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Nonzero Fermi Level Density of States for a Disordered d-Wave Superconductor
in Two Dimensions
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In 3D, arbitrarily weak disorder in superconductors with line nodes gives rise to a nonzero Fermi level

density of states Ns0d, leading to characteristic low-temperature thermodynamics similar to that observed
in cuprate and heavy-fermion systems. In a strictly 2D model, possibly appropriate for the cuprates, it
has been argued that Ns0d vanishes. We perform an exact calculation for a 2D d-wave superconductor
with Lorentzian disorder and find a nonzero Ns0d. For other continuous distributions we obtain a
nonzero lower bound for Ns0d. We discuss the reasons for this discrepancy. [S0031-9007(96)01309-9]

PACS numbers: 74.25.Bt, 74.62.Dh
A large amount of evidence [1] has accumulated re-
cently suggesting that the order parameter in the cuprate
superconductors vanishes linearly at lines on the Fermi
surface. Frequently, these experiments have been inter-
preted in terms of a dx22y2 pairing state, but states of
“extended-s” symmetry with nodes have also been con-
sidered. One of the most interesting consequences of
such nodes in three spatial dimensions is the creation of
a nonzero density of zero-energy quasiparticle states Ns0d
for infinitesimal disorder [2,3]. Such a residual density
of states (DOS) is, of course, reflected in many experi-
mental observables, and may be shown [4] to lead, in
particular, to a T2 term in the London penetration depth
lsT d 2 ls0d, and more generally to low-temperature ther-
modynamic and transport properties characteristic of a
normal Fermi system with strongly reduced DOS. Sys-
tematic Zn doping and electron damage experiments have
been found to lead to precisely these types of temperature
dependences in YBCO single crystals [5], and in certain
cases quantitative fits [6] have been obtained to the “dirty
d-wave” model, in which the effects of potential scatter-
ers on a 2D d-wave superconductor are calculated using
a t-matrix approximation [7,8] assuming large electronic
phase shifts.

Recently, Nersesyan, Tsvelik, and Wenger [9] have
questioned the accuracy of the t-matrix approximation
when applied to a strictly 2D disordered d-wave system,
pointing out that, in 2D, logarithmic divergences in mul-
tisite scattering processes, some of which are neglected in
the t-matrix approach, prevent a well-controlled expan-
sion in impurity concentration. These authors avoided
perturbation theory by using bosonization together with
the replica trick, and predicted a power law DOS NsEd ,
jEja , a . 1y7, for sufficiently small energy E and dis-
order, rather than the analytic behavior NsEd , const 1

aE2 expected in 3D. They also argued that a nonzero
DOS at E ­ 0, a quantity indicating spontaneous sym-
metry breaking, may not occur because of the Mermin-
Wagner theorem [10].
0031-9007y96y77(14)y3013(4)$10.00
Although the physical systems in question are in re-
ality highly anisotropic 3D systems, the possibility of a
2D-3D crossover at low temperatures could conceivably
invalidate some of the results of the usual dirty d-wave
approach. This would render the description of the low-
temperature transport properties of the cuprate supercon-
ductors considerably more complicated even if the order
parameter corresponds to the very simple 2D dx22y2 form
usually assumed.
It is therefore of considerable importance to check the

results of Ref. [9] by other methods. In this paper we
show that, for certain types of disorder, exact results can
be obtained for the DOS of strictly 2D disordered su-
perconductors. We show that, for any disorder diagonal
in position and particle-hole space, the DOS of a classic
isotropic s-wave superconductor has a rigorous threshold
at the (unrenormalized) gap edge D, as expected from
Anderson's theorem [11]. Within the same general
method, we show that the residual DOS Ns0d of a super-
conductor with line nodes (e.g., d or extended-s wave)
is nonzero for arbitrarily small disorder, in disagreement
with Ref. [9]. We believe that the DOS in a disordered
system is not an order parameter which belongs to the
class of order parameters covered by the Mermin-Wagner
theorem. This is supported by the fact that a nonzero
DOS occurs also in other tight-binding models (e.g.,
model for two-dimensional Anderson localization [12]),
which are described by a field theory with continuous
symmetry.
As exact results are only obtainable for Lorentzian

disorder, we discuss ways [13] of obtaining information
on the effects of other distributions, including models
where the randomness has a compact domain. Finally,
we compare our results to those arising from alternative
methods, and comment on possible origins of the current
disagreement.
Density of states.—Here, we introduce a general

method of calculating exactly the DOS of a superconduc-
tor for certain types of disorder, motivated by the analysis
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of Dirac fermions in 2D [14]. The BCS Hamiltonian is
given by

H ­ s2=2 2 mds3 1 Ds1 , (1)
which describes quasiparticles in the presence of the spin
singlet order parameter D. The si are the Pauli matrices
in particle-hole space. The disorder is modeled by taking
m ­ mx as a random variable distributed according to a
probability distribution Psmxd.

