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ABSTRACT

We describe in detail the development of DrinkWatch, a wellbeing
application, which supports (alcoholic and non-alcoholic) drink
activity logging. DrinkWatch runs on a smartwatch device and
makes use of machine learning to recognize drink activities based
on the smartwatch’s inbuilt sensors. DrinkWatch differs from ot-
her mobile machine learning applications by triggering feedback
requests from its user in order to cooperatively learn the user’s per-
sonalized and contextual drink activities. The cooperative approach
aims to reduce limitations in learning performance and to increase
the user experience of machine learning based applications. We
discuss why the need for cooperative machine learning approaches
is increasing and describe lessons that we have learned throughout
the development process of DrinkWatch and insights based on ini-
tial experiments with users. For example, we demonstrate that six
to eight hours of annotated real world data are sufficient to train a
reliable base model.
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1 INTRODUCTION

Utilizing mobile devices to collect personal behavioral data has
many benefits, such as concisely informing medical professionals of
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a patient’s “in the wild” behavior, and help in identifying appropri-
ate intervention methods. However, there are still multiple technical
and conceptual concerns, considering the mobile collection and
processing of health related data. A paradigmatic example is the
concern for privacy. Other concerns relate to data processing ap-
proaches based on machine learning (ML) in mobile settings. While
mobile ML can be a powerful tool, its downsides include potential
performance issues in learning individual and contextual differen-
ces (e.g. [19]), and negative user experiences due to a lack of system
transparency and loss of user control (e.g. [1, 12]). We believe that
many of the concerns associated with mobile ML applications can
be addressed by taking inspiration from Horvitz’s idea of mixed-
initiative systems [13] and implementing a cooperative style of ML,
in which users are interactively integrated into the ML process. In
addition, by enabling cooperative ML completely on a mobile device,
one would be able to address privacy-related user concerns associ-
ated with outsourcing data storage and processing to non-personal
devices and unknown locations.

Because of the important role that ML approaches for mobile
(health) applications will play in the foreseeable future, there is a
need to explore human-centered techniques and paradigms towards
balancing human needs and experiences with “machine autonomy”.
The increasing importance of designing for wellbeing and contribu-
ting factors, such as (perceived) human autonomy and competence
is highlighted by researchers, such as Calvo and Peters [7], who pro-
mote a paradigm shift towards “Positive Computing” and away from
designing solely to increase productivity. While ML is a well studied
field with many fellow researchers working on improving ML’s
performance and its impact on productivity increase for various
domains, the field of mobile cooperative ML is rather unexplored.
Towards exploring the potential benefits and limitation of mobile
cooperative ML applications, we came to understand that an initial,
but important step is exposing ourselves to the process of develo-
ping an exemplary application and gathering initial insights with
users.

In the following section, we provide background on previous
research including descriptions of relevant forms of ML. Then we
present in detail the development process of the smartwatch appli-
cation DrinkWatch as an exemplary mobile cooperative ML appli-
cation, which aims to provide logging support of drink activities
(i-e. taking alcoholic or non-alcoholic liquids) throughout a day as a
behavior. We conclude by discussing lessons learned and guidelines
for the development of mobile cooperative ML applications, such as
how the performance of different ML algorithms (i.e. Naive Bayes
vs. linear SVM from LibLinear) is related to their learning curve
with simulated user interaction.



2 BACKGROUND

Arguably, the advent of mobile and ubiquitous technology has dis-
rupted how we (as users) envision technology’s role in our everyday
life. While originally mobile devices were perceived as personal
information management tools, and thus as tools in a traditional
sense, today’s mobiles have access to a vast amount of knowledge
from which they can learn, and seemingly become a companion
capable to contest a user’s agency and autonomy.

There are some benefits of this ongoing shift of agency and capa-
bilities towards mobiles or technology in general, such as techno-
logy becoming able to recognize harmful behavioral habits of users
and assist users in reflecting on their habits and hopefully provide
support in adopting positive habits. Be it to regularly taking a walk
or drinking enough, behavior change bears great potential towards
improving wellbeing. Most new year’s intents, for example, will
have been given up by the time you read this paper.

In the following, we summarize related work in human activity
recognition, which is an essential part in recognizing human be-
havior, and describe different ML approaches with regard to their
characteristics and application domains.

