefore, does not offer an official evaluation
script for object detection. We use our evaluation script for FlickrLogos-47 for this
task. Confusingly, FlickrLogos-32 does offer an evaluation script for a task that it
calls object detection. However, this task has nothing to do with the task of object
detection as commonly used in the literature. The task that FlickrLogos-32 calls
object detection is more commonly known as image classification: Images which may
or may not contain company logos have to be classified according to their content.
No localization is required.

These complications make it difficult to interpret the results reported by the
other authors. One notable exception are Iandola et. al. [42] who evaluate their

114 CHAPTER 5. THE SINGLE SHOT MULTIBOX DETECTOR

approach on FlickrLogos-32 and make a clear distinction between non-localized and
localized detections.

In Table 5.3 we compare our best-performing approach (our re-implemented SSD
detector) to the above-mentioned approaches to object detection on the FlickrLogos-
32 dataset. Our approach is able to beat all other approaches, except Fast-M [4].
Fast-M is a multi-scale Fast R-CNN based-approach that exploits the same ob-
servation that we made earlier, that upscaling the images improves the detection
performance. Fast-M goes even further and not only re-scales the images once but
five times. Although no timing results are reported for Fast-M, it is safe to assume
that the runtime is not remotely comparable to our SSD-based approach.

5.3 Conclusion

In this chapter, we have considered single-stage object detection approaches for the
problem of company logo detection. There are two major approaches to single-stage
object detection: YOLO [65] and the Single Shot MultiBox Detector (SSD) [56].
Contrary to SSD, the fully-connected layers limit YOLO for fixed-size input images
on a technical level. Since even the authors admit that YOLO struggles with small
object instances, we have excluded YOLO from our evaluation.

Instead, we have focused our attention on the Single Shot MultiBox Detector.
Although the original SSD implementation also uses fixed-size input images, it is
not a technical limitation but a design choice. We have evaluated the original SSD
implementation on the FlickrLogos-47 dataset and found its detection performance
to be competitive with R-CNN but with a runtime that is orders of magnitude faster.
We have analyzed SSD and have identified three potential areas for improvement:
(1) Because of fixed-size input images, the anchor scales are always defined relative to
the image size. (2) We have identified the linear scale space sampling as incompatible
with a feature hierarchy of exponentially decreasing resolution. (3) The arbitrary
assignment of anchor scales to feature maps.

We have re-written SSD to account for these shortcomings and have evaluated
our approach. We were able to show that our re-formulated SSD framework is
able to outperform all previously evaluated approaches both in terms of detection
performance and in runtime.

Part IV

Conclusion

115

116

Chapter 6

Conclusions

6.1 Conclusions

In this work, we have applied three well-known object detection approaches to the
task of company logo detection. We have evaluated both two-staged and single-
staged approaches to object detection. For the two-staged object detection ap-
proaches, we have analyzed in detail both the proposal stage and the classification
stage in the context of their ability to retrieve small object instances.

For our first contribution, we have looked at heuristic approaches to object pro-
posals. In particular, we have looked at two popular algorithms, Selective Search
and Edge Boxes. We have performed a detailed analysis of their respective strengths
and weaknesses and found that both approaches are able to complement each other.
Also, we have examined common failure modes of Selective Search on text-based
company logos. To address these problems, we have introduced the VH-connect
algorithm as a new lightweight heuristic which is specifically designed to retrieve
text-based instances. We were able to show that by integrating VH-connect into the
object proposal stage we can increase the maximum achievable recall at virtually no
additional impact on overall runtime.

We have then shifted our focus to trainable approaches to object proposals. For
our second contribution, we have examined Region Proposal Networks and have
noticed that its performance regarding maximum achievable recall is inferior to the
heuristic approaches at which we have looked. We then have analyzed the reasons
behind this performance gap and have identified insufficiently dense scale space
sampling and lacking feature map resolution as two primary culprits. We were able
to show that by addressing these issues, the performance gap to heuristic proposals
can be closed and even surpass them in both runtime and maximum achievable
recall.

With our improved object proposals, we have turned our attention to the classi-
fication stage. We have evaluated three approaches to classify our object proposals:
R-CNN, Fast R-CNN, and Faster R-CNN. However, since Faster R-CNN only differs
from Fast R-CNN in the source of its object proposals, only the classification stages

117

118 CHAPTER 6. CONCLUSIONS

of R-CNN and Fast R-CNN are genuinely unique. We have found that R-CNN
performs much better in classifying our proposals than the newer Fast(er) R-CNN
approach. For our third contribution, we analyze the reasons behind this behavior
since in the literature Fast(er) R-CNN is almost universally reported to be superior
to R-CNN. Our analysis has shown that the size of the object compared to the size
of the receptive field of the network plays a vital role in the classification perfor-
mance. We have shown that although no new information is added to the image,
simple upscaling of the input images can increase the detection performance to the
point where the performance of Fast(er) R-CNN is competitive with R-CNN. Since
upscaling the image is associated with increased computational costs of applying
the network, we have introduced Selective Magnification which aims to only upscale
the parts of the image which are likely to contain objects. We were able to show,
that using Selective Magnification, we can achieve most of the performance gains at
only a fraction of the runtime needed for naive upscaling.

