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ABSTRACT
More people could benefit of Machine Learning (ML) as an in-
creasingly important technology and service, if state-of-the-art ML
techniques with training capability were accessible on personal
devices. To this end, we report details on how to deploy Tensor-
Flow on off-the-shelf mobile and embedded devices and retrain
current deep neural networks for image recognition on-device. Our
motivation is to both grant privacy and allow users to efficiently
personalize image classifiers for their own needs and purposes, and
thus contribute towards turning ML into a “social good”, which
benefits the largest number of people in the greatest possible way.

CCS CONCEPTS
• Human-centered computing → Mobile devices; • Comput-
ing methodologies → Transfer learning;
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1 INTRODUCTION
It is undeniable that personal mobile technology has empowered
individuals from all walks of life, starting an era of mobile and data-
driven innovation. In this era, Machine Learning (ML) is becoming
an increasingly important and ubiquitous service with the potential
to benefit the largest number of people. For example ML based
image classification could assist users in classifying anything by
simply taking pictures. Doing so, a person with food-sensibility
could, for example take pictures of their food to have algorithms
help recognize and automatically log their food consumption over
time. This could be a helpful addition to food logging apps, like the
mobile multi-device system presented in [17], that already include
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taking photos. Furthermore, ML models could be personalized by
people adding new pictures. However, it seems, ML’s potential
impact as a “social good” is limited, since many people seem to fear
how their personal data will be handled and don’t use personal-data
driven ML services. Especially, vulnerable groups of people, such
as people with health issues who might benefit most have good
reasons for concerns. For example with recorded food images it is
already possible to get information about the location of users or
even their religious conviction [13]. It seems, for ML to become
a tool or service for “all” people, it is desirable to have solutions
granting both privacy and personalization.

In this paper we study the feasibility of having personalized on-
device image classification on smartphones and embedded devices.
We focus on deep neural networks, since they are currently the best
performing classifiers. But, they usually require (i) a vast amount
of data and (ii) high performance systems for training/learning.
We believe that both issues can be addressed applying the transfer
learning technique, which allows retraining existing models to
new domains (e.g., transfer a flower recognition model into a food
recognition model).

We report a series of simulations showing that transfer learning
as a technique is feasible with limited resources on mobile and em-
bedded devices. We try to make our measurements as reproducible
as possible. For this reason we provide all (adapted) scripts / file
lists in a Github repository1. The data set we use as an example is
the freely available flower data set2 providing five classes with a
reasonable data amount for our tests. Before we provide our results
in detail we summarize related ML methods to grant privacy and
enable personalization.

2 BACKGROUND
Cloud services are a popular method on mobile devices to offload
energy and time-consuming tasks to much more powerful servers.
For instance, Polonio et al. [15] proposed an automatic photo tag-
ging application for sharing pictures on social media, which relies
on external services to retrieve the tags.

A system for mobile food recognition using transfer learning
was presented by Temdee et al. [19]. Nevertheless, the system was
just tested with the quite resource consuming Inception v3 model
which was retrained on an external system and finally deployed to
the smartphone. This is similar to traditional approaches where a
generalizable model is trained with offline data and is then deployed
to the target device for execution (e.g., [9]).

1https://github.com/hcmlab/tf-transferlearning-benchmarks
2http://download.tensorflow.org/example_images/flower_photos.tgz
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There are also hybrid systems that can decide to use on-device
or cloud computation for more efficient usage of deep neural net-
works [10]. However, once the data leaves the user’s device, privacy
concerns might arise. Sensitive information about a user’s private
life, habits and relations could be extracted or inferred from the
collected data [8]. This specifically applies to images since they can
include a variety of information such as the current time, location,
context, surrounding environment or nearby people.

In order to address these issues, several techniques have been
developed. For example, one solution is to reduce the data fidelity
by adjusting the sensing granularity and recording intervals [8].
This can range from reducing the rate at which samples are col-
lected to automatically blurring people’s faces in images. Another
approach involves encrypting the private data on the user’s device
before processing it on a server [6, 20]. Through that, the resources
of cloud services can be used without having to disclose the un-
encrypted data. Nevertheless, it might be possible to break the
encryption. Therefore, the safest approach would be to perform
all necessary calculations directly on the mobile device. Since the
required computational resources for training complex neural net-
works currently exceed the performance of mobile devices, this is
no feasible option for now.