2.1 Human Activity Recognition

Over the last two decades, research in Human Activity Recognition
(HAR) has been focusing on a wide range of applications, such as
surveillance and security [29], ambient intelligence [23] (e.g. to as-
sist older adults [31]), or health care [38]. In particular, in ubiquitous
computing environments or smart home environments, Human
Activity Recognition is a key feature, for example, to monitor daily
activities of users or provide assistance [39].

The rapid technical development of mobile devices and weara-
bles, such as smartphones and smartwatches, has further expanded
the possibilities for HAR. Mobile devices are equipped with a plet-
hora of sensors and are worn or carried around all day. Thus, many
activities of users can potentially be recognized. Consequently, a lot
of research that investigated methods and applications [37] for HAR
has emerged, in particular, research employing inertial sensors of
smartphones [19, 28].

In more detail, HAR is used to automatically recognize a person’s
activities from a stream of sensor data, for example to pro-actively
provide assistance, log daily routines, or to initiate necessary proce-
dures (such as calling an ambulance or neighbors in case a person
has fallen [5]). This makes them an important entity among today’s
e-health topics, be it detecting stereotyped movements in children
with developmental disabilities [17] or automatic monitoring of re-
habilitation processes [30] or using smart cups to track the behavior
of residents of an inpatient nursing care facility [41]. In comparison
to smartphones, smartwatches have a decisive advantage, which
makes them particularly suitable for HAR. They are body-mounted
and therefore always at the same place (i.e. constantly attached
to the user’s arm throughout a day). The human arm is actively
involved in most of daily activities, whereas movements of the body
can be smaller and may only reveal few activities.

Smartphones usually detect only movements related to the whole
body due to their typical placement in the pocket. Therefore, the
number of identifiable activities with smartphones is limited. Exam-
ples from the literature include walking, running, jogging, standing,

66

sitting, walking up/down stairs, or using an elevator [11, 19, 20]. In
contrast, smartwatches or wrist-worn wearables have the potential
to detect more activities than with smartphones, such as drinking,
smoking, typing on the keyboard, or eating with a knife and fork.
Thus, new application areas can be addressed, such as food/drink
reminders and related habit awareness applications (e.g. [22, 28]).
The fact that smartwatches record the subtleties of each indivi-
dual’s arm movements in turn allows ML algorithms to generate
personalized models for activity recognition. Personalized models
usually result in higher precision of recognition algorithms and
require less amount of sample data than user-independent models.

With the rapid development of smartwatch technology, HAR on
smartwatches is an ascending topic [4, 27]. In contrast to previous
work that utilizes smartwatches, the work at hand combines online
learning and interactive ML to continuously improve activity re-
cognition models. Moreover, the complete learning process is done
solely on the smartwatch without access to any online resources or
requiring network connectivity.

2.2 Machine Learning

2.2.1 Interactive and Cooperative Machine Learning. Another
very active field of research in Human Activity Recognition addres-
ses interactive machine learning (iML) on mobile devices [19, 27].
Interactive ML distinguishes from classical ML by directly involving
users in the ML process. Training of models is part of the deployed
product (continuously improving models) and not just applied du-
ring the development process (static and previously trained models).
For this reason, iML bears great potential for applications that have
to continuously adapt to a user.

Ware et al. [36] describe an approach in which the user interacts
with an ML system by selecting individual attributes for the creation
of a decision tree. In their case, the user requires a certain amount
of expertise in ML. In contrast, we aim to involve non-expert users
in the ML process to exploit the fact that the user can judge for
his/her activities best. Fails et al. [9] showed a similar approach for
design tools using perceptual interfaces.

The work of Shahmohammadi et al. [27] evaluated iML based
on smartwatch sensor data for Human Activity Recognition and
found that only few training samples are required to achieve high
recognition accuracy. They demonstrated that personalized mo-
dels from iML performed significantly better than classic learning
approaches. In comparison to their work, we make use of online
learning approaches which require less computing resources and
thus enable us to run the whole application solely on the smartwa-
tch without the need to stream data to more powerful devices for
further processing. By this means, our system increases mobility
and makes the application independent of external dependencies
or permanent reliable and stable network connections. We also rely
on naturally recorded annotated sensor data instead of data based
on instructions given to users to perform specific actions.

