
Universität Augsburg

KABCROMUNGSHO0

Ready Simulation for Concurrency:

It’s Logical!

Gerald Lüttgen, Walter Vogler

Report 2007-04 April 2007

Institut für Informatik
D-86135 Augsburg

Copyright c© Gerald Lüttgen, Walter Vogler
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Ready Simulation for Concurrency: It’s Logical!

Gerald Lüttgen∗ Walter Vogler†

April 2007

Abstract

This paper provides new insight into the connection between the trace-based lower part
of van Glabbeek’s linear-time, branching-time spectrum and its simulation-based upper
part. We establish that ready simulation is fully abstract with respect to failures inclusion,
when adding the conjunction operator that was proposed by the authors in [TCS 373(1–
2):19–40] to the standard setting of labelled transition systems with (CSP-style) parallel
composition. More precisely, we actually prove a stronger result by considering a coarser
relation than failures inclusion, namely a preorder that relates processes with respect to
inconsistencies that may arise under conjunctive composition. Ready simulation is also
shown to satisfy standard logic properties and thus commends itself for studying mixed
operational and logic languages.

1 Introduction

Basic research in concurrency theory over the past 25 years has resulted in a wealth of process
algebras [2, 8, 13] and temporal logics [4] for specifying and reasoning about concurrent
processes. However, little research has been conducted on mixing process-algebraic and logic
styles of specification in a single formalism. This is surprising since many popular software-
engineering languages, including UML, permit such mixed specifications.

In [11, 12] we proposed an approach to defining and reasoning about conjunction on
labelled transition systems. Our setting consisted of standard labelled transition systems,
augmented by an inconsistency predicate (cf. Sec. 2). While our conjunction operator is in
essence a synchronous product on visible actions and an interleaving product on internal
actions, the challenge was in dealing with inconsistencies. Inconsistencies may either arise
when conjunctively composing two processes with different initial action sets (i.e., ready sets),
or when a process has no other choice for some action than entering an inconsistent state.
Our framework was equipped with ready-tree semantics, which is a variant of van Glabbeek’s
path-based possible-worlds semantics [6] that was inspired by Veglioni and De Nicola [17]. The
resulting ready-tree preorder turned out to be coarser than ready simulation and finer than
failures inclusion (for divergence-free systems) and ready-trace inclusion, which implies that
ready-tree semantics is sensitive to deadlock. We proved in [12] that the ready-tree preorder is

∗Department of Computer Science, University of York, Heslington, York YO10 5DD, U.K., e-mail:
luettgen@cs.york.ac.uk. Research supported is provided by the EPSRC under grant no. EP/E034853/1.

†Institut für Informatik, Universität Augsburg, D–86135 Augsburg, Germany, e-mail: vogler@informatik.
uni-augsburg.de.

1

fully abstract under conjunction with respect to a naive inconsistency preorder,1 which allows
an inconsistent specification only to be implemented by an inconsistent implementation.

This paper first shows that the ready-tree preorder is inadequate in the presence of con-
currency, as it fails to be compositional for standard parallel composition, such as the parallel
operator of CSP [8]. A different compositionality problem for the parallel composition of
SCCS was already noted in [6]. We then establish our main result (cf. Sec. 3), namely
that ready simulation [3], which adds to ordinary simulation the requirement that related
processes must have identical ready sets, is fully abstract with respect to conjunction and
parallel composition, for labelled transition systems with inconsistencies. Along the way, we
adapt ready simulation to dealing with internal actions and inconsistencies. We also conduct
several sanity checks on our framework: we verify that our conjunction operator indeed for-
malises conjunction regarding ready simulation, and prove further logic properties desired of
ready simulation.

Our full-abstraction result provides an interesting insight into van Glabbeek’s linear-time,
branching-time spectrum [6], namely that conjunction on processes is a tool, via full abstrac-
tion, for relating the trace-based lower part of the spectrum to the simulation-based upper
part. In addition, our results testify to the adequacy of ready simulation as the semantic
basis for mixed process-algebraic and logic languages. Indeed, ready simulation eliminates
the necessity for restrictions on the nesting of process-algebraic and logic constructs, such as
the one employed by Olderog when embedding trace formulas into CSP [14].

2 Logic LTS, conjunction & parallel composition

This section recalls the definitions of Logic Labelled Transition Systems, or Logic LTS for
short, and the conjunction operator on Logic LTS which were introduced in [12]. It also lifts
the parallel composition operator of CSP [8] to Logic LTS.

∧ ba =
F

a b

qp
q'p'

r

∧a

p

=
c

∧
a

b

a

= a

F

(F)

Figure 1: Basic intuition behind conjunctive composition.

Key to our setting is the consideration of inconsistencies which may arise under conjunc-
tive composition. The idea is to mark a composed state between two processes as inconsistent,
if one offers an action that the other cannot perform, i.e., if the processes have different ready
sets [15]. Consider the processes p, q and r of Fig. 1. Process p and q specify that exactly
action a and respectively action b is offered initially, i.e., their ready sets are {a} and re-
spectively {b}. Similarly, process r specifies that a and b are offered initially and thus has
ready set {a, b}. Hence, p∧ q as well as p∧ r are inconsistent (or false) and should be tagged
as such. Formally, our variant of LTS will be augmented by an inconsistency predicate, or
false-predicate, F , so that p ∧ q, p ∧ r ∈ F in our example.

1I.e., the ready-tree preorder is the coarsest precongruence for conjunction which refines the inconsistency
preorder.

2

F

a b

(F)

F

a ba

τ

b

τ

F

Figure 2: Backward propagation of inconsistencies.

Inconsistency is a more tricky property, however, as it can propagate backwards along
transitions. For example, in the conjunction p′ ∧ q′ shown in Fig. 1, both conjuncts require
action a to be performed, whence p′∧ q′ should have an a-transition. But this transition does
lead to an inconsistent state and, in the absence of any alternative a-transition leading to a
consistent state, p′ ∧ q′ must itself be considered as inconsistent. In this spirit, inconsistency
propagates backwards for the left process in Fig. 2, whereas it does not for the middle and
right processes, as they can engage in an a-transition, respectively τ -transition, that leads to
a consistent state. As an aside, it is noted that the right process may be interpreted as a
disjunction between the inconsistent process marked F which has empty behaviour, and the
consistent process offering a b-transition.

2.1 Logic Labelled Transition Systems

Let A be an alphabet with representatives a and b, and let Aτ denote A ∪ {τ} with repre-
sentatives α and β. An LTS is a triple 〈P,−→, F 〉,2 where P is the set of processes (states),
−→⊆ P × Aτ × P is the transition relation, and F ⊆ P is the inconsistency predicate. We
write (i) p

α−→ p′ instead of 〈p, α, p′〉 ∈−→, (ii) p
α−→ instead of ∃p′ ∈ P. p

α−→ p′ and
(iii) p −→ instead of ∃p′ ∈ P, α ∈ Aτ . p

α−→ p′. When p
α−→ p′, we say that process p can

perform an α-step to p′, and we call p′ an α-derivative. A process p that cannot engage in a
τ -transition, i.e., p 6 τ−→, is called stable. The sort AP of the LTS (and its processes) is the set
of actions occurring in −→.