The kinetic energy operator 2=2 is taken to act
as =2Csxd ­ Csx 1 2e1d 1 Csx 2 2e1d 1 Csx 1

2e2d 1 Csx 2 2e2d on a function Csxd of the sites x of
a 2D square lattice spanned by the unit vectors e1 and
e2. Note that this function involves displacements of
two lattice sites rather than one, as would be the case
in the simplest tight-binding representation of the lat-
tice kinetic energy. For a system of fermions in the
thermodynamic limit, the bare kinetic energy will then
have a band representation quite similar to the usual
tight-binding form, with no particular distinguishing
features near the Fermi level. The reason for this choice
will become clear below. It obeys, of course, the same
global continuous symmetries discussed for the model
in Ref. [9]. The bilocal lattice operator D̂ ; Dx,x0 is
taken to act as a c-number in the isotropic s-wave case,
D̂Csxd ­ DCsxd, whereas to study extended pairing
we define D̂

s
dCsxd ­ D

s
dfCsx 1 e1d 1 Csx 2 e1d 6

Csx 1 e2d 6 Csx 2 e2dg.
We consider the single-particle Matsubara Green

function defined as GsiEd ­ siEs0 2 Hd21. We are
primarily interested in calculating the DOS NsEd ;
2

1
p Im

P
$k kG1 1siE ! E 1 iedl, where k· · ·l denotes

the disorder average. The problem now is how to per-
form this disorder average over the probability measure
Psmxddmx of the random variable mx . Exact results
for the disorder-averaged propagator in noninteracting
systems can frequently be obtained for Lorentzian dis-
order, Psmxddmx ­ sgypd fsmx 2 m0d2 1 g2g21 dmx ,
by exploiting the simple pole structure of Psmxd in
the complex mx plane. m0 is the chemical potential
of the averaged system. For convenience, we set
m0 ­ 0. The averaged Green function is kGsiEdl ;R Q

x dmxPsmxdGsiE; mxd, which may then be trivially
evaluated if G can be shown to be analytic in either the
upper or lower m-half plane.

In a superconductor, the Green function depends on
the random variable mx via mx 6 iE, as a consequence
of the particle-hole structure. Therefore, the averaging
of G with respect to Lorentzian disorder is not trivially
possible. However, we will show below that it is possible
to reformulate the problem so that G consists of terms
which are analytic in one of the half-planes. This allows
us to perform the averaging of the Green function for
Lorentzian disorder.

Isotropic s-wave superconductor.—We first assume a
homogeneous s-wave order parameter, neglecting the re-
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sponse of the superconducting condensate to the random
potential. The Matsubara Green function may be writ-
ten GsiEd ­ 2siEs0 1 HdsE2 1 H2d21, where we note
that H2 ­ s2=2 2 md2s0 1 D2s0 since, in the isotropic
s-wave case, s2=2 2 mds3 anticommutes with Ds1 even
for random m due to the locality of the order parameter.
The expression H2 1 E2 is proportional to the unit

matrix; as a consequence, the Green function can be
written in the simple form,

GsiEd ­ 2
iEs0 1 H

2i
p

D2 1 E2

3 fs2=2 2 m 2 i
p

D2 1 E2 d21

2 s2=2 2 m 1 i
p

D2 1 E2 d21gs0 . (2)
It is straightforward to show that the imaginary part
of this expression (after analytic continuation, iE !

E 1 ie) for any given configuration of impurities is
vanishing for jEj , D. Therefore, the DOS shows a
gap of size D independent of the distribution function
Psmd. Thus, our model reproduces the famous Anderson
theorem [11] which states that the thermodynamics of
an isotropic s-wave superconductor are not affected by
diagonal, nonmagnetic disorder. The situation is different
if the order parameter itself is random, in which case
all quasiparticle states are broadened and NsEd . 0 for
all E $ 0 [13,15]. Here we neglect these effects, as did
Nersesyan et al. [9].

d-wave and extended-s symmetry superconductors.—
The second class of examples includes the d-wave and
extended-s “bond” order parameters D̂

s
d defined above.