Similar to iML, Cooperative Machine Learning (cML) aims to
leverage the capabilities of human and machine to solve an ML
problem. Here, the focus lies on the effort required for labeling
recorded data. Not the deployed model is handed over to the user
for modification, but the human annotators are supported by the
machine to speed up their work [40]. To implement such a cML
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Figure 1: An exemplary health application scenario presenting the interaction and cooperation between a user and the Drink-
Watch application. The second row provides screenshots of the DrinkWatch application and the third row presents raw acce-
lerometer data of one movement axis as exemplary sensor data, which are used to recognize the drink activity.

approach the tight integration between an annotation software and
the respective ML platform is crucial. In our previous work, this
integration is provided by the NOVA annotation tool which has
been developed by Baur et al. [3]. This tool makes use of the Social
Signal Interpretation framework (SSI) [35] as an ML framework to
speed up the annotation of social signals [34]. More specifically,
the combination of both platforms enables users to train a new
model based on only a few annotations from a recorded session and
subsequently use this model to automatically predict annotations
for the remaining part of the session. The annotator then only
needs to correct the system’s prediction which is potentially much
less time-consuming than annotating the data from scratch. In an
initial simulated study, we demonstrated a reduction of the labeling
effort by 40 %. Following a similar approach, we make use of both
tools in order to simulate the cooperative ML process of our mobile
implementation as described in Section 4.2. They form the basis of
the mobile implementation of Section 3.3.

2.2.2  Active Learning. Miu et al. [19] presented an Online Active
Learning framework and studied how to collect user-provided an-
notations to bootstrap personalized activity models. They demon-
strated that generating personalized Human Activity Recognition
models can be achieved on-the-fly and does not require expert su-
pervision or retrospective annotation of sample data. While Miu
et al. made use of a smartphone app to query the user, our work
queries annotations through a smartwatch interface. A smartwatch
app has the benefit that queries on a smartwatch can be handled
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more comfortably and quickly since smartwatches don’t require
users to get it out of the pocket first.

Active Learning has been investigated for different models and
classification types (e.g. Support Vector Machines [32]) as well as
different types of query strategies. An overview is given by Settels
etal. [25]. The most widely used approach and therefore selected for
our applied entry point in Section 3.3.5 is Uncertainty Sampling [18]
or Query on Uncertainty. In these approaches, a labeling system
picks up samples for which the target class cannot be determined
with a high certainty. This way the system is not locked into just
learning from data that it already handles well. According to Lewis
et al. [18], this approach performs better than relevance sampling
which picks high confidence samples for relabeling.

Also common is the approach called Query on Committee [26],
where multiple models, that have a strongly different way of opera-
ting, are grouped into a committee. Those samples are chosen for
labeling by an oracle, where the individual models disagree most.
Other query methods are focused on error reduction [25]. They
either directly try to maximize the expected error reduction with
the selected sample or they look at the expected model change that
is expected from all possible labels of the sample.

To the best of our knowledge, only few recent works on HAR
have investigated iML based on a smartwatch [27, 28] or online
learning with a smartwatch [19], but no one has attempted to com-
bine both approaches to realize interactive online machine learning
solely on a smartwatch independent of external computing resour-
ces. We designed and built a smartwatch application prototype that



implements this combination of approaches and present insights
from a technical evaluation.

3 DRINKWATCH PROTOTYPE

Across all the state-of-the-art and off-the-shelf mobile devices,
smartwatches seem most suitable in providing least intrusive and
immediate feedback in mobile settings, and thus, allowing users to
reflect on their immediate activities and contextual habits. While
their form factor and small size is indeed an advantage when con-
sidering their integration in everyday situations, it is also often
challenging to design and to develop interactive applications for
smartwatches. For example, smartwatches provide only a very
small-sized screen which limits the amount of information that
can be presented to users. This limitation is, however, not relevant
for the intended use case of our system as we mainly make use of
the smartwatch’s movements for hand activity logging. Our system
only occasionally shows notifications to users and asks them for
feedback related to activities. The prototype system further aims
to reduce the complexity and amount of interaction (required to
recognize and log drink activities) through automation.

DrinkWatch aims at recognizing drink activities (by means of in-
ertial sensor data of the smartwatch) and tracks each drink activity
for later analysis (see Figure 1). If DrinkWatch senses “interesting
data®, which potentially represent a drink activity worth learning
from (Figure 1a), the smartwatch queries the user for assigning a
label to the recorded sample data (Figure 1b). Thereby, the user is
actively involved in the ML process and may choose to adapt the
drink activity model or not. Consequently, not only drinking, but
also activities, such as blowing one’s nose or wiping one’s mouth
(Figure 1c) may lead to a query to the user (Figure 1d).