Finally, we have looked at the Single Shot MultiBox Detector as a single-stage
object detection approach which circumvents the need to generate object proposals.
For our fourth contribution, we have noticed that most of the lessons we have learned
for improving trainable object proposals can also be applied in the context of the
Single Shot MultiBox Detector. Also, we have identified some design decisions in
the original implementation which are suboptimal. In particular, we have addressed
the linear scale space sampling scheme and the arbitrary assignment of anchor scales
to feature maps. Our re-implemented version of the Single Shot MultiBox Detector
incorporates the lessons learned from our improved approach to trainable object
proposals and addresses the problems mentioned above. We have shown that our
re-implemented version is able to achieve superior detection performance not only
to the original implementation but also to all other approaches to company logo
detection that we have evaluated in this work. At the same time, it is also the
fastest approach to company logo detection that we have evaluated in this work.

6.2 Outlook

Object detection has made major advances in the last years, even to the point that
have led some people to claim that object detection is a solved problem. Certainly,
there is some truth to this claim: Many of the difficulties of object detection like vari-
ations in viewpoint, partial occlusion, and deformable objects have become problems
of the past with the advent of deep neural networks. Object detection has become
advanced enough that most everyday objects can be detected somewhat reliably.

However, we feel that there is still much room for future research. An interesting
area of research is to model the relationships of objects in a scene with each other.
This could potentially help to improve detections in scenarios where there is hardly
any direct visual evidence for the presence of an object. While in this work we were
able to make some improvements in detecting small company logos, we still rely on

6.2. OUTLOOK 119

the company logo being visible and (somewhat) recognizable. There are instances
where the object in question only consists of a few pixels of a specific color. Even
a human observer would have trouble to recognize such a company logo when only
given the visual evidence of the company logo itself.

However, humans are often able to infer the presence of an object by looking at
the context in which it occurs: From a distance, it may be difficult to spot a cell
phone that a pedestrian is using. However, we may be able to infer the presence
of a cell phone based on the pose of the pedestrian itself. Similar inferences may
be possible for the task of company logo detection. For example, company logos
related to beer brands are often located on bottles which in turn have a distinctive
design. R-CNN cannot use these relationships because the object proposals are cut
out from the image. Fast(er) R-CNN and SSD are in principle able to capture these
relationships. However, it might be beneficial to model them explicitly.

Also, we feel that using bounding boxes as a means of localizing detections
is increasingly outdated as expectations on object detection systems grow. This
can also be seen in our FlickrLogos-47 dataset: For objects with extreme aspect
ratios (such as text-based company logos), the orientation of the objects becomes
important. For objects which are oriented horizontally or vertically, a bounding
box may still be sufficient. However, for objects with extreme aspect ratios and
arbitrary orientations, a bounding box is a poor indicator of location. Therefore,
we expect that future research will increasingly go into the direction of semantic
instance segmentation which does not suffer from these problems.

Appendix A

FlickrLogos-47: Object Instances

trainval test
Class name total difficult truncated total difficult truncated

Adidas (Symbol) 37 0 1 104 2 1
Adidas (Text) 34 2 0 71 7 1
Aldi 38 2 0 88 4 1
Apple 30 0 0 47 0 0
Becks (Symbol) 52 2 0 98 6 1
Becks (Text) 54 3 2 118 24 7
BMW 29 0 0 51 0 0
Carlsberg (Symbol) 30 3 0 92 10 0
Carlsberg (Text) 40 2 2 112 16 12
Chimay (Symbol) 45 3 0 79 10 0
Chimay (Text) 56 8 2 83 6 2
CocaCola 62 4 2 91 0 0
Corona (Symbol) 32 1 0 54 1 1
Corona (Text) 35 3 1 59 1 2
DHL 51 2 1 93 6 3
Erdinger (Symbol) 48 2 1 70 1 1
Erdinger (Text) 33 2 2 50 1 1
Esso (Symbol) 32 2 2 63 0 1
Esso (Text) 8 0 0 34 6 2
FedEx 36 0 2 60 1 4
Ferrari 29 0 0 44 0 0
Ford 30 0 0 47 0 0
Fosters (Symbol) 33 2 0 99 19 4
Fosters (Text) 43 2 12 98 21 3
Google 33 0 0 50 0 0
Guinness (Symbol) 37 4 1 80 4 0
Guinness (Text) 38 1 2 103 5 2

120

121

Heineken 63 5 2 106 12 6
HP 43 1 1 75 1 1
Milka 89 14 6 275 39 14
nVidia (Symbol) 40 2 0 97 8 0
nVidia (Text) 40 2 0 92 5 0
Paulaner (Symbol) 48 3 1 69 0 1
Paulaner (Text) 30 3 4 63 8 6
Pepsi (Symbol) 57 3 1 194 18 5
Pepsi (Text) 54 8 9 140 20 6
Rittersport 87 16 10 202 32 19
Shell 34 0 0 66 4 1
Singha (Symbol) 26 0 0 56 1 1
Singha (Text) 26 0 0 57 1 1
Starbucks 43 3 3 65 5 3
Stellaartois (Symbol) 43 8 0 72 1 0
Stellaartois (Text) 33 1 4 66 5 1
Texaco 33 0 0 56 0 0
Tsingtao (Symbol) 39 0 0 91 7 0
Tsingtao (Text) 49 6 2 95 9 0
UPS 34 0 2 57 0 0

Total 1936 125 78 4032 327 114

Table A.1: Number of object instances for the re-structured trainval and test sets of
the FlickrLogos-47 dataset. For each class, the trainval set typically contains around
33% of all object instances.