The corresponding pure systems in momentum space
fulfill the condition

P
k Dk ­ 0, so that nonmagnetic

disorder must cause significant pair breaking [2]. The
behavior of the imaginary part of the Green's function
can be studied using a method analogous to that used
for the s-wave case. However, the main difference
is that the nonlocal order parameter term D̂

s
ds1 does

not anticommute with s2=2 2 mds3 anymore if m is
random.
This requires a different type of transformation. We

introduce a diagonal matrix (or staggered field) Dx,x0 ­
s21dx11x2 dx,x0 (note D2 is the unit matrix). Now we may
write
H2 ­ HDs2

3DH ­ fs2=2 2 mdDs0 2 iD̂s
dDs2g

3 fDs2=2 2 mds0 1 iDD̂s
ds2g .

(3)
Because D commutes with 2=2 (as defined above) and
m, but anticommutes with the order parameter D̂

s
d , we

have simply H2 ­ H̃2, with H̃ ; s2=2 2 mdDs0 2

iD̂
s
dDs2. Therefore, the quantity H2 1 E2s0 ­ sH̃ 1

iEs0dsH̃ 2 iEs0d can be used to write

GsiEd ­
isiEs0 1 Hd

2E

3 fsH̃ 2 iEs0d21 2 sH̃ 1 iEs0d21g . (4)
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Observe that both H and H̃ appear in this expression, but
H appears only in the numerator.

Defining zx ; mxDx , we now note that for E . 0
and Imszxd $ 0, the matrix iEs0 2 H̃ is nonsingular
(i.e., detsiEs0 2 H̃d fi 0). Therefore, the transformed
Green's function siEs0 2 H̃d21 can be expanded as a
Taylor series with nonzero radius of convergence around
any zx in the upper half z-plane, and is consequently
analytic there. Using this fact and Pszd ­ Psmd, we
can now perform the disorder integration, as defined
above. The disorder-averaged Matsubara Green function
is translationally invariant. Performing a spatial Fourier
transform, we replace 2=2 by j ­ e $k 2 m0 and find

kGsiEdl ­ 2
siE 1 igds0 1 js3 1 D

s
ds1

sE 1 gd2 1 j2 1 sDs
dd2

; GsiE 1 igd . (5)
This is the Matsubara Green function of the pure system
with the frequency iE shifted by the disorder parameter,
iE ! iE 1 ig. It should be noted that, for the local
(isotropic) s-wave order parameter discussed before, the
average over a Lorentzian distribution in Eq. (2) implies a
shift i

p
D2 1 E2 ! i

p
D2 1 E2 1 ig.

To obtain the DOS for the d-wave case we approximate
the sum over the momenta $k in standard fashion as
N0

R`

2` dj
R2p

0
df

2p , where N0 is the density of states of
the normal metal at the Fermi level, with the tetragonal
Fermi surface approximated by a circle. The result is

NsEd ­ N0

Z 2p

0

df

2p
Im

√
E 1 ig

fD2
dsfd 2 sE 1 igd2g1y2

!
,

(6)
where the d-wave order parameter is approximated by
Ddsfd ­ Dd coss2fd. At E ­ 0, Ns0d ­ N0

2g

pDd
3

lns4Ddygd for g ø Dd . Thus, the DOS is nonzero at
the Fermi level for arbitrarily small disorder. For small
E, NsEd varies as E2.

For more general continuous distributions Psmd dm, the
averaged DOS can be estimated using again the analytic
structure of G̃. Applying the ideas of Ref. [13], one can
derive a lower bound by a decomposition of the lattice
into finite subsquares. The average DOS on an isolated
subsquare can be estimated easily. Moreover, the contri-
bution of the connection between the subsquares to the av-
erage DOS can also be estimated. A combination of both
contributions leads to kNs0dl $ c1 min2m1#m#m1 Psmd,
where c1 and m1 are distribution dependent positive con-
stants. In particular, m1 must be chosen such that the
spectrum of Hsm0 ­ 0d ­ 2=2s3 1 D̂

s
ds1 is inside the

interval f2m1, m1g. For all unbounded distributions, such
as the Gaussian distribution used in Ref. [9], as well as
compact distributions with sufficiently large support, this
estimate leads to a nonzero DOS at the Fermi level.