We also require an LTS to satisfy the following τ -purity condition: p
τ−→ implies 6 ∃a ∈

A. p
a−→, for all p ∈ P . Hence, each process represents either an external or internal (disjunc-

tive) choice between its outgoing transitions. This restriction reflects the fact that ready sets
can only be observed at stable states, so that visible transitions leaving instable states are
outside our observation. The LTSs of interest to us need to satisfy two further properties:

Definition 2.1 (Logic LTS [12]). An LTS 〈P,−→, F 〉 is a Logic LTS if:

(LTS1) F ⊆ P such that p ∈ F if ∃α ∈ I(p)∀p′ ∈ P. p
α−→ p′ implies p′ ∈ F ;

(LTS2) p cannot stabilise implies p ∈ F .

The first condition formalises the backward propagation of inconsistencies as discussed above;
here, I(p) stands for the ready set {α ∈ Aτ | p α−→} of process p. The second condition
relates to divergence, i.e., infinite sequences of τ -transitions, where divergence is viewed as
catastrophic if a process cannot stabilise.

Before formalising our notion of stabilisation, we introduce several variants of weak tran-
sition relations which will prove useful in the sequel. We write p

ε=⇒ p′ if p
τ−→∗

p′ and
2The additional, less relevant true predicate of [12] is omitted here for clarity.

3

p
a=⇒ p′ if ∃p. p

a−→ p
ε=⇒ p′. Note that we do not consider τ -transitions preceding a visible

transition as we only need weak a-transitions originating from stable processes. If all pro-
cesses along a computation p

ε=⇒ p′ or p
a=⇒ p′, including p and p′, are consistent, then we

write p
ε=⇒F p′ and p

a=⇒F p′, respectively. If in addition, p′ is stable, we write p
ε=⇒| p′ and

p
a=⇒| p′, respectively. We may now define that a process p can stabilise if ∃p′. p ε=⇒| p′.
We will denote a transition p

α−→ p′ with p, p′ /∈ F by p
α−→F p′. Moreover, whenever we

mention a process p without stating a respective Logic LTS explicitly, we assume implicitly
that such a Logic LTS 〈P,−→, F 〉 is given. Finally, we let ff stand for the only process of the
LTS 〈{ff}, ∅, {ff}〉, which represents the boolean constant false. Intuitively, any given process
is either inconsistent, in which case it is equivalent to ff, or it is equivalent to a process from
which no inconsistent process can be reached; the latter can simply be achieved by omitting
inconsistent processes in LTSs and all transitions leading to them.

2.2 Conjunction & parallel composition

Our conjunction operator is a synchronous product for visible transitions and an asynchronous
product for τ -transitions, analogous to ‖A defined below. However, we need to take care of
inconsistencies. This is because, otherwise, p ∧ q, with p and q defined as in Fig. 1, would be
a consistent process without any transitions.

Definition 2.2 (Conjunction operator [12]). The conjunction of two Logic LTSs〈P,−→P , FP 〉
and 〈Q,−→Q, FQ〉 is the Logic LTS 〈P ∧Q,−→P∧Q, FP∧Q〉:

• P ∧Q =df {p ∧ q | p ∈ P, q ∈ Q}
• −→P∧Q is determined by the following operational rules:

p
τ−→P p′ implies p ∧ q

τ−→P∧Q p′ ∧ q

q
τ−→Q q′ implies p ∧ q

τ−→P∧Q p ∧ q′

p
a−→P p′, q

a−→Q q′ implies p ∧ q
a−→P∧Q p′ ∧ q′

• FP∧Q is the least set such that each p ∧ q ∈ FP∧Q satisfies at least one of the following
conditions:

(C1) p ∈ FP or q ∈ FQ;

(C2) p ∧ q 6 τ−→P∧Q and I(p) 6= I(q);
(C3) ∃α ∈ I(p ∧ q)∀p′ ∧ q′. p ∧ q

α−→P∧Q p′ ∧ q′ implies p′ ∧ q′ ∈ FP∧Q;

(C4) p ∧ q cannot stabilise.

We are left with explaining Conds. (C1)–(C4). Firstly, a conjunction is inconsistent if a
conjunct is inconsistent. Conds. (C2) and (C3) reflect our intuition of inconsistency and
backward propagation. Cond. (C4) is added to enforce (LTS2).

Definition 2.3 (Witness). A witness is a set W ⊆ P ∧ Q such that, for all p ∧ q ∈ W , the
following conditions hold:

4

(W1) p, q /∈ F ;

(W2) p
τ−→ or q

τ−→ or I(p) = I(q);
(W3) ∀α ∈ Aτ . p ∧ q

α−→ implies ∃p′ ∧ q′ ∈ W. p ∧ q
α−→ p′ ∧ q′;

(W4) p ∧ q can stabilise in W , i.e., p ∧ q
τ−→ p1 ∧ q1

τ−→ · · · τ−→ pn ∧ qn 6 τ−→ with all
pi ∧ qi ∈ W .

It is easy to check that the set of consistent processes FP∧Q of P ∧ Q, i.e., the complement
of FP∧Q, is a witness and is in fact the largest one in P ∧ Q. This implies the following
straightforward proposition, giving us a useful tool for proving that the conjunction of two
processes is consistent:

Proposition 2.4. p ∧ q /∈ FP∧Q if and only if ∃witnessW. p ∧ q ∈ W .

For example, the concept of witness may be employed to prove the following properties of
conjunctive composition:

Lemma 2.5. 1. If p ∧ q
τ−→ p′ ∧ q′ /∈ F and p, q /∈ F , then p ∧ q /∈ F .

2. Let p
ε=⇒| p′, q

ε=⇒| q′ and p′ ∧ q′ /∈ F . Then, p ∧ q
ε=⇒| p′ ∧ q′.

Proof. As the proof of Part (1) is not difficult, we focus on proving Part (2). Obviously, we
can combine the given computations to get p ∧ q

ε=⇒ p′ ∧ q′ with p′ ∧ q′ stable. It remains
to be shown that no process along this combined computation is inconsistent. To do so, we
define W ′′ as the set of processes along the combined computation, except the last one, and
prove that W ′′ ∪ F is a witness (with F = FP∧Q). Since F is a witness, it is sufficient to
check (W1)–(W4) for the elements of W ′′. Cond. (W1) holds due to p

ε=⇒| p′ and q
ε=⇒| q′.

To see the validity of (W2) and (W3), observe that all processes in W ′′ are instable and
can perform a τ -transition to reach a process in W ′′ ∪ {p′ ∧ q′} ⊆ W ′′ ∪ F . Finally, the
computation p∧ q

ε=⇒ p′∧ q′ shows that the processes in W ′′ can stabilise in W ′′∪F , whence
(W4) holds.