Appendix B

Edge Grouping

Algorithm Grouping algorithm for edges

1: procedure group edges(E,O, tΘ)
2: E ← Set of pixels (x, y) which are part of an edge
3: O(x, y)← Edge orientations for pixels, O(x, y) ∈ [0, π[
4: A← ∅ ◃ Set of pixels which have already been assigned to a group
5: G← ∅ ◃ Result set containing pixel groups
6: for each pixel (x, y) ∈ E do
7: if (x, y) ∈ A then continue

8: Gi ← {(x, y)} ◃ Create a new pixel group
9: Θ← 0.0 ◃ Sum of orientation differences in this group
10: (x̄, ȳ)← (x, y) ◃ Current center of the search neighborhood
11: D ← ∅ ◃ Initialize list of discovered pixels
12: while Θ < tΘ do ◃ Group until orientation threshold exceeded
13: Nx̄,ȳ ← 8-neighborhood around pixel (x̄, ȳ)
14: Nx̄,ȳ ← Nx̄,ȳ − (A ∪ E) ◃ Only consider edges and unassigned pixels
15: D ← D ∪Nx̄,ȳ ◃ Add edges to discovered set
16: if D = ∅ then break

17: (x̂, ŷ) = argmin(x̃,ỹ)∈D {anglediff(O(x̄, ȳ), O(x̃, ỹ))}
18: Gi ← Gi ∪ {(x̂, ŷ)} ◃ Add edge w. most similar orientation to group
19: Θ← Θ+ anglediff(O(x̄, ȳ), O(x̂, ŷ))
20: A← A ∪ (x̂, ŷ)
21: (x̄, ȳ)← (x̂, ŷ)

22: G← G ∪Gi
return G

23: procedure anglediff(O1, O2)
24: d← |O1 −O2|
25: if d > π

2
then

26: d← π − d
return d

122

Appendix C

Sigmoid or Softmax

During our introduction of Region Proposal Networks (see Chapter 3.5.1) we briefly
mentioned that the task of anchor prediction can be modelled through a Softmax
cross-entropy loss or a Sigmoid cross-entropy loss. Here, we want to explicate the
relationship between the two models in greater detail.

Anchor prediction in Region Proposal Networks (RPNs) is an example of a bi-
nary classification problem. On an abstract level, a binary classification problem
tries to categorize input data into two classes C = {c0, c1}. More formally, binary
classification involves predicting the probabilities p(c0|x) and p(c1|x) of a data point
x belonging to classes c0 and c0, respectively.

Since we have a binary classification problem, it suffices to predict p(c0|x) be-
cause p(c1|x) = 1 − p(c0|x). This is the choice we face when modelling such a
problem in a neural network: We can choose to represent the problem as a network
with a single output neuron which predicts p(c0|x) or we can represent the problem
with two output neurons, each of which predict p(c0|x) and p(c1|x). For brevity, we
will write the predicted confidence values p(c0|x) and p(c1|x) as p0 and p1.

In order to interpret the activation of a network with a single output neuron
y0 as probability, its activation needs to be squashed into the interval p0 ∈]0, 1[.
This is usually achived through a sigmoid function. The logistic function L(y0) is
the most frequently used sigmoid function – so frequently, that the terms sigmoid
function and logistic function are often used interchangeably in the literature.

L(y0) =
1

1 + e−y0
=

ey0

1 + ey0
(C.1)

The logistic function has an important symmetry property which we will exploit
shortly:

1− L(y0) = 1− ey0

1 + ey0
=

1

1 + ey0
= L(−y0) (C.2)

123

124 APPENDIX C. SIGMOID OR SOFTMAX

For networks which model binary classification problems with two output neurons
y = (y0, y1), the softmax function S(y) is used to interpret the network activations
as probability distribution.

S(y)i =
eyi∑

j∈{0,1}
eyj

=
eyi

ey0 + ey1
(C.3)

To show the relationship between a 2-class softmax and the sigmoid function,
we first need to introduce an important property of the softmax function: If we
add a constant term c to all activations, the probability distribution induced by the
softmax does not change.

S(y)i =
eyi+c∑|C|−1

j=0 eyj+c
=

eyiec∑|C|−1
j=0 eyjec

=
eyi∑|C|−1

j=0 eyj
(C.4)

For a binary classification problem, this property also means, that we can always
shift our activations in such a way that one of our activations is set to zero. We
can use this fact to transform our softmax into an equivalent sigmoid function by
choosing c = −y1.

S(y)0 =
ey0

ey0 + ey1
=

ey0−y1

ey0−y1 + ey1−y1
=

ey0−y1

1 + ey0−y1
= L(y0 − y1)

S(y)1 =
ey1

ey0 + ey1
=

ey1−y1

ey0−y1 + ey1−y1
=

1

1 + e−(y1−y0)
= L(y1 − y0)

(C.5)

This relationship shows that it is possible to transform any network which solves
a binary classification problem with two output neurons into an equivalent network
with only a single output neuron without retraining. By subtracting the activations
for both classes and applying a logistic function on the result instead of applying a
softmax directly on the activations we can transform the network.

