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Quantum Hall transition in an array of quantum dots
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A two-dimensional array of quantum dots in a magnetic ®eld is considered. The electrons in the quantum
dots are described as unitary random matrix ensembles. The strength of the magnetic ®eld is such that there is
half a ūx quantum per plaquette. This model exhibits the integer quantum Hall effect. For N electronic states
per quantum dot the limit N→` can be solved by a saddle-point integration of a supersymmetric ®eld theory.
The effect of level statistics on the density of states and the Hall conductivity is compared with the effect of
temperature ūctuations. @S0163-1829~97!06716-7#
I. INTRODUCTION

We consider a two-dimensional array of quantum dots in
a homogeneous magnetic ®eld perpendicular to the array. A
quantum dot in an array is a complex ®nite system of elec-
trons, subject to Coulomb interaction and a con®ning poten-
tial. Even if the number of electrons is small there is a large
number of electronic states in a given energy interval. There-
fore, we are forced to use a statistical description of the
quantum dot. A typical feature of such a complicated nonin-
tegrable system is level repulsion. The latter, also found in
other complex many-particle systems such as atomic nuclei,1
atoms,2 or metallic particles,3 can be conveniently described
by random matrix ensembles.4 Since the magnetic ®eld
breaks the time-reversal invariance in the dot, an appropriate
model is the Gaussian unitary ensemble ~GUE!. Electrons
can travel in the array of quantum dots due to tunneling
between neighboring dots. On the square array, which will
be considered in this paper, the tunneling rates are t and t8
for nearest and next nearest neighbors, respectively ~cf. Fig.
1!. The coupling between the individual quantum dots due to
these tunneling processes is weak. This allows us to assume
that the statistical occupation of the electronic states in each
dot is uncorrelated between different dots. Thus the quantum
dots can be represented by independent random matrix en-
sembles. Moreover, we also assume for simplicity that the
tunneling processes are independent, i.e., the tunneling elec-
trons do not interact with each other.

For very weak tunneling rates the array should behave
like an insulator because of the ūctuations of the energy
levels. One would expect for increasing tunneling rates that a
metallic regime can be reached where the array becomes
conducting. However, due to the statistical ūctuations of the
energy levels in the dots the effect of Anderson localization
must play a crucial role in the array. Anderson localization
prevents a two-dimensional system from becoming metallic,
at least if no or only a weak magnetic ®eld is present.5 On
the other hand, in the two-dimensional electron gas in a ho-
mogeneous magnetic ®eld quantum Hall transitions ~QHT!
have been observed, which are accompanied by delocalized
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electronic states.6 A QHT occurs if a gap opens in a band of
electronic states. This phenomenon is known, for instance,
from electrons that are subject to a homogeneous magnetic
®eldand a periodic potential.7,8 Depending on the magnetic
®eld the electrons form several subbands where each sub-
band contributes e2/h to the Hall conductivity.9±11 As an
approximation of the periodic potential one can use a tight-
binding model where the lattice constant is given by the
period of the potential. This approximation was used in a
number of numerical studies12,13 and in analytic work.14,15 In
this paper we will study the effect of the statistics of energy
levels and the effect of thermal ūctuations on the QHT.

This paper is organized as follows: in Sec. II the tight-
binding model with N levels per quantum dot and magnetic
ūx f5f0/2 is introduced. The Hall conductivity sxy is

de®ned in Sec. III and discussed without level ūctuations.
Then a functional integral represention is used to study the
level ūctuations in the limit N→` ~Sec. IV!.

II. THE MODEL

There are two different approaches to the transport in
quantum dots. One is based on the S matrix, the other one on
the Hamiltonian. The former is very useful for numerical
simulations because it describes directly the re ēction and
transmission of the electrons through the quantum dots.16,17

The latter, however, requires the application of linear re-
sponse theory to get a conductivity via Kubo's formula. In
this paper the Hamiltonian representation will be used. The
effective Hamiltonian of an array of quantum dots reads as a
quadratic form (HÃr ,r8

a ,a8cr
acr8

a8² in the fermion creation and
annihilation operators c ² , c with the matrix elements

HÃr ,r8
a ,a85Hr

a ,a8dr ,r81Hr ,r8
8 da ,a81Vrdr ,r8da ,a8, ~1!

where a ,a851, . . . ,N label the N electronic states in the
quantum dots and r and r8 label positions of the quantum
dots in the two-dimensional array. In general, tunneling be-
tween all N states should be allowed with some probability,
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depending exponentially on the energy of the states a and
a8. The inclusion of this dependence would require a de-
tailed knowledge of these states. Therefore, we choose as a
simplifying approximation the assumption that there is tun-
neling only between states with the same a at nearest- or
next-nearest-neighbor dots with ®xed tunneling rates. The
distance between neighboring dots is measured in units of
(f0/2B)1/2. Typical distances are a5100±500 nm.18 The
magnetic ®eld for the creation of one ūx quantum per
plaquette is B5f0 /a2'0.016±0.4 T. This regime is acces-
sible in natural crystals (a'0.5 nm! only with astronomical
magnetic ®elds.