DrinkWatch serves three main functions. First, it offers a graphi-
cal user interface for querying the user for annotations and for
reviewing recognized/logged activities.

Second, DrinkWatch continuously collects data samples from the
watch’s accelerometer and other potential data sources. In our pro-
totype, we included a smartscale which is outlined in Section 3.2.2.
This data collection, our corpus (Section 3.2), serves as the basis for
a warmstart model in our ongoing cML process. For the purpose of
later evaluations, all collected data samples are also locally logged
on the smartwatch. However, this is not required for the online le-
arning approach since the learning process requires only the latest
annotated sample, see Section 3.3.4.

Third, Drinkwatch integrates an ML logic, which runs as a ser-
vice on the smartwatch. While most of the logic, such as the online
learning classifier, are implemented in the C++ programming lan-
guage, part of the logic is embedded in a thin Java layer connecting
the ML logic with the Android system (e.g. user interface) via JNI.

In the following, we describe each of the three parts of the
DrinkWatch, including the implementation of the ML logic (see
Section 3.3) in detail.

3.1 User Interface

DrinkWatch is implemented as a stand-alone application that runs
on the smartwatch Asus ZenWatch 2, which is using the mobile
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Mobile SSI

Figure 2: Cooperative Learning Interface on the smartwa-
tch. The first two buttons enable the user to start or stop the
recognition pipeline. Whenever a drink activity is detected,
the user can inform the system whether the recognition was
correct ("Yes") or incorrect ("No"). Additionally, with the last
button, the user is able to indicate whether a drink activity
was not detected.

operating system Android Wear 2 (Figure 2). Beneath the up-to-
date OS, it can be charged and programmed fast using a USB con-
nection, which is handy for development and experiments. There
are hardware solutions with a wider range of sensors or fitted in-
put hardware, such as a bezel, that might be more attractive for
long-term use. We designed a minimal user interface on the wa-
tch (see Figure 2) to handle queries to the user and to start and
stop the learning pipeline. Thus, users have control over when and
whether to provide labels. The simple interface allows non-expert
users to easily provide feedback on the go. Drink activities that
lie within the desired confidence range of the iML model trigger
a request/notification. Notifications are given by playing the stan-
dard notification sound of the watch and displaying a text ( "Have
you been drinking?" instead of "Waiting on Event"). In our current
prototype implementation, we had to turn off the vibration function
of the watch as it influenced its accelerometer sensor. This issue
will be solved in a next iteration by disabling sensor reading while
a vibration is being executed by the watch.

3.2 Corpus for the Warmstart Model

3.2.1 Recording setup. In contrast to many other studies on acti-
vity recognition, we do not ask people to perform specific actions,
but rather record sample data in everyday situations to label them
afterwards based on a ground truth. Our recording setup was slig-
htly different from session to session. Recording of acceleration data
from the wrist was always performed using an Asus Zenwatch 2.
In addition, the setup also included a camera to record video of the
user when possible. The number of users per session varied from
three to one, while 22 sessions (out of 25) had only a single user
(see Figure 3). Every user was asked to wear the watch on their
preferred hand. All recordings, except for five sessions, contained
smartscale data, which can be used by our iML approach to speed
up the annotation process.
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Figure 3: Recording setup with up to three people wearing
smartwatches to record labeled accelerometer data for the
initial classification model. The weight of one person’s drin-
king vessel acquired by a smartscale and video data were ad-
ditionally recorded to be able to annotate drink activities af-
terwards.

3.22  Smartscale. The smartscale prototype [24] in our system
(see Figure 4) continuously broadcasts weight data of vessels placed
on it via Bluetooth 4.0 to every receiver that is nearby. In our case,
the smartwatch received and recorded the data whenever the watch
was in reach of the smartscale.

Figure 4: A glass of apple juice standing on the smartscale.

Figure 5 exemplary shows recorded data of the smartscale. The
graph resulted from drinking from two 0.51 PET bottles (one by one).
After each drink activity the bottle was placed on the smartscale.
When the first bottle was empty it was replaced by a full one. The
plot shows that the first bottle was not completely full and has not
been placed on the sensor after being empty.