However, instead of completely training a new machine learning
model from scratch, an alternative might be to use a pretrained
model which can be adapted to the current task. If the classes never
change this can be provided by doing incremental learning. For
example, this method has been utilized with an online naive bayes
classifier on accelerometer data features to spot drink gestures on a
smartwatch [11]. Nevertheless, this method is no longer applicable
as soon as classes change. An alternative is transfer learning which
is often applied in situations where we want to solve a classification
problem in one domain but only have a sufficient amount of training
data in another domain [14]. The problem with sufficient training
data is especially existing when using deep neural networks which
for image classification tasks are currently state-of-the-art. Since
modifying an already trained model requires fewer resources, it
might be possible to perform this task on mobile devices in a rea-
sonable amount of time.

In this work we therefore want to get an idea of what time
durations we have to expect on a selection of quite recent mobile /
embedded consumer devices, especially for the on-device training
process. Additionally, further performance optimizations could also
be applied to reduce the required duration [7].

3 ON-DEVICE RETRAINING /
CLASSIFICATION

3.1 TensorFlow for Training Models on
Android

For our tests we decided to use Google’s TensorFlow framework
for neural networks, which already includes official examples for
image retraining [5]. Android is officially supported but there is
limited support to use training functions on Android. For this rea-
son we decided to use a workaround, which allows to run all of
our tests (i.e., identical Python scripts using the same code base)
also on smartphone hardware. Nearly all Android devices use an
ARM based CPU and there are unofficial instructions on how to

build a “complete” TensorFlow for Raspberry Pi 2 / 3. More recently,
nightly builds for Raspberry Pi were started to be built that are also
compatible with other ARMv7 devices in a Debian Linux environ-
ment. In the following steps, we used one of these Python “wheels”.
To resolve all dependencies on Android a full Linux is required,
for which a chroot environment was utilized. More specifically, we
used Linux Deploy [1] with Debian on rooted Android devices.

3.2 Performance Measurement of Model
Retraining

To get an impression whether the training process on smartphones
and embedded devices is currently reasonably fast for our purpose
of on-device image retraining, we conducted performance tests
with different devices and models. It should be mentioned that our
performance tests can just provide hints about the execution speed
a recent version of the “normal” TensorFlow provides on ARM
devices with NEON acceleration. That is, we didn’t put extra effort
in optimization.

3.2.1 Software. We used a nightly build of TensorFlow for Rasp-
berry Pi based on version 1.7 with Python 3 bindings3. On all of
our systems Debian or Raspbian Stretch was installed as native or
chroot environment. On smartphones we installed the most recent
versions of LineageOS available for the specific device with root
access.

To be able to create comparable benchmarks we decided to
modify the official image retraining script (retrain.py) provided
by Google [5] by adding logging functions to write time stamps
after tasks, like the creation of “bottlenecks”, to a file. We use the
term “bottleneck” like in [5] for the last layer before the final out-
put layer. At this layer the highest data abstraction or reduction of
dimension is reached.

The script conducts following steps: 1. scan for pictures in a
directory, 2. download a specified base model from TensorFlow
Hub, 3. create / save “bottlenecks”, 4. adapt the final layer of the
base model for the new class count, 5. retrain / evaluate and 6.
save the model. To reduce any biases (e.g., caused by background
programs) we ran every test three times.

3.2.2 Devices. For our performance tests we used two Android
smartphones and two embedded ARM devices. Technical details can
be found in Table 1. The performance of the integrated SoCs, except
for the Raspberry Pi 3 B, which is not using a smartphone SoC,
should give an overview about the performance today’s low-end
and mid-range smartphones can deliver.

We chose the two Nexus smartphones as these are usually being
considered as being especially developer friendly and therefore are
widely spread. The Nexus 4 was first released in November 2012,
the Nexus 6P in September 2015.