It is also possible to transform any network which solves a binary classification
problem using a single output neuron into an equivalent network with two output
neurons: In this case we need to choose a value for y1 which for convenience should be
set to zero. By applying the softmax S((y0, 0)

T) we can obtain the same probability
distribution as with a network using the logistic function.

However, the ability to construct networks which behave equivalently during
evaluation does not mean that both approaches are also equivalent during training.
To show this, we derive the gradients for both the sigmoid and the softmax case. The
cross-entropy loss C(p, p̂) is the most commonly used loss function for classification
problems. It compares the predicted probabilities for every class p̂ = (p̂0, p̂1) against
a target probability distribution p = (p0, p1). Since the class labels are known,
the target probability for the correct class is 1 while the target probability for the

125

other class is 0. For a binary classification problem the cross entropy loss takes the
following form:

C(p, p̂) = −
∑

k∈{0,1}

pk log p̂k = −p0 log p̂0 − (1− p0) log(1− p̂0) (C.6)

Depending on whether we want to measure the cross entropy in bits or nats we
use the logarithm to base 2 or base e. For convenience, we will assume a natural
logarithm for the following calculations. To derive the gradient for the sigmoid cross
entropy loss, we first derive the gradient for the sigmoid function itself.

∂L(y0)

∂y0
=

∂

∂y0

1

1 + e−y0

= − 1

(1 + e−y0)2
∂

∂y0

(
1 + e−y0

)
=

e−y0

(1 + e−y0)2

=
1

(1 + e−y0)

e−y0

(1 + e−y0)

=
1

1 + e−y0

1

1 + ey0

= L(y0)L(−y0)

(C.7)

We use this result to derive the gradient for the sigmoid cross entropy loss.
Additionally, we make use of the symmetry property 1 − L(y0) = L(−y0) (see
equation C.2).

∂C(p, p̂)

∂y0
=

∂

∂y0
− p0 logL(y0)− (1− p0) log(1− L(y0))

= −p0
1

L(y0)

∂

∂y0
L(y0)− (1− p0)

1

1− L(y0)

∂

∂y0
(1− L(y0))

= −p0
1

L(y0)
L(y0)L(−y0)− (1− p0)

1

1− L(y0)
(−L(y0)L(−y0))

= −p0L(−y0) + (1− p0)
L(y0)L(−y0)

L(−y0)
= −p0L(−y0) + (1− p0)L(y0)

= −p0L(−y0) + L(y0)− p0L(y0)

= −p0 (L(−y0) + L(y0)) + L(y0)

= −p0 (1− L(y0) + L(y0)) + L(y0)

= L(y0)− p0

(C.8)

126 APPENDIX C. SIGMOID OR SOFTMAX

The gradient of the sigmoid cross entropy loss is therefore simply the difference
between the predicted probability L(y0) and the target probability p0. In most
cases the target probability is a binary value p0 ∈ {0, 1} since we usually assume
the groundtruth class membership to be known with perfect confidence.

In order to derive the gradient for the softmax cross-entropy loss, we start by
deriving the gradient for the softmax function itself. In the following, δij represents
the Kronecker delta.

∂S(y)i
∂yj

=
∂

∂yj

eyi∑
ck∈C e

yk

=
1∑

ck∈C e
yk

∂

∂yj
eyi + eyi

∂

∂yj

1∑
ck∈C e

yk

=
1∑

ck∈C e
yk
(δije

yi)− eyieyj(∑
ck∈C e

yk
)2

(C.9)

Depending on whether i = j we can substitute the definition of the softmax
function and obtain one of the following derivatives:

∂S(y)i
∂yj

=

{
S(y)i(1− S(y)i) if i = j

−S(y)iS(y)j if i ̸= j
(C.10)

Substituting the expression above into the derivative of the the cross entropy
yields:

∂C(p,p)

∂yj
=

∂

∂yj
−
∑
ck∈C

pk logS(y)k

= −
∑
ck∈C

pk
1

S(y)k

∂S(y)k
∂yj

= −pj (1− S(y)j)−
∑

ck∈C,k ̸=j

pk
−S(y)jS(y)k

S(y)k

= −pj + pjS(y)j +
∑

ck∈C,k ̸=j

pkS(y)j

= S(y)j

(
pj +

∑
ck∈C,k ̸=j

pk

)
− pj

(C.11)

Since p represents a probability distribution it follows that pj+
∑

ck∈C,k ̸=j pk = 1.
Therefore, we obtain for the gradient of the softmax cross entropy loss:

127

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
ac

cu
ra

cy
Sigmoid Cross Entropy Loss

(a)

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
ac

cu
ra

cy

Softmax Cross Entropy Loss

(b)

Figure C.1: Convergence speed of a linear model on 20 different linearly separable
datasets using (a) sigmoid cross entropy loss and (b) softmax cross entropy loss.
Each dotted line represents the validation accuracy of the model for a single training
run on a dataset. The solid line represents the average validation accuracy for all
training runs. On average, the softmax cross entropy loss converges faster than the
sigmoid cross entropy loss.