Whenever someone wants to drink out of a vessel placed on the
scale, he or she usually first takes the vessel from the smartscale
(weight is 0 g), drinks out of the vessel, and places the vessel back on
the smartscale. The weight is now lower than before. The mass can
increase if additional fluid is filled into a vessel or another vessel is
being used which is heavier and/or contains more fluid.
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In comparison to accelerometer data, the weight data of the
smartscale is easier to interpret so that an annotator can quickly
detect a drink activity, but also enables automated annotations. The
video data can be used to validate the labeled time segments but
does not have to be completely watched.
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Figure 5: Weight data of the smartscale. Two filled 0.5 m1 PET
bottles have been drunken during this session. Whenever
the drinking vessel is lifted the weight is 0 g (short lifting is
omitted). After drinking the weight is reduced.

3.2.3 Dataset. We recorded 25 sessions, which consist of 16
hours and 30 minutes of every day activities containing 5117 sam-
ples of drink activities and 26288 samples of non-drink activities.
One sample consists of a 1 second frame step together with 7 se-
conds of overlapping preceding data. A typical snippet of a drink
activity is shown in Figure 7. Such an activity is characterized by
three phases: picking up, bringing the vessel to the mouth and back
as well as finally putting the vessel down. We employed random
under-sampling to balance both classes in the training process.
Acceleration data were recorded with 25 samples per second using
the accelerometer sensor of an Asus ZenWatch 2. As ground truth
we synchronously recorded video and smartscale data. An annota-
tion session containing all data can be found in Figure 9. Further-
more, the Android system provides a so-called linear acceleration
sensor, which represents the raw acceleration sensor exempt from
the earth gravitation influence. Our prototype makes use of this
linear acceleration sensor as it provides better performance for
HAR [27]. These data were used to simulate a cML process and to
gain a warmstart model for further iML, see Section 4. Thus, the
data set is an important input for the ML module. The ML module
is described in the following.

3.3 Implementation of the ML Module

We employ activity recognition to reduce manual logging effort that
is required by the user when using a notebook or a conventional
logging app. To this end, we continuously track the user’s wrist
activities in order to detect specific time windows (frames) that
may be interpreted as an indicator of drinking. In case of high
confidence, a drink event is automatically registered by a higher
level app, e.g. a nutrition logging app. In case of low confidence,
the system has to decide whether to ask the user for confirmation
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Figure 6: Battery level of Asus ZenWatch 2 running the mo-
bileSSI iML pipeline

or not. We consider information gain as well as the user’s situation,
as discussed by Amershi et al. [1]. For example, the user should not
be disturbed if the expected information gain is very low.

The maximum runtime of the system without WiFi is about four
hours, as can be seen in the graph of Figure 6. In case of low battery
(2 %), our prototype app stops the ML pipeline in order to properly
finish the session. From the two days maximum battery life under
optimized circumstances, this means a strong reduction.

Our prototype relies on mobileSSI [10]. It is open source and avai-
lable on Github!. While mobileSSI already has ML capabilities for a
range of classifiers, implementation follows a classic non-interactive
approach. Our extensions include online learning capabilities (see
Section 3.3.4) that enable the user to interact with the model using
a simple user interface while the model actively (see Section 3.3.5)
queries the user. Our prototype also shares parts with a classic ML
pipeline, such as data collection and feature extraction, which are
described in the following.

A brief overview of the pipeline and application concept is given
in Figure 8. The red arrows mark continuous streams with a fixed
sample rate kept in sync by the SSI framework. Blue dotted arrows
mark events that are sporadic, but contain a time stamp and dura-
tion. Gray components are either future work, the user moderation
and context component, or not described in this paper, namely the
integration with the nutrition logging app.

3.3.1 Frame Size. In order to continuously process data, seg-
mentation of the data has to be addressed. We selected a fixed
window size of 1 second together with an overlap of preceding 7
seconds. This allows us to capture the whole event in most cases
while having a reactive system, giving quick feedback. Given our
chosen sample rate of 25 Hz we gain 200 raw data points in three
dimensions, as our accelerometer has three axes.

3.3.2  Feature Selection. Accelerometer data are widely used in
Human Activity Recognition and a lot of features have been expe-
rimented with. Features are needed to simplify the classification
process in contrast to end-to-end learning. Our feature set is based
on related work. In particular, we selected a range of features that
are known to work well on acceleration data [2, 8, 14, 16, 21] and
have been used for the recognition of drink activities.