Finally, we adapt the parallel operator ‖A of CSP [8] to our setting, where A ⊆ A denotes the
synchronisation alphabet. Naturally, the parallel composition of two processes is inconsistent
if either process is inconsistent.

Definition 2.6 (Parallel operator). The parallel composition of two Logic LTS 〈P,−→P , FP 〉,
〈Q,−→Q, FQ〉 for the synchronisation set A ⊆ A, is the Logic LTS 〈P ‖A Q,−→P‖AQ, FP‖AQ〉:

• P ‖A Q =df {p ‖A q | p ∈ P, q ∈ Q}
• −→P‖AQ is determined by the following operational rules:

p
α−→P p′, α /∈ A, (α = τ or q 6 τ−→Q) implies p ‖A q

α−→P‖AQ p′ ‖A q

q
α−→Q q′, α /∈ A, (α = τ or p 6 τ−→P) implies p ‖A q

α−→P‖AQ p ‖A q′

p
a−→P p′, q

a−→Q q′, a ∈ A implies p ‖A q
a−→P‖AQ p′ ‖A q′

5

• p ‖A q ∈ FP‖AQ if p ∈ FP or q ∈ FQ.

Both conjunction and parallel composition are well-defined, i.e., the compositions of two Logic
LTSs satisfy the conditions of Def. 2.1. In the sequel, we leave out indices of relations and
predicates whenever the context is clear.

2.3 Ready-tree semantics

Our previous work [12] focused only on studying conjunction on Logic LTSs. It characterised
the largest precongruence contained in the inconsistency preorder, which states that a consis-
tent implementation p does never refine an inconsistent specification q.3

Definition 2.7 (Inconsistency preorder [12]). The inconsistency preorder vF on processes
is defined by p vF q if p /∈ F implies q /∈ F .

This definition directly encodes the standard verification question whether an implementation
satisfies its specification. When reading ‘satisfies’ logically as ‘implies’, it is clear that an
inconsistent (i.e., ‘false’) specification can only be met by an inconsistent implementation.

Obviously, the inconsistency preorder is not compositional with respect to conjunction.
Our characterisation of the fully-abstract preorder contained in vF and presented in [12] is
found on a variant of the path-based possible-worlds semantics of [6, 17], to which we refer as
ready-tree semantics. This semantics employs the notion of observation tree. An observation
tree is a Logic LTS 〈V,−→, ∅〉 whose processes and transitions form a deterministic tree and
whose processes (vertices) are stable; we refer to the tree’s root as v0. We may now formalise
our desired observations of a process p, called ready trees:

Definition 2.8 (Ready tree [12]). An observation tree v0 is a ready tree of p, if there is a
labelling h : V −→ P satisfying the following conditions:

(RT1) ∀v ∈ V. h(v) stable and h(v) /∈ F ;

(RT2) p
ε=⇒|h(v0);

(RT3) ∀v ∈ V, a ∈ A. v
a−→ v′ implies h(v) a=⇒|h(v′);

(RT4) ∀v ∈ V. I(v) = I(h(v)).

Intuitively, nodes v in a ready tree represent stable states h(v) of p (cf. the first part of
Cond. (RT1)) and transitions represent stable, consistent computations (cf. Cond. (RT3)).
Since such computations do not contain inconsistent states, no represented state must be
in F (cf. the second part of Cond. (RT1)). Since p might not be stable, the root v0 of a
ready tree represents a stable process reachable from p via some internal computation (cf.
Cond. (RT2)). Moreover, v must mimic the ready set of h(v) (cf. Cond. (RT4)). In the
following, we write RT(p) for the set of all ready trees of p; note that ff has no ready tree.

Definition 2.9 (Ready-tree preorder [12]). The ready-tree preorder ⊆RT on processes is
defined as ready-tree inclusion, i.e., p ⊆RT q if RT(p) ⊆ RT(q).

Theorem 2.10 (Full-abstraction wrt. conjunction [12]). ⊆RT is the largest precongruence
in vF , when considering conjunction as the only operator.

6

is not a ready tree of

{b}
c

b b

d
r

{b}
c

b b

d
r

{b}
a

a

p

x x

bb

a

a

dc

dc

c d

bb

aa

r

c

dca

a d

b b

t

a

b

x

b

x

{b}
c

q

dc

b b b b

a d

x x

r

a a

a a

bb

x

p

q

a

b b

x is a ready tree of

Figure 3: Ready-tree semantics is not compositional for parallel composition.

Unfortunately, ⊆RT is not a precongruence for parallel composition ‖A, which makes the
preorder unsuitable for reasoning about concurrency. To see this, consider the Logic LTSs p,
q and r of Fig. 3. Here, p and q have the same ready trees, but t is a ready tree of q ‖{b} r
but not of p ‖{b} r.

3 Full abstraction via ready simulation

We now establish our full-abstraction result of ready simulation wrt. the inconsistency pre-
order, when considering both conjunction and parallel composition.

Definition 3.1 (Ready simulation on Logic LTS). Let 〈P,−→P , FP 〉 and 〈Q,−→Q, FQ〉 be
two Logic LTS. A relation R ⊆ P ×Q is a stable ready simulation relation, if the following
conditions hold, for any 〈p, q〉 ∈ R and a ∈ A:

(RS1) p, q stable;

(RS2) p /∈ FP implies q /∈ FQ;

(RS3) p
a=⇒| p′ implies ∃q′. q a=⇒| q′ and 〈p′, q′〉 ∈ R;

(RS4) p /∈ F implies I(p) = I(q).
We say that p is stable ready simulated by q, in symbols p @∼RS

q, if there exists a stable ready
simulation relation R with 〈p, q〉 ∈ R. Further, p is ready simulated by q, written p vRS q, if
∀p′. p ε=⇒| p′ implies ∃q′. q

ε=⇒| q′ and p′ @∼RS
q′. We write ≈RS and =RS for the kernel of @∼RS

and vRS, respectively.

It is easy to see that @∼RS
and vRS are preorders, and that p vRS q trivially holds if p ∈ F .

Moreover, ready simulation vRS is contained in the ready-tree preorder ⊆RT, as essentially
stated in [6], and conjunction and parallel composition are associative and commutative with
respect to =RS. Note that there are several ways how to define ready simulation [3, 6]

3The reader familiar with [12] should note that we now write the implementation to the left and the
specification to the right of the preorder symbol, in order to be consistent with the notational conventions of
simulation-based preorders.

7

for settings with internal actions [5]. Our variant is an adaptation of Glabbeek’s stability
respecting ready simulation may preorder to Logic LTS. Observe that replacing the premise
p

a=⇒| p′ of (RS3) by p
a−→F p′ results in a finer preorder, unlike for some other simulation-

based behavioural relations [13].

Theorem 3.2 (Compositionality). 1. Let p @∼RS
q, r be stable and A ⊆ A. Then, (a) p ‖A

r @∼RS
q ‖A r as well as (b) p ∧ r @∼RS

q ∧ r.