∂C(p, p̂)

∂yj
= S(y)j − pj (C.12)

Therefore, the gradient for the softmax cross entropy loss looks very similar to
the gradient of the sigmoid cross entropy loss. In both cases the gradient is the
difference between the predicted probability and the target probability. However,
there is a crucial difference between both loss functions: The sigmoid cross entropy
loss can only change the strength of the output neuron activation to improve its
predictions. On the other hand, the softmax cross entropy loss has two possibilities
to improve the prediction: It can increase the strength of the activation for the
positive class but it can also simultaneously decrease the strength of the activation
for the negative class. The confidence of the classification depends on the difference
between the two activations as we have shown in equation C.5.

We therefore conjecture that the softmax cross entropy loss tends to converge
faster than the sigmoid cross entropy loss, even for binary classification problems.
Since complicated network structures might cloud the interpretability of the results,
we test our hypothesis by considering an extremely simple machine learning problem:

We generate binary classification problems whose classes C = {c0, c1} can be
perfectly separated by a hyperplane. More specifically, we generate d = 20 artificial
datasets in R10 containing n = 2000 points each. Each datapoint x can be perfectly
classified by learning a linear model H

128 APPENDIX C. SIGMOID OR SOFTMAX

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
ac

cu
ra

cy

Sigmoid Cross Entropy Loss

lr 0.5
lr 0.1
lr 0.05

lr 0.01
lr 0.005
lr 0.001

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
ac

cu
ra

cy

Softmax Cross Entropy Loss

lr 0.5
lr 0.1
lr 0.05

lr 0.01
lr 0.005
lr 0.001

Figure C.2: Convergence speed of a linear model for a wide range of learning rates
using (a) sigmoid cross entropy loss and (b) softmax cross entropy loss. Shown is
the average validation accuracy for 20 linearly separable datasets. In every case, the
softmax-based model converges faster than a sigmoid-based model with the same
learning rate.

p = f(Hx) (C.13)

For each dataset we train two models: One model with a single output neuron
based on a sigmoid cross entropy loss and one with two output neurons based on a
softmax cross entropy loss. For the sigmoid-based model H has the form H ∈ R1×10

and f is the sigmoid function. A datapoint x is classified as belonging to class c0
if f(Hx) > 0.5 and as c1 otherwise. For the softmax-based model H ∈ R2×10 and
f is the softmax function. Classification is performed by argmaxck∈C pk.

We train both models using a simple gradient descent optimizer without momen-
tum to not complicate the interpretability of the results. Both models are trained for
5000 epochs using the same learning rate λ = 0.01. After each epoch, we evaluate
the classification performance of both models on a validation set.

Figure C.1 shows the results of this experiment. It becomes clear, that – on
average – the model using the softmax cross entropy loss converges faster than the
model using the sigmoid cross entropy loss. Although the softmax model contains
more parameters than the sigmoid model, no models is more powerful than the
other: Both solve a linear classification problem and – as we have shown above – we
can convert the sigmoid model into a softmax model and vice versa for evaluation.

So far we have only looked at a single learning rate. In order to exclude the
possibility that the optimal learning rate for a softmax-based model is different
from the optimal learning rate for a sigmoid-based model, we repeat the experiment
for a wide range of different learning rates. The results of this experiment are show
in Figure C.2. It is apparent that for every learning rate, the softmax-based model
converges faster than a sigmoid-based model with the same learning rate.

129

This suggests, that we can always choose a softmax-based model that converges
faster than a sigmoid-based model. We therefore feel justified in concluding that
even for a binary classification problem it is beneficial to use softmax-based models
instead of sigmoid-based models.

130

131

Appendix D

Detection Examples

Here, we show some exemplary detections to illustrate the differences between our
implementations of R-CNN, Fast(er) R-CNN and SSD. Since Fast(er) R-CNN and
SSD use a softmax classifier their confidence scores are not directly comparable to
R-CNN which uses SVMs as a classifier. The scores shown here are SVM scores
which have been min/max-normalized into the interval of [0, 1]. This normalization
has been performed across all detections in the dataset but separately for every
class.

R-CNN Fast R-CNN

Faster R-CNN SSD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

132 APPENDIX D. DETECTION EXAMPLES

R-CNN Fast R-CNN

Faster R-CNN SSD

R-CNN Fast R-CNN

Faster R-CNN SSD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

133

R-CNN Fast R-CNN

Faster R-CNN SSD

R-CNN Fast R-CNN

Faster R-CNN SSD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

134 APPENDIX D. DETECTION EXAMPLES

R-CNN Fast R-CNN

Faster R-CNN SSD

R-CNN Fast R-CNN

Faster R-CNN SSD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

List of Figures

1.1 Challenges of company logo detection 4

2.1 Comparison between FlickrLogos-32 and FlickrLogos-47 annotations . 14
2.2 FlickrLogos-47: Distribution of object instances per class 15
2.3 FlickrLogos-47: Distribution of object sizes and aspect ratios 16
2.4 Efficient computation of precision-recall curves 19
2.5 Network architecture of VGG16 for ImageNet classification 21
2.6 Conversion of a fully-connected layer to a convolutional layer 24
2.7 Convolutional neural networks as filters 24

3.1 Gabor filterbank for extracting texture features for Selective Search . 31
3.2 Selective Search: Illustration of iterative merger of regions 33
3.3 Edge Boxes: Visualization of edge groups 35
3.4 Performance of Selective Search and Edge Boxes on the FlickrLogos-