In addition to the two smartphones, we included two ARM em-
bedded boards in our tests. The Raspberry Pi 3 B is a very popular
low priced (ca. 35 USD) low power embedded computer. It was re-
leased in February 2016. A more powerful embedded board is the
Odroid HC1 with a price of ca. 49 USD. A version of this SoC has
also been used for the Samsung Galaxy S5 (SM-G900H) released in
April 2014.
3git revision: 5d33c1e49178aedbb459da7ce58eca710102c06b
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Nexus 4 Nexus 6P Raspberry Pi 3 B Odroid HC1

SoC Qualcomm
Snapdragon S4 Pro

Qualcomm
Snapdragon 810 v2.1

Broadcom
BCM2837

Samsung
Exynos5422

CPU 4 x 1.5 GHz Krait 4 x 2.00 GHz Cortex-A57 &
4 x 1.55 GHz Cortex-A53

4 x 1.2 GHz
Cortex-A53

4 x 2.0 GHz Cortex-A15 &
4 x 1.4 GHz Cortex-A7

RAM 2 GB, LPDDR2 3 GB, LPDDR4 1 GB, LPDDR2 2 GB, LPDDR3
Storage NAND, 16 GB NAND, 64 GB SD card SD card (OS) + SSD (Data)

Host-OS Android 7.1
(LineageOS 14.1)

Android 8
(LineageOS 15.1) Raspbian Stretch Ubuntu Server 16.04.4 LTS

CHROOT Linux Deploy:
Debian Stretch armhf

Linux Deploy:
Debian Stretch armhf - Docker: Debian Stretch

(arm32v7/debian:stretch)
Table 1: Used ARM devices including host OS and OS of the test environment

3.2.3 Models. For our tests we selected several well-known re-
cent convolutional neural networks for image recognition that
are included by TensorFlow Hub and are pretrained on ImageNet
(ILSVRC-2012-CLS). These are Inception v3 [18] and MobileNet
v1 [12] and v2 [16]. All top 1 and top 5 accuracies of the selected
models can be found in Figure 2 and were collected from [2–4]. The
size in percent of the MobileNets is the second to last value while
the picture size in pixels is the last value of the name. Details on
the models can be found in the according papers.

For high recognition rates we include Inception v3 and Mo-
bileNet_v2_1.4_224 which can provide a top 1 accuracy of 78.0 %
respectively 75.0 % and a top 5 accuracy of 93.9 % respectively 92.5 %.
In addition, we included smaller models that still provide relatively
high accuracies.

For mobile usage the MobileNet v1 and v2 neural networks with
different input sizes and network sizes were designed. From Mo-
bileNet v1 we chose the ones with 100 % and 75 % size and an input
picture size of 224x224 (biggest) and 128x128 (smallest). From Mo-
bileNet v2 we selected the nets with 140%, 100 % and 75% size
with the input picture sizes of 224x224 (biggest), 128x128 (smallest
comparable with MobileNet v1) and 96x96 (smallest).

3.2.4 Data set. For the performance evaluation we used the flower
data set from the TensorFlow tutorial. It consists out of 3670 jpg
files that contain pictures of flowers of five classes (daisy: 633 files,
dandelion: 898, roses: 641, sunflowers: 699, tulips: 799). The average
size of the photos is about 62.0 kiB.

For serious accuracy comparisons between the selected models
this data set is too small as all accuracies of the models, using the de-
fault split between training, validation and test set of the retrain.py
script, lie between 86.4 % and 91.2 % for the test set. Figure 2 should
provide a better idea about their general classification performance.

3.3 Performance and Resources
During our performance tests, all devices were connected to an
external power supply. For the tests we used the adapted retrain.py
script as described before. In Figure 1 the results of our tests are
visible. The runtimes in seconds of the bottleneck creation, training
and evaluation for each model are shown. The model names are
additionally abbreviated: “Inc. v3” stands for Inception v3, the “M1”
for MobileNet v1 and “M2” for MobileNet v2.

The results clearly show that the bottleneck creation takes most
of the time although it uses all available cores on all devices. On the
Nexus 6P just the four “big” cores of the big.LITTLE SoC are used.
On the Odroid HC1 all cores are used so that it was always the
fastest device of our tests. For the training process just one core was
used. Nevertheless, as expected the training consumed several times
less time than the bottleneck creation. For the training process just
the already calculated bottleneck files were used to train one layer.
The Nexus 4 and Raspberry Pi 3 B usually require quite similar time
amounts. Although the Pi 3 uses a more recent ARM architecture,
it is visible that the training always has the biggest time share. This
is probably a result of its lower CPU clock in comparison to all
other devices, which is especially apparent on single core tasks
like the training. The usually slower SD card could also introduce
additional slowdowns.