On each axis/dimension, the following features were calculated:

!https://github.com/hcmlab/mobileSSI
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Mean

Std. deviation

Variance

Energy

Interquartile range (IQR)

Mean absolute deviation (MAD)

Root mean square (RMS)

Min

Max

Additionally following features are generalizing over all axes:

e Correlation between XY, XZ, YZ axis
e Mean, Std. deviation, Min, Max, IQR on length of per sample
vector over all axes (magnitude)

This results in overall 35 features calculated on the previously
described 1 + 7 seconds containing 200 samples.

3.3.3 Normalization. Normalization is scaling all features’ data
range to fit a certain range, in our case within 0 and 1. This is,
for example, done by using the accelerometer’s maximum output
value that can be queried using the Android APL Compared to a
classical approach in mobileSSI and many other implementations
of classical ML, the responsibility of data normalization is moved
from the training process, iterating over all samples in the data
set, to the feature calculation, on the current chunk of data. This
is necessary because with low initial sample count determining
the minimum and maximum on already known data might not
be representative for future data. There are alternatives to feature
based normalization, such as adaptive scaling. While normalization
is not strictly necessary for Gaussian Naive Bayes it is recommended
to keep features with higher values from dominating features with
small values. Our pipeline provides a feature vector of dimension
35 that is fed into the following online classifier component every
second.

3.3.4  Online Learner. Classification of the current data frame
is handled by our pipeline, as it would be the case in a classic ML
pipeline. Our main objective is to continuously improve learned
models for fluid intake based on tracked data and user input. Online
learning enables us to learn a new model from scratch in the de-
ployed application. Furthermore, the model can be improved at the
moment the user provides new labeled data and the next input can
be analyzed with the improved model without the need to restart or
stop the application. To speed the process up, a classically trained
model is used as a starting point for further incremental training.
This procedure is called warm-start.

We chose Naive Bayes which can be easily adapted for online
learning (see e.g. the implementation used in MOA [6]). The on-
line learning variant of Naive Bayes incrementally calculates mean,
variance and standard derivation and additionally stores the sam-
ple count to be able to adjust with new data proportionally. The
algorithm is described in detail by Knuth [15] on page 115. The
calculations are executed per feature and class, thus our model
consists of 210 float values and a sample count. As Naive Bayes
classification results into confidence values, it enables us to query
the user based on the level of uncertainty. Furthermore, it is fast in
training and execution. This makes Naive Bayes a good option for
restricted platforms, such as smartwatches. Moreover, it offers an
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advantage in data security, as no other data that can give an insight
in user behavior or health related information are permanently
saved to the watch.

At this point LibLinear is only integrated without online learning
capabilities, but a solution exists according to Tsai et al. [33]. The
future integration of LibLinear as additional online learning library
depends on the result of our evaluation, see Section 4.

3.3.5 Active Learning. Our Active Learning implementation
uses query on uncertainty for sample selection, see Section 2.2.2
for further background. We can specify the credibility range that
triggers user requests, thus supports relevance sampling as well
as uncertainty sampling. The option is part of an online classifier
component shown in Figure 8. It manages the assembly of sample
lists from user annotations and data streams as well as the trai-
ning process of our online model. The model’s predictions are also
handled by the online classifier. Both, requests and predictions, are
handled as events instead of streams with fixed sample rate.

4 EVALUATION AND RESULTS

Following system implementation and data collection, three steps
of evaluation are presented in this section: the static evaluation of
the fully annotated data set in Section 4.1, the evaluation of different
learning strategies in Section 4.2, and the interactive run performed
with end users in Section 4.3.
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4.1 Evaluation of Static Models

To give an overview of our collected data and provide an impression
of what accuracy fully trained models are able to achieve, Table 1
shows results of Naive Bayes and linear SVM (implementation:
LibLinear) models trained on the full data set, evaluated on the
fixed test set that is also used for the simulation of cooperative ML.

Results of full Training

Naive Bayes linear SVM
Drinking 81.4% 84.9%
Not drinking 71.6% 79.8%
Unweighted Average 76.5% 82.3%

Table 1: Results of training on all annotations contained in
the training set, evaluated on the test set.

Our results are in line with other results on drink activity re-
cognition found in literature. The linear SVM model shows a six
percent points lead over Naive Bayes, which again is as expected.
While there is a difference on the "drinking" class, it is larger on
the "not drinking" class. As "not drinking" is by far larger and more
complex, Naive Bayes meets its limitations in describing it.