The major result in the d-wave (extended-s-wave) case
with Lorentzian disorder is the presence of a finite purely
imaginary self-energy S0 ­ 2igs0 due to nonmagnetic
disorder which leads to a nonzero DOS at the Fermi level.
The latter is in qualitative agreement with standard theo-
ries based on the self-consistent t-matrix approximation
[7,8] as well as with exact diagonalization studies in 2D
[16,17]. In contrast to such theories, our self-energy has
no dependence on D̂

s
d , i.e., it is the same as in the normal

state. In Fig. 1 we show a comparison of the self-energies
of our theory and the limits of the t-matrix approximation.
A drawback of the model with Lorentzian disorder

is that impurity concentration does not appear explicitly
in the theory. Whereas in the t-matrix approach we
have with the impurity concentration and the scattering
strength (or phase shift) two parameters associated with
disorder, in the present model we have only g, the width
of the Lorentzian. A way of making a connection is
by comparing the variance of the Lorentzian distribution
sgd and the variance of the distribution underlying the
t-matrix approximation, which is a bimodal distribution
of a chemical potential m ­ m0 with probability 1 2 d

(d being the dimensionless impurity concentration) and
m ­ m0 1 V with probability d (V being the scattering
potential). The variance Varm of this distribution is
determined by

Var2
m ­ km2l 2 kml2 ­ V 2sd 2 d2d . (7)

For small concentrations of impurities, d ø 1, we find
Varm ­ Vd1y2. The d1y2 behavior is also found for
Im S0sE ­ 0d in the t-matrix approach for strong scat-
tering. Since in our model the variance of the distribution
is also the imaginary part of the self-energy, this suggests
that our model is closer to the strong scattering limit of
the t-matrix approximation than the Born limit.
Finally, we comment on the discrepancies between our

result and the calculation of Nersesyan et al. [9], who
found a power law for the averaged DOS with Gaussian
disorder.

FIG. 1. Imaginary part of the self-energy vs frequency. For
Lorentzian disorder (solid line) the self-energy is constant ig.
The self-energy of the self-consistent t-matrix approximation
in the unitary scattering limit (dashed-dotted line) behaves
~sdDd1y2 at zero frequency. For Born scattering (dashed line)
the value at zero frequency is nonzero, but exponentially small.
We have adjusted the impurity concentration to obtain equal
normal state self-energies for the t-matrix results.
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One might question the analysis of Nersesyan et al.
because of the use of the replica trick, which is a dan-
gerous procedure in a number of models [18]. However,
Mudry, Chamon, and Wen [19] have obtained identical
results for the continuum problem of Dirac fermions in
the presence of a random gauge field using supersymme-
try methods. We therefore believe that the crucial differ-
ence between our results and those of Ref. [9] occurs in
the passage to the continuum and concomitant mapping of
the site disorder in the original problem onto the random
gauge field. Only in the continuum case is there a direct
analogy between disorder in the chemical potential and a
gauge field; on the lattice, gauge fields and chemical po-
tential terms enter quite differently. Chemical potential
terms are local while gauge fields are defined on bonds.
Furthermore, chemical potential disorder enters linearly
in the Hamiltonian while gauge fields enter through the
Peierls prescription as a phase in the exponential multi-
plying the kinetic energy.

Disorder of the gauge field type is furthermore non-
generic even in the continuum, as discussed by Mudry
et al. [19], who showed that the critical points of the sys-
tem with random gauge field are unstable with respect to
small perturbations by other types of disorder [20]. We
expect that a proper mapping of the lattice Dirac fermion
or d-wave superconductor problems to continuum models
will inevitably generate disorder other than random gauge
fields. Therefore, we believe that our result of a finite
DOS at the Fermi level is the generic case for a d-wave
superconductor in two dimensions.

We have computed the single-particle Green function
and DOS for a model of a superconductor with nonmag-
netic impurities. For an isotropic s-wave superconduc-
tor, we recover standard results; in particular, Anderson's
theorem is reproduced. Furthermore, our calculations
for the disorder-averaged d- and extended-s-wave propa-
gators show that the DOS is nonzero for all energies,
provided the distribution of the chemical potential is con-
tinuous and of sufficient width. The disorder average has
been performed exactly in the case of a Lorentzian dis-
tribution. In this approach, we have neglected spatial or-
der parameter disorder, but believe that, since this effect
by itself leads to pairbreaking at all energies [13,15,17],
we have provided strong evidence for a finite Fermi level
density of states in a disordered 2D d-wave superconduc-
tor. Our calculation suggests that the standard t-matrix
approach to disordered d-wave superconductors is qualita-
tively sufficient and casts doubt on the result by Nersesyan
3016
et al., who found a power law for the averaged DOS with
Gaussian disorder.
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