In general, it is visible that the Inception v3 model on all devices
requires at least two times more time for the bottleneck creation
in comparison to all tested “MobileNets” due to its higher com-
plexity. The “M1_100_128”, “M1_075_128” and “M2_100_096” show
comparable low runtimes on all devices. Our fastest smartphone,
the Nexus 6P, requires about 15minutes for bottleneck creation
for these models and about 4minutes and 30 seconds to retrain
the models. This is much faster than with the Inception v3 model
which takes about 127minutes (ca. 28.3 times slower) to create the
bottlenecks and about 8minutes (ca. 1.8 times slower) to retrain the
model on this device.

The file size for all bottleneck files, which are stored as un-
compressed text files, varies between 77.3MiB (Inception v3) and
21.7MiB (M1_075_128), which are easy to save and could still be
heavily compressed in comparison to the original jpg files’ data
amount of 222.1MiB. The resulting retrained models, saved as pro-
tocol buffer files, have a file size of about 83.4MiB (Inception v3)
down to 5.4MiB (“M2_075_128” / “M2_075_224”), which is also no
problem for mobile devices.

3.4 Recognition with Increased Image
Amounts

To be able to observe the model quality during usage we simulated
in this test an increasing number of pictures for several classes. For
our tests we always retrained from the base model. We used the
“M2_100_128” as it showed good recognition accuracies according
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Figure 1: Average device runtimes for bottleneck creation (blue), training (orange) and evaluation (green) out of three runs for
each model configuration for the flower data set.

Model name Top 1 Top 5
Inception_v3_299 78.0 % 93.9 %
MobileNet_v1_1.0_224 70.9 % 89.9 %
MobileNet_v1_1.0_128 65.2 % 85.8 %
MobileNet_v1_0.75_224 68.4 % 88.2 %
MobileNet_v1_0.75_128 62.1 % 83.9 %
MobileNet_v2_1.4_224 75.0 % 92.5 %
MobileNet_v2_1.0_224 71.8 % 91.0 %
MobileNet_v2_1.0_128 65.3 % 86.9 %
MobileNet_v2_1.0_96 60.3 % 83.2 %
MobileNet_v2_0.75_224 69.8 % 89.6 %
MobileNet_v2_0.75_128 63.2 % 85.3 %

Figure 2: Accuracies for ILSVRC-2012-CLS data set.

to Table 2 but still had a comparably low runtime for bottleneck
creation and training on all devices.

We did the retrainingwith the flower data set but used an adapted
version of the “retrain.py” script allowing us to control, which
pictures were used for training, validation and testing. For all tests,
we used 400 pictures of each class for the model evaluation in
the test-set, which were not used in the training or validation set.
For the training and validation set a split of 80 % / 20% was used
for newly added files. Except for the training step count being set
to 1000, the options of the script were kept the same as in the
previous test. All tests were run three times on a desktop PC with
TensorFlow 1.8 and are averaged.

3.4.1 Imbalanced: Incrementing one class. For our first test we were
simulating a user constantly adding five new pictures to a new class.

In this case the class is “daisy”. The count of five pictures seems to
be a reasonable amount of pictures a user is willing to make of an
object he or she wants to detect later on. We began with a four class
model that did not contain the “daisy” class but all other four flower
classes. The other classes constantly consisted out of 150 pictures
(training and validation set) per class. We started with adding 20
daisy pictures and incremented the picture count by five until 150
pictures were reached.

The model evaluation results are visible in Figure 3. It displays
the macro-averaged precision and recall of each model evaluation
with 400 pictures for each class. In the beginning it is visible that
after adding the first 20 daisy pictures the precision but mainly the
recall drop from about 86% to about 84% / 83% as a new class is
introduced. From that point on especially the recall increases with
additional daisy pictures. The difference between precision and
recall is getting lower as the picture counts per class are getting
closer to each other.