47 dataset for different number of proposals. 39
3.5 Illustration of Selective Search error modes. 41
3.6 Illustration of the VH-connect algorithm. 42
3.7 Performance gain by combining object proposals generated by Selec-

tive Search and Edge Boxes for different mix ratios. 43
3.8 Score prediction for Region Proposal Networks (RPNs). 48
3.9 Comparing the performance of RPNs against heuristic object proposals. 53
3.10 RPN performance by object size. 54
3.11 Analyzing the anchor grid of RPNs 55
3.12 Creation of the Ftest,x datasets. 57
3.13 Analysis of the scale sensitivity of the RPN anchor grid. 59
3.14 Network architecture for improved region proposals. 60
3.15 Evaluation of proposed RPN improvements. 62

4.1 Outline of the R-CNN detection pipeline. 67
4.2 Illustration of the ROI-Pooling mechanism. 71
4.3 Outline of the Fast R-CNN detection pipeline. 73
4.4 Analysis of detected objects using Fast R-CNN by size. 77
4.5 Examples from the datasets used to test classification performance. . 78
4.6 Outline of the Faster R-CNN object detection pipeline. 81

135

136 LIST OF FIGURES

4.7 Analysis of detected objects using Fast R-CNN by size. 84
4.8 Effectiveness of selecting proposals for magnification for different spa-

tial resolutions of ROI-Pooled features. 86
4.9 Selective Magnification: Examples of object proposals selected for

magnification. 87
4.10 Finding a mininum-area enclosing rectangle. 88
4.11 Placing rectangles within an enclosing rectangle via tree search. . . . 90
4.12 Examples output of the rectangle packing algorithm. 91
4.13 Comparing selective magnification to direct magnification. 92

5.1 Network architecture of the original SSD implementation. 100
5.2 Network architecture of SSD adapted for company logo detection. . . 106
5.3 Examples of data augmentation for the SSD pipeline. 108
5.4 Visualization of the detection maps and bounding box regression of

SSD. 111

C.1 Convergence speed of a sigmoid- and softmax-based model. 127
C.2 Convergence speed of a sigmoid- and softmax-based model for a wide

range of learning rates. 128

Bibliography

[1] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image
windows. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(11):2189–2202, November 2012.

[2] S. Y. Arafat, S. A. Husain, I. A. Niaz, and M. Saleem. Logo detection and
recognition in video stream. In IEEE International Conference on Digital In-
formation Management, pages 163–168, July 2010.

[3] A. D. Bagdanov, L. Ballan, M. Bertini, and A. Del Bimbo. Trademark matching
and retrieval in sports video databases. In ACM International Workshop on
Multimedia Information Retrieval, MIR ’07, pages 79–86, 2007.

[4] Y. Bao, H. Li, X. Fan, R. Liu, and Q. Jia. Region-based cnn for logo detec-
tion. In ACM International Conference on Internet Multimedia Computing and
Service, ICIMCS’16, pages 319–322, 2016.

[5] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-outside net: Detecting
objects in context with skip pooling and recurrent neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2874–2883,
June 2016.

[6] S. Belongie, G. Mori, and J. Malik”. Matching with Shape Contexts”, pages
81–105. Birkhäuser Boston, Boston, MA, 2006.

[7] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, September 1975.

[8] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. Soft-nms — improving
object detection with one line of code. In IEEE International Conference on
Computer Vision, pages 5562–5570, October 2017.

[9] L. Bombonato, G. Camara-Chavez, and P. Silva. Real-time brand logo recog-
nition. In Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, pages 111–118, Cham, 2018. Springer International Publish-
ing.

137

138 BIBLIOGRAPHY

[10] Z.i Cai and N. Vasconcelos. Cascade r-cnn: Delving into high quality object
detection. In IEEE Conference on Computer Vision and Pattern Recognition,
2018.

[11] J. Carreira and C. Sminchisescu. Cpmc: Automatic object segmentation using
constrained parametric min-cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(7):1312–1328, July 2012.

[12] M. Cheng, Z. Zhang, W. Lin, and P. Torr. Bing: Binarized normed gradients
for objectness estimation at 300fps. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 3286–3293, June 2014.

[13] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, September 1995.

[14] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition, volume 1,
pages 886–893 vol. 1, June 2005.

[15] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, June 2009.

[16] P. Dollar and C. L. Zitnick. Structured forests for fast edge detection. In
IEEE International Conference on Computer Vision, pages 1841–1848, Decem-
ber 2013.

[17] C. Eggert, S. Brehm, A. Winschel, D. Zecha, and R. Lienhart. A closer look:
Small object detection in faster r-cnn. In IEEE International Conference on
Multimedia and Expo, pages 421–426, July 2017.

[18] C. Eggert, A. Winschel, and R. Lienhart. On the benefit of synthetic data for
company logo detection. In ACM International Conference on Multimedia, MM
’15, pages 1283–1286, 2015.

[19] C. Eggert, A. Winschel, D. Zecha, and R. Lienhart. Saliency-guided selective
magnification for company logo detection. In IAPR International Conference
on Pattern Recognition, pages 651–656, December 2016.

[20] C. Eggert, D. Zecha, S. Brehm, and R. Lienhart. Improving small object pro-
posals for company logo detection. In ACM International Conference on Mul-
timedia Retrieval, ICMR ’17, pages 167–174, 2017.