2. Let p vRS q, r be an arbitrary process and A ⊆ A. Then, (a) p ‖A r vRS q ‖A r and
(b) p ∧ r vRS q ∧ r.

Proving this theorem requires us to reason about the consistency of conjunctively composed
processes. To do so, it is convenient to employ the proof tool of witness. The following witness
turns out to be sufficient for our purpose:

Lemma 3.3. The set W =df W1 ∪W2 is a witness, where
W1 =df {q ∧ r |∃p. p @∼RS

q and p ∧ r /∈ F};
W2 =df {q ∧ r |∃p, q, r, p′, r′, q′, a. p @∼RS

q, p ∧ r /∈ F, p ∧ r
a=⇒| p′ ∧ r′, p′ @∼RS

q′,

and q
a=⇒F q

ε2=⇒| q′ and r
a=⇒F r

ε1=⇒| r′ with {ε1, ε2} = {ε, τ} } .

Proof. We need to check Conds. (W1)–(W4) of witness.

(W1) If q ∧ r ∈ W1, then p ∧ r /∈ F implies p /∈ F and r /∈ F . Moreover, q /∈ F by p @∼RS
q

and (RS2).

If q ∧ r ∈ W2, then q, r /∈ F by the definition of a=⇒F.

(W2) Let q ∧ r ∈ W1, q 6 τ−→ and r 6 τ−→. Since p /∈ F (see above) and p @∼RS
q, we have

I(p) = I(q) by (RS4). In addition, p ∧ r /∈ F , r stable and p stable by Def. 3.1, and
thus I(p) = I(r) by (C2). Hence, I(q) = I(r).
If, q ∧ r ∈ W2, then q

τ−→ or r
τ−→ and we are done.

(W3) If q ∧ r ∈ W1 and q ∧ r
α−→, then we consider the following cases:

• α = τ : Since q stable by p @∼RS
q, we have r

τ−→. Further, because of p ∧ r /∈ F

and p stable, we conclude p ∧ r
τ−→ p ∧ r′ /∈ F for some r′ /∈ F by (LTS1). Hence,

q ∧ r
τ−→ q ∧ r′ ∈ W1 due to p.

• α = a: Hence q
a−→ and, with p /∈ F and (RS4), we get p

a−→. Since r
a−→ we have

p ∧ r
a−→. Because of p ∧ r /∈ F we obtain p ∧ r

a−→F p ∧ r for some p ∧ r /∈ F
by (LTS1), and the latter process can stabilise by (LTS2), i.e., ∃p′, r′. p ∧ r

a−→F

p ∧ r
ε=⇒| p′ ∧ r′. This implies p

a=⇒| p′, q
a=⇒| q′ and p′ @∼RS

q′ for some q′ by (RS3).

We detail transition q
a=⇒| q′ by naming the first intermediate state q, i.e., q

a−→F

q
ε=⇒| q′. Similarly, r

a−→F r
ε=⇒| r′. If q

τ=⇒| q′ or r
τ=⇒| r′, then q∧r

a−→ q∧r ∈ W2.
Otherwise, q = q′, r = r′ and q ∧ r

a−→ q′ ∧ r′ ∈ W1 due to p′; note p′ ∧ r′ /∈ F by
the definition of a=⇒| .

If q∧r ∈ W2, then we only have to consider q∧r
τ−→, since q

τ−→ or r
τ−→. We only treat

the first of these cases since the second is analogous. In this first case, q
τ−→F q

ε=⇒| q′
and q∧r

τ−→ q∧r for some suitable q. If q
τ=⇒| q′ or r

τ=⇒| r′, then q∧r ∈ W2; otherwise,
q = q′, r = r′ and q′ ∧ r′ ∈ W1 due to p′; again note p′ ∧ r′ /∈ F due to the definition
of a=⇒| .

8

(W4) Let q ∧ r ∈ W1 due to p. Since p is stable, p ∧ r /∈ F can stabilise via p ∧ r
ε=⇒| p ∧ r′

due to r
ε=⇒| r′. Further, because q is stable, we get q ∧ r

ε=⇒ q ∧ r′ with q ∧ r′ stable.
Obviously, all processes along this computation are in W1; recall p ∧ r

ε=⇒| p ∧ r′.

Let q ∧ r ∈ W2. From the assumptions, we derive a computation q ∧ r
τ=⇒ q′ ∧ r′ with

q′∧r′ stable. Consider a process q∧r on this computation so that q∧r
τ=⇒ q∧r

ε=⇒ q′∧r′.
If q

τ=⇒ q′ or r
τ=⇒ r′, then q ∧ r ∈ W2; otherwise q = q′, r = r′ and q′ ∧ r′ ∈ W1 due

to p′.

Using this lemma, we can now prove Thm. 3.2:

Proof. (Thm. 3.2) The proof of Parts (1a) and Part (2a) is straightforward. In particular,
Part (1a) proceeds in the usual fashion, i.e., by verifying that

R‖ =df {〈p ‖A r, q ‖A r〉 | r stable and p @∼RS
q}

is a stable ready simulation relation.
The proof of Part (1b) is quite challenging since we need to take care of inconsistencies

that may arise when composing processes conjunctively. In analogy to the above we prove
that

R∧ =df {〈p ∧ r, q ∧ r〉 | r stable and p @∼RS
q}

is a stable ready simulation relation. Let 〈p ∧ r, q ∧ r〉 ∈ R∧, i.e., r stable and p @∼RS
q.

(RS1) This property is straightforward since the conjunction of two processes is stable ex-
actly when both processes are stable.

(RS2) This property follows immediately from the fact that q ∧ r is contained in the wit-
ness W of Lemma 3.3.

(RS3) Assume p ∧ r
a=⇒| p′ ∧ r′. Hence, p

a=⇒| p′ and r
a−→F r′′ ε=⇒| r′, and by (RS3) also

q
a−→F q′′ ε=⇒| q′ with p′ @∼RS

q′. We combine the latter two computations to obtain the

computation q ∧ r
a−→ q′′ ∧ r′′ ε=⇒ q′′ ∧ r′ ε=⇒ q′ ∧ r′, which performs the possible

τ -transitions of r′′ first. Further note that q′ ∧ r′ is stable.

Let W3 be the set of processes along the computation q′′ ∧ r′′ ε=⇒ q′′ ∧ r′, excluding the
last one. We consider the witness W of Lemma 3.3 and show that W ∪W3 is a witness,
too. Before doing so, however, we prove that all processes along q′′ ∧ r′ ε=⇒ q′ ∧ r′ are
in W .

Consider q∧r′ with q′′∧r′ ε=⇒ q∧r′ τ=⇒ q′∧r′. We recall p @∼RS
q, as well as p∧r

a=⇒| p′∧r′

and thus p ∧ r /∈ F ; furthermore, q
a=⇒F q

τ=⇒| q′, r
a=⇒F r′ ε=⇒| r′ and p′ @∼RS

q′. Thus,

q ∧ r′ ∈ W2. For q′ ∧ r′ we have p′ @∼RS
q′ and p′ ∧ r′ /∈ F due to p∧ r

a=⇒| p′ ∧ r′. Hence,
q′ ∧ r′ ∈ W1.