The electron can occupy statistical states inside the quan-
tum dot, which are represented by the matrix elements
Hr

a ,a8 . H is the N3N Hermitian Hamiltonian (H ² 5H) of a
quantum dot with N2 statistically independent matrix ele-
ments. They are Gaussian distributed with zero mean and
^Hr

aa8Hr8
a9a-&5(g/N)daa-da8a9dr ,r8. g is the strength of

the level ūctuations. This depends on the strength of the
interaction beween the electrons inside the dot. Therefore,
g increases with the number of electrons per dot and with
increasing con®nement.

The tunneling is represented by the Hamiltonian H8. This
reads in Landau gauge @with r5(x ,y)# for ūx f per
plaquette

FIG. 1. Schematic picture of an array of quantum dots with
nearest- (t) and next-nearest-neighbor (t8) tunneling. The square
denotes the unit cell of the translational invariant array with mag-
netic ūx F5F0/2.
Hr ,r8
8 5te2ipyf/f0dr8,r1ex1tdr8,r1ey

1t8e2ip~y61/2 !f/f0dr8,r1ex6ey1H.c. ~2!

The aim of this paper is to present a generic effect ~the quan-
tum Hall transition!, including level statistics, in the simplest
possible form. It seems that the case of a tight-binding model
with f/f051/2 provides such a simple form because the
corresponding Hamiltonian is translational invariant on the
lattice with period 2. In principle, any commensurate ~ratio-
nal! ūx f5(m/n)f0 could be studied. But this would re-
quire a bigger unit cell of size n in order to derive the effec-
tive large-scale properties. Nevertheless, it is expected that
Dirac fermions ~i.e., a linear spectrum! control the Hall tran-
sition whenever a gap opens.19

The potential term Vr represents an additional external
~e.g., electric! ®eld. Here we regard a staggered chemical
potential Vr5(21)x1ym . The chemical potential controls
the density of particles in the system. Therefore, the ®lling
factor can be varied by varying the latter, and the system can
be driven through a quantum Hall transition. The staggering
of the potential favors a substructure of the electronic states.
Formally, it opens a gap 2m in the spectrum of the electrons,
as will be explained below.20 Another reason for the intro-
duction of the staggered chemical potential is the fact that it
allows a separation of the Hamiltonian into two independent
Dirac fermions. This technical detail may not be crucial in
the description of the physics on large scales, in particular
for the transport properties. It gives the same behavior as one
would obtain from other means of varying the ®lling factor
n .

We choose for the tunneling rate t51. Therefore, m , t8
are measured in units of t , and g is measured in units of
t2. If we identify fermions with the four corners of the unit
cell ~Fig. 1! the tunneling matrix H8 can be diagonalized by
a Fourier transformation. This gives a 434 matrix in Fourier
space. H , the Hamiltonian of a dot, is a diagonal matrix with
respect to the four corners in the sublattice representation
H5(H1

a ,a8 ,H2
a ,a8 ,H3

a ,a8,H4
a ,a8). A similar model with cor-

related randomness H1
a ,a85H3

a ,a852H2
a ,a852H4

a ,a8 was
considered in Ref. 21

We begin the discussion of the model with the analysis of
an array where the interaction of the electrons inside the
quantum dots are neglected. It can be understood as a tight-
binding model for noninteracting electrons in a metal with
some electronic bands in a magnetic ®eld.20,22 The Fourier
components of H8 can be expanded around the four nodes
k5(6p ,6p) for k5(6p ,6p)1ap with small p vectors.
After a global orthogonal transformation the Hamiltonian
reads
H9~p !52S m2t8 ipx2py 22t8~px1py! 0
2ipx2py 2m1t8 0 22t8~px2py!

22t8~px1py! 0 m1t8 py1ipx

0 22t8~px2py! py2ipx 2m2t8
D [S H119 H129

H219 H229 D . ~3!
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The last equation combines the 434 structure to a 232
structure with 232 block matrices H i j9 . Neglecting terms
O(p2) the Green's function ( HÃ1iv)21 decays into a diag-
onal block structure

GÃ~ iv !5S ~H119 1N1h11iv !21 0

0 ~H229 1N1h11iv !21D ,

~4!

with the diagonal matrix h15(H11H3 ,H21H4). Thus the
diagonal elements are statistically independent. 1N is the
N3N unit matrix. It is interesting to notice that the matrices
H j j9 5m jsz1i¹xsx7i¹ysy represent two independent two-
dimensional Dirac Hamiltonians with masses m15m2t8
and m25m1t8, respectively.