[21] I. Endres and D. Hoiem. Category-independent object proposals with diverse
ranking. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(2):222–234, Feb 2014.

BIBLIOGRAPHY 139

[22] M Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes challenge: A retrospective.
International Journal of Computer Vision, 111(1):98–136, January 2015.

[23] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. International Journal of Com-
puter Vision, 88(2):303–338, June 2010.

[24] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object de-
tection with discriminatively trained part-based models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(9):1627–1645, September 2010.

[25] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object
recognition. International Journal of Computer Vision, 61(1):55–79, January
2005.

[26] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled
functions. Theory of Computing, 8(19):415–428, 2012.

[27] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsuper-
vised scale-invariant learning. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages II–II, June 2003.

[28] M. A. Fischler and R. A. Elschlager. The representation and matching of
pictorial structures. IEEE Transactions on Computers, C-22(1):67–92, January
1973.

[29] D. Gabor. Theory of communication. part 1: The analysis of information.
Journal of the Institution of Electrical Engineers - Part III: Radio and Com-
munication Engineering, 93(26):429–441, November 1946.

[30] R. Girshick. Fast r-cnn. In IEEE International Conference on Computer Vision,
pages 1440–1448, December 2015.

[31] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 580–587, June 2014.

[32] A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische
Annalen, 69(3):331–371, September 1910.

[33] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object
segmentation and fine-grained localization. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 447–456, June 2015.

[34] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In IEEE Interna-
tional Conference on Computer Vision, pages 2980–2988, October 2017.

140 BIBLIOGRAPHY

[35] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In IEEE International
Conference on Computer Vision, pages 1026–1034, December 2015.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In IEEE Conference on Computer Vision and Pattern Recognition, pages
770–778, June 2016.

[37] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pages 630–645, Cham,
2016. Springer International Publishing.

[38] S. C. H. Hoi, X. Wu, H. Liu, Y. Wu, H. Wang, H. Xue, and Q. Wu. Logo-net:
Large-scale deep logo detection and brand recognition with deep region-based
convolutional networks. volume abs/1511.02462, 2015.

[39] M. Holschneider, R. Kronland-Martinet, J. Morlet, and Ph. Tchamitchian. A
real-time algorithm for signal analysis with the help of the wavelet transform. In
Wavelets, pages 286–297, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

[40] S. Honari, J. Yosinski, P. Vincent, and C. Pal. Recombinator networks: Learn-
ing coarse-to-fine feature aggregation. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 5743–5752, June 2016.

[41] P. J. Huber. Robust estimation of a location parameter. The Annals of Math-
ematical Statistics, 35(1):73–101, March 1964.

[42] F. N. Iandola, A. Shen, P. Gao, and K. Keutzer. Deeplogo: Hitting logo recog-
nition with the deep neural network hammer. CoRR, abs/1510.02131, 2015.

[43] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In ILMS International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[44] B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang. Acquisition of localization
confidence for accurate object detection. In European Conference on Computer
Vision, September 2018.

[45] A. Joly and O. Buisson. Logo retrieval with a contrario visual query expansion.
In ACM International Conference on Multimedia, pages 581–584, 2009.

[46] T. Kong, A. Yao, Y. Chen, and F. Sun. Hypernet: Towards accurate region pro-
posal generation and joint object detection. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 845–853, June 2016.

BIBLIOGRAPHY 141

[47] R. E. Korf. Optimal rectangle packing: Initial results. In International Con-
ference on Automated Planning and Scheduling, pages 287–295, 2003.

[48] R. E. Korf, M. D. Moffitt, and M. E. Pollack. Optimal rectangle packing.
Annals of Operations Research, 179(1):261–295, September 2010.

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 1097–1105. Curran Associates, Inc., 2012.

[50] H. Kuang, K. Yang, L. Chen, Y. Li, L. L. H. Chan, and H. Yan. Bayes saliency-
based object proposal generator for nighttime traffic images. IEEE Transactions
on Intelligent Transportation Systems, 19(3):814–825, March 2018.

[51] H. Law and J. Deng. Cornernet: Detecting objects as paired keypoints. In
European Conference on Computer Vision, September 2018.

[52] P. Letessier, A. Joly, and O. Buisson. Scalable mining of small visual objects.
In ACM International Conference on Multimedia, 2012.

[53] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object
detection. In IEEE International Conference on Image Processing, volume 1,
September 2002.

[54] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Fea-
ture pyramid networks for object detection. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 936–944, July 2017.

[55] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, pages 740–755, Cham, 2014. Springer Inter-
national Publishing.

[56] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. Ssd: Single shot multibox detector. In European Conference on Computer
Vision, pages 21–37, Cham, 2016. Springer International Publishing.

[57] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, November 2004.

[58] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In ICML Workshop on Deep Learning for
Audio, Speech and Language Processing, 2013.

[59] S. Manen, M. Guillaumin, and L. V. Gool. Prime object proposals with ran-
domized prim’s algorithm. In IEEE International Conference on Computer
Vision, pages 2536–2543, Dec 2013.

142 BIBLIOGRAPHY

[60] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose es-
timation. In European Conference on Computer Vision, pages 483–499, Cham,
2016. Springer International Publishing.