3.4.2 Balanced: Incrementing all classes. For our second test we
were simulating a user constantly adding five new pictures to all five
flower classes. The model evaluation results are shown in Figure 4.
It is visible that the difference between precision and recall is quite
low and that both increase until 60 pictures per class are reached.
Adding more pictures didn’t have much effect on these scores.

3.4.3 Imbalanced: Randomly incrementing one class. For our third
test we were simulating that a user is constantly adding five new
pictures to one of the classes starting with zero pictures per class.
If two classes contained pictures the training process could start,
since for a classification task at least two classes are required.
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Figure 3:Macro-average precisions and recalls ofmodels trainedwith an incremented count of daisy flower pictures while four
other flower classes are kept with constant picture count of 150 (80% training and 20% validation). The evaluation set consists
out of 400 pictures for each class. All trainings and model evaluations were conducted three times and the macro-averages of
precisions and recalls are averaged.
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Figure 4: Macro-average precisions and recalls of models trained with an incremented count of flower pictures (80% training
and 20% validation). The evaluation set consists out of 400 pictures for each class. All trainings and model evaluations were
conducted three times and the macro-averages of precisions and recalls are averaged.
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Figure 5: Macro-average precisions and recalls of models trained with an incremented count of flower pictures (80% training
and 20% validation). The count of classes is shown in gray. New pictures are added to a randomly selected class until all classes
consist out of 150 pictures. The evaluation set consists out of 400 pictures for each class. All trainings and model evaluations
were conducted three times (stable random class selection) and the macro-averages of precisions and recalls are averaged.
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The results of the test are visible in Figure 5. At the beginning,
when the class count increases the precision and recall scores are
quite unstable. Starting at iteration 10 a total of 50 (10*5) pictures
are distributed between all five classes. With increasing number
of iterations (and pictures) the precision and recall increase. The
difference between precision and recall decreases since the classes
are getting less imbalanced.

4 DISCUSSION AND CONCLUSION
We have presented performance tests with smartphones and embed-
ded systems and reported results providing insights on feasibility
of doing on-device transfer learning, considering required system
resources and time.

After that, we performed three simulations to see how incremen-
tally added new pictures can be included in the retraining process
to create new usable models. In the first simulation we assumed
that a user is adding data of just one new class to a hypothetical
system resulting in a very imbalanced data set for the retraining.
The second simulation assumed that a model is retrained with an
over all classes equally distributed data set. The last simulation
gave hints about the model qualities to be expected when a user
randomly adds pictures to different classes.

The performance measurements show that image retraining on
mobile and embedded devices with neural networks is possible in a
reasonable time with a data set of 3760 pictures even without addi-
tional hardware acceleration (DSP or GPU). Especially the smaller
models optimized for mobile usage showed acceptable performance
and storage consumption so that it would be possible to person-
alize an existing model with user-provided images on the device.
The retraining process could be triggered during phases where the
device is not used - a smartphone for example during charging. The
tests with an increasing picture amount show that already small
image counts can provide reasonably good recognition accuracies
even if they are spread imbalanced over the classes. If new classes
are introduced it is clear that the recognition rates drop and more
pictures have to be added until especially the recall stabilizes again.

The implications of these results can be illustrated, for example
with the privacy sensitive use case of a nutrition logging application
on a smartphone. Especially self-made dishes can introduce issues
with generic classifiers since they can look very different, making
it reasonable to personalize the model. Since users of nutrition
logging apps often already take pictures of every meal and then
manually add labels, it would be convenient to use these images also
for training purposes. Thus, a first retrained classifier model could
be created quickly after adding a relatively small amount of pictures
(around 5) to at least two classes. At this point the model could
already be used, e.g. to automatically label new nutrition pictures.
Adding more pictures to the classes would further improve the
overall recognition performance of the model until the capabilities
of the neural network structure are reached.

We believe, in order to improve the practical usage of personal-
ized models, future work could explore (i) automatic and manual
mechanisms to undo eventually broken models (e.g. after adding
poorly taken photos to a class), (ii) users’ experience of creating
their own personalized models and (iii) further techniques to reduce
resource consumption for the training process e.g. by combining

transfer learning with incremental learning whenever the classes
didn’t change. We hope the insights we have presented will also
inspire fellow researchers, and ML on mobile devices will soon be
considered as a “social good” accessible for all.
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