We now return to proving that W ∪W3 is a witness, for which we have to check (W1)–
(W4) for the processes in W3.

(W1) We have q′′ /∈ F and r′′ ε=⇒| r′, as required.

(W2) If q′′ ∧ r ∈ W3, then r
τ−→.

9

(W3) If q′′∧r ∈ W3 and q′′∧r
α−→, then α = τ and q′′∧r

τ−→ q′′∧r, where q′′∧r ∈ W3

or q′′ ∧ r = q′′ ∧ r′ ∈ W according to the above.

(W4) The computation q′′ ∧ r′′ ε=⇒ q′ ∧ r′ shows that all processes in W3 can stabilise
in W ∪W3; see above.

Thus, no process along q′′ ∧ r′′ ε=⇒ q′ ∧ r′ is in F by Prop. 2.4. Since p ∧ r /∈ F due
to p ∧ r

a=⇒| p′ ∧ r′, we have q ∧ r ∈ W1, i.e., q ∧ r /∈ F by Prop. 2.4. We conclude
q ∧ r

a−→F q′′ ∧ r′′ ε=⇒F q′ ∧ r′ and q′ ∧ r′ stable, whence q ∧ r
a=⇒| q′ ∧ r′.

(RS4) Assume p ∧ r /∈ F . Hence, we have p /∈ F and I(p) = I(r). Further, I(p) = I(q) by
(RS4) for p @∼RS

q, and thus I(q) = I(r). Hence, I(p ∧ r) = I(r) = I(q ∧ r), as desired.

To prove Part (2b), let p ∧ r
ε=⇒| p′ ∧ r′. Hence, p

ε=⇒| p′ and r
ε=⇒| r′. Due to p vRS

q, the former implies the existence of some q′ such that q
ε=⇒| q′ and p′ @∼RS

q′. Therefore,
p′∧r′ @∼RS

q′∧r′ by Part (1b). Further we apply Lemma 3.3 and Prop. 2.4 to obtain q′∧r′ /∈ F ,

as q′ ∧ r′ ∈ W1 due to p′. Thus, Lemma 2.5(2) proves q ∧ r
ε=⇒| q′ ∧ r′.

3.1 Full-abstraction result

To prove our main result we encode the full behaviour of a stable process p into a single ready
tree. The idea is to unfold p to a tree and to eliminate any nondeterminism by placing fresh
actions into the tree.

Definition 3.4 (Characteristic ready tree & context). Let p be a process with Logic LTS
〈P,−→, F 〉 having sort AP , let q be a process with sort AQ, and let p

ε=⇒| p0.

1. The characteristic ready tree P0 of p with respect to p0 and q is a Logic LTS whose states
are paths π ∈ P × (AP × P)∗ of p originating in p0, as well as such paths concatenated
with selection sets D which are subsets of AP × P . Formally, the state set P0 and
transition relation −→P0 are inductively defined as follows, where last(π) denotes the
last process on path π and the xD /∈ AP ∪AQ are fresh actions with respect to p and q:

• p0 ∈ P0;

• π
xD−→P0 πD and πD ∈ P0, if π ∈ P0, ∀〈a, p〉 ∈ D. last(π) a=⇒| p in P and

∀a ∈ I(last(π))∃1〈a, p〉 ∈ D;

• πD
a−→P0 πap and πap ∈ P0, if πD ∈ P0 and 〈a, p〉 ∈ D.

We will write 〈p0〉 instead of p0 when we wish to highlight that not the process p0 is
meant, but the path consisting only of p0.

2. The characteristic context K of p with respect to p0 and q is defined as the Logic LTS P0

augmented with the fresh process 0 and transitions

• πD
a−→K 0, if πD ∈ P0, a ∈ AQ and 6 ∃p.〈a, p〉 ∈ D.

Proposition 3.5. Let P0 be the characteristic ready tree of a process p wrt. some p0 and q,
and let K be the respective characteristic context of p. Then, P0 is a ready tree of p ‖A 〈p0〉,
where A =df AP ∪ AQ and 〈p0〉 is the root of K.

10

Proof. P0 is an observation tree by construction, since it is a deterministic tree and since
all its vertices are stable processes. We define a mapping h0 from the vertices in P0 to
processes in P ‖A K by h0(π) =df last(π) ‖A π and h0(πD) =df last(π) ‖A πD, and verify
Conds. (RT1)–(RT4) of Def. 2.8:

(RT1) This is trivial since last(π), π and πD are all stable and not in F .

(RT2) We have p ‖A 〈p0〉 ε=⇒| p0 ‖A 〈p0〉 by construction.

(RT3) If π
xD−→P0 πD, then π

xD−→K πD by construction of K. Since xD is a “fresh”
action, h0(π) = last(π) ‖A π

xD−→F last(π) ‖A πD = h0(πD). If πD
a−→P0 πap,

then last(π) a=⇒| p and πD
a−→K πap by the construction of K. As a ∈ A, we have

h0(πD) = last(π) ‖A πD
a=⇒| p ‖A πap = h0(πap).

(RT4) Observe that the ready set of state πD in K is the initial action set I(last(π)) of the
last process of path π in P plus all actions in AQ, whereas the same state in P0 has
only ready set I(last(π)). By the operational rules for parallel composition we obtain:

• IP‖AK(last(π) ‖A π) = (IP (last(π))∩IK(π)∩A)∪(IP (last(π))\A)∪(IK(π)\A) =
∅ ∪ ∅ ∪ IK(π) = IP0(π).

• IP‖AK(last(π) ‖A πD) = (IP (last(π))∩IK(πD)∩A)∪(IP (last(π))\A)∪(IK(πD)\
A) = (IP (last(π)) ∩ (IP (last(π)) ∪ AQ) ∩ A) ∪ ∅ ∪ ((IP (last(π)) ∪ AQ) \ A) =
IP (last(π)) = IP0(πD); note that the last equality is due to the construction of P0

from P .

Observe that P0 is not a ready tree of p itself due to the fresh actions inserted in P0; these
actions are added to p via the parallel context K. Together, characteristic ready trees and
Prop. 3.5 are the key for proving our main result:

Theorem 3.6 (Full abstraction). The largest precongruence contained in vF , with respect to
parallel composition and conjunction, equals vRS.

Proof. Because of Thm. 3.2 and Thm. 2.10 [12], as well as the fact that ready simulation
is contained in the ready-tree preorder ⊆RT and thus in vF [12], it is sufficient to prove
that vRS subsumes the largest precongruence ⊆+

RT contained in ⊆RT. Consider processes p
and q with Logic LTSs P and Q and sorts AP and AQ. We let APQ stand for AP ∪AQ, and
abbreviate ‖APQ

by ‖.
Now assume p ⊆+

RT q, and consider some p0 such that p
ε=⇒| p0. Because of p ⊆+

RT q and
Prop. 3.5, we have P0 ∈ RT(q ‖ 〈p0〉) due to some mapping h; in particular, q /∈ F . Here,
P0 is the characteristic ready tree of p with respect to p0 and q. To prove our claim, it is
sufficient to establish that

R0 =df {〈p′, q′〉 | ∃π. last(π) = p′ and h(π) = q′ ‖ π}

is a stable ready simulation relation. Thus, let 〈p′, q′〉 ∈ R0 due to π.