[61] G. Oliveira, X. Frazão, A. Pimentel, and B. Ribeiro. Automatic graphic logo
detection via fast region-based convolutional networks. In International Joint
Conference on Neural Networks, pages 985–991, July 2016.

[62] N. Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66, Jan 1979.

[63] P. Rantalankila, J. Kannala, and E. Rahtu. Generating object segmentation
proposals using global and local search. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2417–2424, June 2014.

[64] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-
shelf: An astounding baseline for recognition. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 512–519, June 2014.

[65] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 779–788, June 2016.

[66] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149, June 2017.

[67] S. Romberg and R. Lienhart. Bundle min-hashing. International Journal of
Multimedia Information Retrieval, 2(4):243–259, November 2013.

[68] S. Romberg, L. G. Pueyo, R. Lienhart, and R. van Zwol. Scalable logo recog-
nition in real-world images. In ACM International Conference on Multimedia
Retrieval, ICMR ’11, pages 25:1–25:8, 2011.

[69] R. Ronfard, C. Schmid, and B. Triggs. Learning to parse pictures of people. In
European Conference on Computer Vision, ECCV ’02, pages 700–714, 2002.

[70] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention, pages 234–241, Cham, 2015. Springer International Pub-
lishing.

[71] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun. Over-
feat: Integrated recognition, localization and detection using convolutional net-
works. In International Conference on Learning Representations, April 2014.

BIBLIOGRAPHY 143

[72] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. International Conference of Learning Representations,
2015.

[73] H. Su, X. Zhu, and S. Gong. Deep learning logo detection with data expan-
sion by synthesising context. In IEEE Winter Conference on Applications of
Computer Vision, pages 530–539, March 2017.

[74] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9,
June 2015.

[75] O. Tursun and S. Kalkan. Metu dataset: A big dataset for benchmarking
trademark retrieval. In IAPR International Conference on Machine Vision
Applications, pages 514–517, May 2015.

[76] A. Tüzkö, C. Herrmann, D. Manger, and B. Jürgen. Open Set Logo Detection
and Retrieval. In International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications, 2018.

[77] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders.
Selective search for object recognition. International Journal of Computer Vi-
sion, 104(2):154–171, September 2013.

[78] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait
method. Automation and Remote Control, 24, 1963.

[79] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, December 2001.

[80] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. Hoggles: Visualiz-
ing object detection features. In IEEE International Conference on Computer
Vision, pages 1–8, December 2013.

[81] M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object
categories. In IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, pages 101–108 vol.2, June 2000.

[82] A. Winschel, R. Lienhart, and C. Eggert. Diversity in object proposals. CoRR,
abs/1603.04308, 2016.

[83] Z. Zhang, Y. Liu, X. Chen, Y. Zhu, M. Cheng, V. Saligrama, and P. H. S. Torr.
Sequential optimization for efficient high-quality object proposal generation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(5):1209–
1223, May 2018.

144 BIBLIOGRAPHY

[84] Q. Zhu, L. Wang, Y. Wu, and J. Shi. Contour context selection for object
detection: A set-to-set contour matching approach. In European Conference
on Computer Vision, pages 774–787, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[85] C. L. Zitnick and P. Dollar. Edge boxes: Locating object proposals from
edges. In European Conference on Computer Vision, pages 391–405, Cham,
2014. Springer International Publishing.

	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation and Applications
	Challenges
	Related Work
	Contributions
	List of Publications
	Thesis outline

	I Foundations
	Datasets and Network Structures
	The FlickrLogos-47 Dataset
	Motivation
	Dataset Statistics
	Evaluation Protocol

	The VGG16 Network
	Architecture and Nomenclature
	Receptive Field
	Usage as fully-convolutional Network

	II Two-Stage Object Detection
	Proposal Stage
	Criteria for good object proposals
	Selective Search
	Similarity Metrics
	Diversifying object proposals
	Ranking object proposals

	Edge Boxes
	Finding and grouping edges
	Scoring function
	Search strategy and proposal refinement
	Discussion of Selective Search and Edge Boxes

	Heuristic object proposals on FlickrLogos
	Performance Evaluation
	Selective Search Error Modes
	Object Proposals for Text-based Company Logos
	Improving heuristic Object Proposals
	Conclusions

	Trainable Object Proposals
	Region Proposal Networks
	Evaluating RPNs on FlickrLogos
	Analyzing the Anchor Grid
	Improving RPN object proposals
	Conclusion

	Classification Stage
	R-CNN
	The R-CNN detection pipeline
	Implementation Details
	Evaluation

	Fast R-CNN
	Network architecture and Detection pipeline
	Fast R-CNN on FlickrLogos-47
	Receptive field and object size

	Faster R-CNN
	Network architecture
	Results on FlickrLogos-47

	Selective Magnification
	Overview
	Selecting object proposals for magnification
	Efficient Rectangle Packing
	Evaluation

	Conclusion

	III Single-Stage Object Detection
	The Single Shot MultiBox Detector
	Original Implementation
	Improving SSD for Company Logo Detection
	Analyzing SSD
	Addressing the Weaknesses
	Implementation Details
	Evaluation
	Comparison to other approaches in the literature

	Conclusion

	IV Conclusion
	Conclusions
	Conclusions
	Outlook

	FlickrLogos-47: Object Instances
	Edge Grouping
	Sigmoid or Softmax
	Detection Examples
	Bibliography