4.2 Learning Strategy Simulation

As we aim to utilize the learning process within an end user appli-
cation that is designed to continuously adapt to the specific activity
patterns of the user, it makes sense to not only evaluate the com-
plete model, but also the relative improvements of the classifier
when increasing the amount of training data. To evaluate this con-
tinuous refinement of the classification system, we simulated the
iterative training process by using the NOVA [3] toolkit.

First of all, we trained our base model on a small stack of eight
annotations from one session. From there on we used this baseline
classifier to predict the rest of the training data. Subsequently, we
took the first label where the confidence is equal or greater than the
lower end of a predefined confidence interval. In case the confidence
value lies within the interval we queried the oracle to correct our



Figure 9: Cooperative Machine Leaning in NOVA: Predictions of LibLinear (left) and Naive Bayes (right) on one session. Vi-
deo, smartscale and acceleration data are followed by annotations. The first line contains the hand labeled annotation and is
followed by predictions of models with increased number of training data. Areas marked in green are drink activity.
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Figure 10: Training progression using different confidences
and models

answer. The oracle is simulated by the full hand-labeled annotation.
In case the confidence value of the prediction is higher than the
upper limit of the interval we assume that the classification of
the sample is correct, and forwarded to the logging application.
Afterwards we add our newly annotated sample to the training
data and retrain our classifier before repeating the same steps again.
This process continues iteratively until all available data has been
annotated. While in theory the classifier could learn from data with
high classification confidence and improve without explicit user
input, we stick to user (oracle) labeled data only because those are
guaranteed to be true positive samples as long as the user gives
correct feedback.

The study has been conducted by applying an uncertainty sam-
pling strategy which utilizes a low confidence interval ranging
from 0.5 to 0.7 as well as a relevance sampling strategy using a high
confidence interval from 0.7 to 0.9, see Figure 10. While one would
expect the unweighted average accuracy to increase steadily with
the number of available training data our simulation results paint a
different picture as shown in Figure 10. Naive Bayes is clearly more
unstable than LibLinear’s linear SVM. Obviously, it is less robust
against variations across sessions and users as well as untypical
drink activities, for example, those with long pauses while holding
the vessel.
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All models stabilize over the course of the simulation. By the
time 30 additional labels are added to the base stock, the variations
in accuracy narrow down to five percent points for Naive Bayes and
three percent points for LibLinear, when adding new labels to the
training process. While low confidences seem to be preferred by the
LibLinear SVM model, queries based on high confidences seem to
be the better choice for Naive Bayes. The progress of both models
is best judged using predictions, as shown in Figure 9. One can see
where the classifier triggers and with what confidence, as indicated
by hatching and color. The first line contains the hand labeled an-
notation and is followed by predictions of models with increased
number of training data. Areas marked in green are drink activi-
ties. Naive Bayes changes in accuracy, seen in Figure 10 manifest
themselves as low confidence, red bars on the right.

4.3 Interactive Machine Learning Sessions

We recruited two users who used DrinkWatch for one hour to
track their drink activities. For this experiment, we picked the high
confidence range (0.7 to 0.9) as it promises an earlier stabilization
for Naive Bayes. To create a reliable base model, we used at least
40 annotations.

One can judge the quality of the model by the appropriateness
and frequency of queries. While both users had the impression
that drink activities were accurately recognized in general (e.g.
“Five out of six” stated by one of our two users), there were many
wrong positives due to the unbalanced nature of both classes. The
unfiltered requests were described as annoying by the users and
made the system unusable.

The behavior of the system appeared transparent to users. They
noted that moving a vessel containing fluid, slow and steady was
a key trigger for recognizing drink activities. It was also easy for
them to mimic activities triggering the model, describing properties
of the movement that lead to requests.

4.4 Discussion

In the beginning we have motivated the need for mobile interactive
and cooperative ML approaches by highlighting shortcomings of
traditional ML approaches, considering (i) difficulties in getting



authentic data of every day living, and (ii) a deficit of transparency
and user control. We have also argued that interactively integrating
users into the ML process would have the potential to address both
issues, allowing users to label their own activities, to gain some
understanding of and control over machine functionalities, and to
ultimately peek behind the curtain of automation and to leave users
with a feeling of competence and self-efficacy.