III. HALL CONDUCTIVITY

The current density in a Dirac model can be calculated
from the response to an external vector potential qy .23 The
introduction of this vector potential is similar to a change of
the boundary conditions, a concept extensively used in nu-
merical investigations of Anderson localization.24 The re-
sponse to the vector potential leads to the Hall conductivity
sxy in terms of Green's functions

sxy5 jx /Ey5
i
qy
E (

r8
Tr@sx~H01h12iv1E !r ,r8

21
~H01h1

2iv1E7qysy!r8,r
21

#
dv

2p
, ~5!

where the upper sign is for m1 and the lower sign for m2. We
obtain for qy;0 the expression20,21

sxy'6i (
r8,r9

E Tr@sxGÃrr8~E2iv !GÃr8r9~E2iv !

3syGÃr9r~E2iv !#
dv

2p
. ~6!

If there is only one electron per dot the energy spectrum has
discrete levels that are well separated. For instance, with a
harmonic oscillator potential for the isolated dot we have
En5\vp(n11/2). The separation of the energy levels in the
single electron case allows us to neglect all levels with
n.0. Consequently, there is no statistics of energy levels
and we can write h150. For the Hall conductivity in units of
e2/h we ®nd

sxy5~1/2!@2sgn~m1!Q~ um1u2uEu!

1sgn~m2!Q~ um2u2uEu!# , ~7!

where Q is the Heaviside step function. This result re ēcts
correctly the qualitative behavior of the Hall conductivity at
the QHT: the Hall conductivity of the original lattice fermion
problem is the sum of the Hall conductivities from the light
Dirac mass (m1) and the heavy Dirac mass (m2), such that
the total sxy has a jump from 0 to 1 if the light mass changes
the sign ~i.e., exchange of particles and holes in the Dirac
model!. Thus the Dirac fermions, together with the Hall con-
ductivity of Eq. ~6!, represent a simple picture for a Hall
transition. Special cases are m50, which gives
sxy5Q(um1u2uEu) and the ~unrealistic! case t850 with
sxy50. The vanishing Hall conductivity re ēcts the unbro-
ken time-reversal symmetry of the Hamiltonian if f5f0/2
and t850. For example, the next-nearest-neighbor hopping
term is important at half a ūx quantum per plaquette in
order to create a Hall current. For general ūx f , however,
the next-nearest-neighbor hopping term is not necessary to
discuss the quantum Hall effect because the time-reversal
symmetry is already broken by the complex nearest-neighbor
hopping term.

The sharp steplike QHT is only possible in an ideal sys-
tems of noninteracting lattice electrons at zero temperature.
In order to compare with real systems we have to include
the statistical ūctuations of the energy levels as well as
thermal ūctuations. The latter are taken into account by
replacing the integral over v in Eq. ~6! by a summation
over discrete Matsubara frequencies vn5(2n11)pT
(n50,61,62, . . . ). This leads to a thermal broadening of
the steplike behavior of sxy .

IV. FUNCTIONAL INTEGRAL REPRESENTATION

The effect of the level ūctuations is evaluated by aver-
aging sxy over the random matrix elements of h1. In order to
derive a simple expression for the limit of in®nitely many
energy levels per dot (N→`) it is convenient to write the
product of Green's functions G5(H01h11zs0)21 (H0 is
either H119 or H229 ) in the expression of the Hall conductivity
formally as a functional integral of a supersymmetric
model21,25,26

Grr8
aa8Gr8r9

bb8Gr9r
ga

5^CÅr
aCr8

a8xÅr8
b xr9

b8CÅr9
g Cr

a&S

2^xÅr
axr8

a8CÅr8
b Cr9

b8xÅr9
g xr

a&S, ~8!

with ^&S5*•••exp(2S1))rdFrdFÅr and with the supersym-
metric action ~sum convention for a)

S152isz (
r ,r8m , j , j8

Fr ,m , j
a ~H01zs0!r , j ;r8, j8F

Å
r8,m , j8
a

2isz (
r ,m , j

~Fr ,m , j
a8 h1r

a8aFÅr ,m , j
a !, ~9!

where sz5sgn(Imz) and the ®eld Fr , j
a 5(Cr , j

a ,xr , j
a ). The

®rst component is Grassmann and the second complex.
m51,2 labels the complex and the Grassmann components,
and j51,2 labels the two components of the Dirac model.
This choice guarantees a normalized functional. Conse-
quently, the averaging with respect to the Gaussian distrib-
uted matrix elements of h1 can be performed in the func-
tional integral as ^exp(2S1)&h1