(RS1) h(π) is stable, whence q′ is. Moreover, last(π) is stable by construction.

(RS2) h(π) /∈ F implies q′ /∈ F .

11

(RS3) Let p′ a=⇒| p′′ and π
xD−→ πD with 〈a, p′′〉 ∈ D for some p′′. Then, πD

a−→ πap′′.
Moreover, h(πD) = q′ ‖ πD, whence q′ ‖ πD

a=⇒|h(πap′′) = q′′ ‖ πap′′ for some q′′

by (RT3), as well as q′ a=⇒| q′′ and 〈p′′, q′′〉 ∈ R0 due to πap′′.

(RS4) We have p′ /∈ F by construction. Choose some D with π
xD−→ πD, whence h(πD) =

q′‖πD. Now, I(p′) = I(πD) in P0 by construction of P0. The latter equals I(q′‖πD)
by (RT4), which in turn equals the set I(q′) since AQ ⊆ I(πD) ⊆ APQ, for I(πD) in
the characteristic context. Hence, I(p′) = I(q′).

Thus, R0 is a stable ready simulation relation. Finally observe h(p0) = q0 ‖ 〈p0〉 for some q0

such that q‖〈p0〉 ε=⇒| q0‖〈p0〉 (by (RT2)); therefore, q
ε=⇒| q0 and 〈p0, q0〉 ∈ R0 due to 〈p0〉.

Summarising, we have shown that, for each p0 with p
ε=⇒| p0, there exists some q0 satisfying

q
ε=⇒| q0 and p0

@∼RS
q0. Hence, p vRS q.

We wish to point out that there are several ways how to guarantee the existence of the fresh
actions required in the construction of characteristic ready trees. One way is to assume an
uncountable alphabet A and to restrict ourselves to those processes that are finitely branching
with respect to a=⇒| , for all a ∈ A, and have a countable sort. Then, context K and the
characteristic ready trees are also finitely branching and have countable sorts. Alternatively,
we may assume an infinite alphabet A and restrict ourselves to processes that have finite
sort and are bounded branching, for some bound c ∈ N. This is sufficient since a careful
inspection of the full-abstraction proof reveals that actually only c fresh actions are needed
for constructing context K and the required characteristic ready trees. Moreover, K and the
characteristic ready trees have then only c-bounded branching as well as finite sorts.

3.2 Logic properties of ready simulation

We conclude this section by highlighting some logic properties of ready simulation.

Theorem 3.7 (∧ is And). (1) r @∼RS
p∧ q if and only if r @∼RS

p and r @∼RS
q; (2) r vRS p∧ q

if and only if r vRS p and r vRS q.

As for the compositionality proof of ready simulation wrt. conjunction, the proof of this
theorem uses the concept of witness for reasoning about inconsistencies:

Lemma 3.8. The set W ′ =df W ′
1 ∪W ′

2 is a witness, where
W ′

1 =df {p ∧ q |∃r. r @∼RS
p, r @∼RS

q and r /∈ F}
W ′

2 =df {p ∧ q |∃r, p, q, r′, p′, q′, a. r @∼RS
p, r @∼RS

q, r
a=⇒| r′, p

a=⇒F p
ε1=⇒| p′ and

q
a=⇒F q

ε2=⇒| q′ with {ε1, ε2} = {ε, τ}, r′ @∼RS
p′ and r′ @∼RS

q′} .

Proof. We check the four conditions of witness for W ′:

(W1) If p ∧ q ∈ W ′
1 and r /∈ F , then p, q /∈ F by (RS2). If p ∧ q ∈ W ′

2, then we are done by
the definition of a=⇒F.

(W2) If p ∧ q ∈ W ′
1 and r /∈ F , then I(p) = I(r) = I(q). If p ∧ q ∈ W ′

2, we are done since
p

τ−→ or q
τ−→.

12

(W3) If p∧q ∈ W ′
1, then α 6= τ , and p∧q

α−→ implies r
α−→ by (W2) above. Since r /∈ F , we

have r
α=⇒| r′ for some r′ /∈ F . Hence, ∃p′, q′. p α−→F p

ε=⇒ p′, q
α−→F q

ε=⇒ q′, r′ @∼RS
p′

and r′ @∼RS
q′. Thus, p ∧ q

α−→ p ∧ q. If p 6= p′ or q 6= q′, then p ∧ q ∈ W ′
2. If p = p′ and

q = q′, then p ∧ q ∈ W ′
1 due to r′.

If p ∧ q ∈ W ′
2, then α = τ since p

τ−→ or q
τ−→. Consider, w.l.o.g., p ∧ q

τ−→ p ∧ q for
some p. If p 6= p′ or q 6= q′, we have p ∧ q ∈ W ′

2. Otherwise, p ∧ q = p′ ∧ q′ ∈ W ′
1 due

to r′.

(W4) If p∧ q ∈ W ′
1, then p∧ q is stable since both p and q are stable according to (RS1). If

p ∧ q ∈ W ′
2, then p ∧ q can also stabilise in W ′, cf. (W3).

We are now in a position to prove Thm. 3.7:

Proof. (Thm. 3.7) The proof of Parts (1a) and Part (2a) is straightforward. In particular,
Part (1a) proceeds in the usual fashion, i.e., by verifying that

R‖ =df {〈p ‖A r, q ‖A r〉 | r stable and p @∼RS
q}

is a stable ready simulation relation.
The proof of Part (1b) is quite challenging since we need to take care of inconsistencies

that may arise when composing processes conjunctively. In analogy to the above we prove
that

R∧ =df {〈p ∧ r, q ∧ r〉 | r stable and p @∼RS
q}

is a stable ready simulation relation. Let 〈p ∧ r, q ∧ r〉 ∈ R∧, i.e., r stable and p @∼RS
q.

(RS1) This property is straightforward since the conjunction of two processes is stable ex-
actly when both processes are stable.

(RS2) This property follows immediately from the fact that q ∧ r is contained in the wit-
ness W of Lemma 3.3.

(RS3) Assume p ∧ r
a=⇒| p′ ∧ r′. Hence, p

a=⇒| p′ and r
a−→F r′′ ε=⇒| r′, and by (RS3) also

q
a−→F q′′ ε=⇒| q′ with p′ @∼RS

q′. We combine the latter two computations to obtain the

computation q ∧ r
a−→ q′′ ∧ r′′ ε=⇒ q′′ ∧ r′ ε=⇒ q′ ∧ r′, which performs the possible

τ -transitions of r′′ first. Further note that q′ ∧ r′ is stable.