Since mobile cooperative learning is a novel research area with
many conceptually and technically open issues, we have exposed
ourselves into the process of developing the DrinkWatch application
and its integration with smart data sources, such as the smartscale.
Our intention and aim was to become able to infer limitations and
potentials of future mobile cooperative ML application. After deve-
loping the core functionalities of the DrinkWatch application, we
spent a time period of six months iterating the application based on
multiple tests, including a longer period of time testing the appli-
cation with ourselves and short episodes collecting insights from
letting colleagues and friends try the application. Consequently,
our main contribution is DrinkWatch as a hardware and software
solution, demonstrating technical feasibility, providing detailed in-
formation for scientific reproduction, and last but not least initial
user impressions and insights considering how we expect users will
experience DrinkWatch. We also hope to have provided fellow rese-
archers a methodological scheme, which can be reused and adapted
for developing and evaluating other interactive and cooperative
ML applications.

By building and testing DrinkWatch, we have learned that inte-
ractive cooperative machine learning is already feasible on today’s
state of the art smartwatches. We believe the feedback provided by
the model (i.e. the machine intelligence) as a direct consequence to
a drink activity is intuitively graspable by users even when feed-
back is provided through simple audio notifications. Based on the
model performance in recognizing drink activities, we believe (as
it is typical with many ML based models) that it can be adopted
easily to recognize other hand-based activities.

LibLinear’s linear SVM does not only show higher accuracy com-
pared to Naive Bayes, but also a smoother learning curve. Since
both models have opposing tendencies when it comes to confi-
dence intervals, fusing both models in a Query on Committee [26]
implementation, seems promising. The committee might also be
accompanied by static models, such as the warmstart model or save
points that can be created by the user as well.

As also described in the interactive ML paradigm [1], we be-
lieve that queries should be forwarded to the user with care since
wrong positives cause frustration and users tend to describe the
experience associated with wrong positives as “annoying”. When
it comes to adaptability to new health-related hand activities, we
presented several observations that can be used as reference points.
The minimal strength of the Naive Bayes warmstart model for our
problem can be set at circa 40 overall annotations, this equals about
eight hours of recording in our case while the linear SVM stabilizes
at about 30 overall annotations or six hours of recording.

We introduced the smartscale as an option to integrate data from
other data sources, in the hope to improve the (initial) quality of
the model. The use of a smartscale reduced the annotation effort
drastically and we came to understand that it is a suitable physical
object to facilitate logging of fluid intake as well as to support
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annotation and online learning on smartwatches in a stationary
setting.

4.4.1 Limitations and Future Directions. We have focused on sin-
gle user scenarios, investigating the question of how DrinkWatch
can provide users with “power” over their ML applications. Howe-
ver, in many health applications, the user is not the only person
who should interact with the ML application. Furthermore, there
are places and contexts in which desired and available autonomy
of users may vary. For example, in hospitals or retirement homes,
the environment may impose autonomy constraints. A patient’s
behavior may need to be observed more intensively, and observa-
tion and interaction responsibility in hospitals may be distributed
among patients and others (such as nurses and medical doctors),
resulting in a nurse that helps observe patient behavior and label
data. While on the go the integration of additional data sources
comes with challenges (due to privacy issues), in (smart) homes the
performance of ML applications may be improved by integrating
additional knowledge sources, such as smartscales.

There is no doubt that ML-based automation in health moni-
toring applications will increase, resulting in a larger number of
everyday user interactions with “smart” applications, which ob-
serve user behavior and query user feedback. One of the future
challenges will be to integrate multiple applications and systems
and to regulate not only the pure amount, but also the nature of user-
system interactions. We therefore plan to integrate a context-aware
mediator layer, filtering requests and learning when is a good point
in time to bother the user with queries. As the query frequency will
then be changed, the unfiltered query frequency can be transported
to the user by other modalities, such as volume, length or pattern of
the notifications’ sound or vibration. In our immediate future work,
we aim to study when to trigger user feedback on smartwatches in
order to explore how modality and timing of notifications interfere
with user experience and willingness for cooperation. Using the
refined prototype, DrinkWatch can be employed "In the Wild" with
a larger group of users for deeper insights.

5 CONCLUSIONS

In this paper we presented the adoption of cooperative machine
learning on a smartwatch. We evaluated a prototype via simulation
and initial interactive sessions. Our approach shows that today’s
smartwatches are capable of executing interactive machine learning
for activities of daily life. The model generates sufficient feedback
to let the user judge its state by means of query frequency and
time. Smartwatches enable the user to intuitively mimic recognized
behavior and explore the model’s capabilities. From here a variety
of options are open for future research, be it refining the machine
learning process, integration into existing logging applications, or
studying and refining how the system interacts with the user.
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