5exp(2S2) with the effective
action S2. The latter is obtained from S1 by replacing the
second term with (g/N)(r ,m , j(Fr ,m , j

a FÅr ,m , j
a )2. Thus we have

derived an effective ®eld theory for F , which serves as a
generating functional for the average product of Green's
functions. It is important to notice that not only h1 creates the
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interaction in S2 but also other types of random terms in
S1. For instance, the interaction can also be created by a term
(N/g)(Qr ,m , j)222iszQr ,m , jFr ,m , j

a FÅr ,m , j
a as the second term

in S1, followed by an integration over the matrix ®eld Q .
This ®eld, in contrast to the random matrix h1, does not
depend on the index a of the electronic states inside the
quantum dot. This means that the distribution h1 can be
transformed into another distribution with a new ``random
variable'' Q ~which does not have a probability measure but
some generalized distribution including Grassmann vari-
ables!. In other words, we can write, after integrating out the
®eldF ,

^@~H01h11zs0!21#aa
•••&h1

5^@~H012Q1zs0!21#aa
•••&Q . ~10!

The distribution that belongs to ^&Q was investigated in detail
in Ref. 26. Here we need only the result for leading order in
N: ^&Q5*•••exp@2NS(Q,P)#)rdPrdQr with diagonal matrix
®eldsQr , Pr , and

S~Q ,P !5
1
g(r @Tr~Qr

2!1Tr~Pr
2!#1ln det~H012Q1zs0!

2ln det~H022iP1zs0!. ~11!

The number of levels N appears in front of the action. Thus
the effect of the statistics of the energy levels can be evalu-
ated for N→` in saddle-point ~SP! approximation. The SP
equation reads

d

dQ F1gTr~Qr
2!1ln det~H012Q1zs0!G50. ~12!

A second SP equation appears from the variation of P by
making the replacement Q→2iP . As an ansatz we take a
uniform SP solution Q052iP05(1/2)@ ihs01M ss3# .
Then Eq. ~12! leads to the conditions h5(h1v2iE)gI ,
M s52m1gI/(11gI) with the integral I5*@(m11M s)2

1(h1v2iE)21k2]21d2k/2p2. This result means that dis-
order shifts the frequency v→v1h and the Dirac mass
m1→M 85m11M s , where h(m1 ,v) and M s(m1 ,v) are
solutions of the SP equation. For instance, with v50 we
have h25(1/4)(M c

22m1
2)Q(M c

22m1
2), where M c52e2p/g.

The sign of h is ®xed by the condition thath must be ana-
lytic in v . This implies sgn(h)5sgn(v). The average den-
sity of states ~DOS! is proportional to h in the N→` limit.
Thus we have a narrow DOS for the array of quantum dots of
width 2M c in contrast to the isolated dot, which has a semi-
circular density of width 2Ag . The DOS vanishes for E50
in the absence of level ūctuations. The creation of a non-
zero DOS due to level ūctuations is a nonperturbative ef-
fect. The vanishing DOS only means that there are no elec-
tronic states in the bulk of the system. However, there can be
edge states at the boundary of the lattice that contribute to
the Hall conductivity. This phenomenon was already ob-
served in the system without level ūctuations, where the
DOS vanishes completely at E50 but the Hall conductivity
is nonzero according to Eq. ~7!.
At T50 and E50 the Hall conductivity per fermion level
reads in the limit N→` and with the approximation that
M 8 and h do not depend on v:

sxy'1/22sgn~m1!@1/22~1/p !arctan~AM c
2/m1

221 !

3Q~M c
22m1

2!# . ~13!

The Hall conductivities are plotted in Fig. 2 for T50.1 with
and without level ūctuations. It is remarkable that the Hall
conductivity is enhanced by the level ūctuations for
sxy,1/2 whereas it is suppressed for sxy.1/2. The effect of
these ūctuations is strictly constrained to the interval
2M c . Thus the contribution of the edge states to the Hall
conductivity, where the average DOS vanishes, is not af-
fected.

V. CONCLUSIONS

In a square array of quantum dots with N electronic states
per dot we have investigated the DOS and the Hall conduc-
tivity. Both quantities are signi®cantly affected by the statis-
tical ūctuations of the energy levels. In particular, the Hall
conductivity, which is steplike at the QHT in the absence of
ūctuations, has a more complicated behavior in the pres-

ence of level ūctuations. Thermal ūctuations have a differ-
ent effect on the Hall conductivity; they lead to a simple
broadening of the steplike behavior.

Only the average quantities have been considered. How-
ever, it is possible within the same method described in this
paper to study also higher moments of these quantities.

FIG. 2. Hall conductivity sxy in units of e2/h as a function of
the effective chemical potential m5m2t8 at temperature T50.1.
The circles are without level ūctuations and the full curve includes
level ūctuations with variance g51.36.
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