Let W3 be the set of processes along the computation q′′ ∧ r′′ ε=⇒ q′′ ∧ r′, excluding the
last one. We consider the witness W of Lemma 3.3 and show that W ∪W3 is a witness,
too. Before doing so, however, we prove that all processes along q′′ ∧ r′ ε=⇒ q′ ∧ r′ are
in W .

Consider q∧r′ with q′′∧r′ ε=⇒ q∧r′ τ=⇒ q′∧r′. We recall p @∼RS
q, as well as p∧r

a=⇒| p′∧r′

and thus p ∧ r /∈ F ; furthermore, q
a=⇒F q

τ=⇒| q′, r
a=⇒F r′ ε=⇒| r′ and p′ @∼RS

q′. Thus,

q ∧ r′ ∈ W2. For q′ ∧ r′ we have p′ @∼RS
q′ and p′ ∧ r′ /∈ F due to p∧ r

a=⇒| p′ ∧ r′. Hence,
q′ ∧ r′ ∈ W1.

We now return to proving that W ∪W3 is a witness, for which we have to check (W1)–
(W4) for the processes in W3.

13

(W1) We have q′′ /∈ F and r′′ ε=⇒| r′, as required.

(W2) If q′′ ∧ r ∈ W3, then r
τ−→.

(W3) If q′′∧r ∈ W3 and q′′∧r
α−→, then α = τ and q′′∧r

τ−→ q′′∧r, where q′′∧r ∈ W3

or q′′ ∧ r = q′′ ∧ r′ ∈ W according to the above.

(W4) The computation q′′ ∧ r′′ ε=⇒ q′ ∧ r′ shows that all processes in W3 can stabilise
in W ∪W3; see above.

Thus, no process along q′′ ∧ r′′ ε=⇒ q′ ∧ r′ is in F by Prop. 2.4. Since p ∧ r /∈ F due
to p ∧ r

a=⇒| p′ ∧ r′, we have q ∧ r ∈ W1, i.e., q ∧ r /∈ F by Prop. 2.4. We conclude
q ∧ r

a−→F q′′ ∧ r′′ ε=⇒F q′ ∧ r′ and q′ ∧ r′ stable, whence q ∧ r
a=⇒| q′ ∧ r′.

(RS4) Assume p ∧ r /∈ F . Hence, we have p /∈ F and I(p) = I(r). Further, I(p) = I(q) by
(RS4) for p @∼RS

q, and thus I(q) = I(r). Hence, I(p ∧ r) = I(r) = I(q ∧ r), as desired.

To prove Part (2b), let p ∧ r
ε=⇒| p′ ∧ r′. Hence, p

ε=⇒| p′ and r
ε=⇒| r′. Due to p vRS

q, the former implies the existence of some q′ such that q
ε=⇒| q′ and p′ @∼RS

q′. Therefore,
p′∧r′ @∼RS

q′∧r′ by Part (1b). Further we apply Lemma 3.3 and Prop. 2.4 to obtain q′∧r′ /∈ F ,

as q′ ∧ r′ ∈ W1 due to p′. Thus, Lemma 2.5(2) proves q ∧ r
ε=⇒| q′ ∧ r′.

Conjunction also satisfies further standard logic properties:

Proposition 3.9 (Logic properties of ready simulation).

1. p ∧ ff =RS ff, and p ∧ ff ≈RS ff if p stable;

2. p ∧ q vRS p, and p ∧ q @∼RS
p if p, q stable;

3. p ∧ p =RS p;

4. p ∧ q =RS p if and only if p vRS q.

Proof. 1. The second part for stable p follows from the fact that {〈ff, p ∧ ff〉 | p stable } and
{〈p ∧ ff,ff〉 | p stable } are stable ready simulation relations. The first part holds trivially
since neither p ∧ ff ε=⇒| nor ff ε=⇒| .

2. For proving the second part for stable p and q, it is sufficient to verify that R =df

{〈p ∧ q, p〉 | p, q stable } is a stable ready simulation relation:

(RS1) Trivial.

(RS2) p ∈ F implies p ∧ q ∈ F .

(RS3) p ∧ q
a=⇒| p′ ∧ q′ implies p

a=⇒| p′ and 〈p′ ∧ q′, p′〉 ∈ R.

(RS4) p ∧ q /∈ F and p ∧ q implies I(p ∧ q) = I(p).

For proving the first part for arbitrary p, q, let p ∧ q
ε=⇒| p′ ∧ q′. Then, p

ε=⇒| p′ and, by
the above, p′ ∧ q′ @∼RS

p′.

3. The inclusion “vRS” is a consequence of Part (2). The inclusion “wRS” follows by
Thm. 3.7(2).

14

4. Part “vRS” of the “if” direction is the statement of Part (2). Part “wRS” of the “if”
direction is a consequence of the compositionality and idempotence of ∧ (Thm. 3.2(2)
and Part (3), respectively). The “only if” direction follows directly from Part (2) and
commutativity.

In our previous work we also considered a disjunction operator ∨ on Logic LTSs. This operator
was defined as internal choice, i.e., p∨ q can perform an internal τ -transition to both p and q,
where p ∨ q is considered to be inconsistent if both p and q are. Due to space constraints we
do not include disjunction here, but simply note that ready simulation is compositional for
disjunction and that the dual properties to the ones of Prop. 3.9 hold. The validity of these
statements is not difficult to check. Moreover, the distributivity laws hold as well:

Proposition 3.10 (Distributivity).

1. p ∧ (q ∨ r) =RS (p ∧ q) ∨ (p ∧ r)

2. p ∨ (q ∧ r) =RS (p ∨ q) ∧ (p ∨ r)

Proof. (1, vRS) Let p ∧ (q ∨ r) ε=⇒| p′ ∧ s; w.l.o.g., p
ε=⇒| p′ and q

ε=⇒| s. Since p′ ∧ s /∈ F ,
Lemma 2.5(2) implies (p ∧ q) ∨ (p ∧ r) τ−→ p ∧ q

ε=⇒| p′ ∧ s. Hence, (p ∧ q) ∨ (p ∧ r) /∈ F
since p ∧ q /∈ F . We may therefore conclude (p ∧ q) ∨ (p ∧ r) ε=⇒| p′ ∧ s and, trivially,
p′ ∧ s @∼RS

p′ ∧ s.

(1, wRS) Let (p∧ q)∨ (p∧ r) ε=⇒| s; w.l.o.g., p∧ q
ε=⇒| s. Then, p∧ (q ∨ r) τ−→ p∧ q

ε=⇒| s, as
well as p ∧ (q ∨ r) /∈ F by Lemma 2.5(1). We may thus conclude p ∧ (q ∨ r) ε=⇒| s and,
trivially, s @∼RS

s.

(2, vRS) If p ∨ (q ∧ r) ε=⇒| p′ due to p
ε=⇒| p′, then (p ∨ q) ∧ (p ∨ r) τ−→ p ∧ (p ∨ r) τ−→

p∧p
ε=⇒| p′∧p′. Now, we obtain p′ @∼RS

p′∧p′ by Thm. 3.7(1), as well as (p∨q)∧(p∨r) /∈ F
and p ∧ (p ∨ r) /∈ F by Lemma 2.5(1) due to p /∈ F .

If p ∨ (q ∧ r) ε=⇒| q′ ∧ r′ due to q ∧ r
ε=⇒| q′ ∧ r′, then (p ∨ q) ∧ (p ∨ r) τ−→ q ∧ (p ∨ r) τ−→

q ∧ r
ε=⇒| q′ ∧ r′. Since q ∧ r /∈ F , we have q, r /∈ F and p∨ q, p∨ r /∈ F , and we are done

with Lemma 2.5(1) since then (p∨ q)∧ (p∨ r) ε=⇒| q′∧ r′ and, trivially, q′∧ r′ @∼RS
q′∧ r′.

(2, wRS) Let (p∨ q)∧ (p∨ r) ε=⇒| p′ ∧ p′′ for some p′, p′′ due to p
ε=⇒| p′ and p

ε=⇒| p′′. Hence,
p ∨ (q ∧ r) τ−→ p

ε=⇒| p′, as well as p ∨ (q ∧ r) /∈ F . Finally, observe p′ ∧ p′′ @∼RS
p′ by

Prop. 3.9(2).

The cases (p ∨ q) ∧ (p ∨ r) ε=⇒| q′ ∧ p′, for some q
ε=⇒| q′ and p

ε=⇒| p′, and (p ∨ q) ∧ (p ∨
r) ε=⇒| p′ ∧ r′, for some p

ε=⇒| p′ and r
ε=⇒| r′, are analogous.

Finally, let (p∨ q)∧ (p∨ r) ε=⇒| q′ ∧ r′ for some q′, r′ such that q
ε=⇒| q′ and r

ε=⇒| r′. Due
to q′ ∧ r′ /∈ F we can apply Lemma 2.5(2) to obtain p ∨ (q ∧ r) τ−→ q ∧ r

ε=⇒| q′ ∧ r′.
Since q ∧ r /∈ F , we have p ∨ (q ∧ r) /∈ F , as required. Hence, p ∨ (q ∧ r) ε=⇒| q′ ∧ r′ and,
trivially, q′ ∧ r′ @∼RS

q′ ∧ r′.

Hence, ready simulation fulfils all of the desired standard logic properties.

15

4 Related work

This section briefly discusses related work; a full discussion can be found in [12]. Firstly, our
ready-tree semantics is in essence the path-based possible-worlds semantics of van Glabbeek[6]
which goes back to Veglioni and De Nicola [17], and our ready simulation was first suggested
by Bloom et al. [3]. However, in contrast to the standard notions of these semantics, our
setting deals with internal actions as well as inconsistencies.

Traditional research has often avoided explicitly mixing operational and logic styles of
specification by translating one style into the other. Operational content may be translated
into logic formulas, as is implicitly done in [7, 10], where logic implication serves as refinement
relation [1]. Dually, logic content may be translated into operational content. This is the case
in automata-theoretic work, such as in Kurshan’s work on ω-automata [9], which includes
synchronous and asynchronous composition operators and uses maximal trace inclusion as
refinement relation. However, both logic implication and trace inclusion are insensitive to
deadlock and are thus inadequate in the presence of concurrency.

A seminal approach to compositional refinement in a mixed setting was proposed by
Olderog in [14], where process-algebraic constructs are combined with trace formulas ex-
pressed in a predicate logic and where failure semantics forms the semantic basis of refine-
ment. In this approach, trace formulas can serve as processes, but not vice versa. Thus, and
in contrast to our present work, freely mixing operational and logic specification styles is not
supported and, in particular, conjunction cannot be applied to processes.

Finally, it should be noted that the term consistency as used here is different from the one
in [16], where two specifications are called consistent if they have at least one implementation
in common. In our setting, this is trivially the case since p ∧ q implements both p and q, for
arbitrary p, q. Roughly speaking, then, p and q would be consistent in the sense of [16], if
p ∧ q /∈ F in our setting.

5 Conclusions & future work

This paper proved that ready simulation [3] is fully abstract with respect to conjunction and
parallel composition on Logic LTS. In this sense, ready simulation is indeed a “logical” se-
mantics. Establishing this result was non-trivial due to the challenges that arise when dealing
with inconsistencies under conjunctive composition. This is evidenced by the complex compo-
sitionality proof with respect to conjunction, as well as the two-step “largest” precongruence
proof that relied on our previous full-abstraction work on ready-tree semantics [12].

Our results show that conjunction is a tool for relating trace-based semantics to simulation-
based semantics, via the concept of full abstraction. This sheds additional light onto van
Glabbeek’s linear-time, branching-time spectrum [6]. Moreover, our results imply that ready
simulation commends itself as a suitable behavioural relation for reasoning about specifica-
tions given in a mixed operational and logic style. Indeed, future work shall employ ready
simulation within novel algebras that combine process-algebraic and temporal-logic operators.

References

[1] M. Abadi and G.D. Plotkin. A logical view of composition. TCS, 114(1):3–30, 1993.

[2] J.A. Bergstra, A. Ponse, and S.A. Smolka. Handbook of Process Algebra. Elsevier, 2001.

16

[3] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. J. ACM, 42(1):232–268,
1995.

[4] E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, vol. B,
pp. 995–1072. North-Holland, 1990.

[5] R. van Glabbeek. The linear time – branching time spectrum II, 1993. Available at
http://theory.stanford.edu/̃ rvg/abstracts.html#26.

[6] R. van Glabbeek. The linear time – branching time spectrum I. In Handbook of Process Algebra,
ch. 1, pp. 3–99. Elsevier, 2001.

[7] S. Graf and J. Sifakis. A logic for the description of non-deterministic programs and their prop-
erties. Inform. & Control, 68(1–3):254–270, 1986.

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[9] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic
Approach. Princeton Univ. Press, 1994.

[10] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, 1994.

[11] G. Lüttgen and W. Vogler. Conjunction on processes: Full-abstraction via ready-tree semantics.
In FOSSACS 2006, vol. 3921 of LNCS, pp. 261–276. Springer, 2006.

[12] G. Lüttgen and W. Vogler. Conjunction on processes: Full-abstraction via ready-tree semantics.
TCS, 373(1–2):19–40, 2007.

[13] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[14] E.-R. Olderog. Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Science 23.
Cambridge Univ. Press, 1991.

[15] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating processes.
Acta Informatica, 23(1):9–66, 1986.

[16] M. Steen, J. Derrick, E. Boiten, and H. Bowman. Consistency of partial process specifications.
In AMAST ’98, vol. 1548 of LNCS, pp. 248–262. Springer, 1999.

[17] S. Veglioni and R. De Nicola. Possible worlds for process algebras. In CONCUR ’98, vol. 1466 of
LNCS, pp. 179–193. Springer, 1998.

17

