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Scaling behavior and universality near the quantum Hall transition
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A two-dimensional lattice system of noninteracting electrons in a homogeneous magnetic ®eld with half a
ūx quantum per plaquette and a random potential is considered. For the large-scale behavior a supersymmet-
ric theory with collective ®elds is constructed and studied within saddle-point approximation and ūctuations.
The model is characterized by a broken supersymmetry indicating that only the fermion collective ®eld
becomes delocalized whereas the boson ®eld is exponentially localized. Power counting for the ūctuation
terms suggests that the interactions between delocalized ūctuations are irrelevant. Several quasiscaling re-
gimes, separated by large crossover lengths, are found with effective exponents n for the localization length
j l . In the asymptotic regime there is n51/2 in agreement with an earlier calculation of Af ēck and one by
Ludwig et al. for a ®nite density of states. The effective exponent, relevant for physical system, isn51 where
the coef®cient of j l is growing with randomness. This is in agreement with recent high-precision measure-
ments on Si metal-oxide-semiconductor ®eld-effect transistor and AlxGa 12xAs/GaAs samples.
@S0163-1829~97!01408-2#
I. INTRODUCTION

The transition between quantum Hall plateaus in a two-
dimensional electron gas is characterized by a divergent lo-
calization length j l with a critical exponent n and a nonzero
longitudinal conductivity sxx . j l is ®nite and sxx is zero
inside the Hall plateaus whereas sxy is a constant.
A direct measurement of the localization length exponent

in an Al xGa 12xAs/GaAs sample by Koch et al.1 gave a
value for n very close to 7/3. Recent high precision measure-
ments on Si metal-oxide-semiconductor ®eld-effect
transistor2,3 and Al xGa 12xAs/GaAs samples,4 however, indi-
cate that j l diverges with the electron density n like
'bn(nc2n)21 or with the magnetic ®eld H like
'bH(Hc2H)21, where the quantum Hall transition ~QHT!
is at n5nc or H5Hc , respectively. The exponent n'1 ap-
pears to be almost independent of the material or the Hall
plateaus. On the other hand, the coef®cientsbn , bH are sen-
sitive to disorder: they increase with increasing disorder.3,4
This is a remarkable observation because in the scaling
theory of the Anderson localization5 the coef®cient is related
to the mean free path. That means it would decrease with
increasing disorder. The observation of n'1 is in sharp con-
trast to the experiment by Koch et al. The disagreement was
explained in Ref. 2 by insuf®cient sample size in the earlier
experiment.
The localization length scale near the QHT was also stud-

ied intensively in a number of numerical simulations using
the network model6,7 and the lowest Landau level
approximation.9,10 These calculations agree on the result that
the critical exponent is n'7/3. Concerning the exponent n
there is a calculation by Af ēck 11 based on the
U(2n)/U(n)3U(n) nonlinear s model with a topological
term in the replica limit n→0.12 He obtains n51/2. The
same value was found for Dirac fermions with the random
vector potential if the average density is ®nite.13
A reason for the impressive agreement of the numerical

calculations, on the one hand, and the disagreement between
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experiments, numerical and analytic calculations, on the
other hand, could be the sensitivity of the QHT to the size of
the system and to the type of disorder. In particular, it may
be related to the existence of a large characteristic length
scale depending on the disorder. The existence of such a
typical scale is also indicated by the numerical results due to
the fact that there is a crossover from the pure network
model (n51) to the random network model (n'7/3).
The purpose of this paper is to investigate the role of

disorder induced length scales in a tight-binding model with
a strong magnetic ®eld. The work is based on an effective
supersymmetric ®eld theory for Dirac fermions with a ran-
dom mass which enables us to study large scale properties.
The main results are as follows.

~1! Spontaneous breaking of the supersymmetry. That is,
the effective ®eld theory for the QHT is not a nonlinear
sigma model.

~2! The scaling behavior of the localization length de-
pends on the characteristic scale exp(p/g), where g is the
strength of disorder: If j l!exp(p/g) the effective exponent is
n51, whereas for j l@exp(p/g) the exponent is n51/2.

~3! There is a universal value for the conductivity
sxx5e2/hp .
The paper is organized as follows: After the de®nition of

the model in Sec. II an effective ®eld theory is constructed
for the averaged Green's functions ~Sec. III!. This ®eld
theory includes the description of the conductivity according
to Kubo's formula. Then a collective ®eld representation is
introduced in order to cover symmetry breaking effects ~Sec.
III A!. The latter are discussed using a saddle-point approxi-
mation for the collective ®eld ~Sec. III B!. Gaussian ūctua-
tions around the saddle points and corrections to Gaussian
ūctuations are studied in Secs. III C and III D, respectively.
Finally, the localization length ~Sec. IV! and the conductivity
~Sec. V! are evaluated.

II. THE MODEL

A lattice model is considered in this paper, stressing the
universality in terms of the electron density and the magnetic
10 661 © 1997 The American Physical Society
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®eld observed in the experiment, to study the asymptotic
behavior of the localization length near the QHT. A starting
point is a microscopic model for noninteracting electrons on
a regular lattice in a homogeneous magnetic ®eld. Disorder
enters only through a random potential on the lattice. This
choice guarantees that the disorder does not affect the homo-
geneity of the magnetic ®eld. The model is de®ned by the
tight-binding Hamiltonian on a square lattice with magnetic
ūx f5Ba2, where a is the lattice constant and B the ho-
mogeneous external magnetic ®eld. There is nearest neigh-
bor hopping with rate t and next nearest neighbor hopping
with rate t8. The Hamiltonian reads in Landau gauge

H52(
r

@ te2ipBay /f0c~r !c ² ~r1ex!1tc~r !c ² ~r1ey!

1t8e2ipBa@y6~1/2 !]f0c~r !c ² ~r1ex6ey!1H.c.#

1(
r

V~r !c~r !c ² ~r !. ~2.1!

ex ,y are lattice unit vectors, and c ² and c are fermion creation
and annihilation operators, respectively. V(r) is a random
potential representing disorder on the lattice. Without disor-
der, i.e., for V(r)50, this model was discussed extensively
in the literature.14±16 A central result is the occurrence of
electron bands with a quantized Hall conductivity in each
band. Gaps can be created in the model, for instance, by
choosing a staggered potential V(r)5(21)r11r2m in the
Hamiltonian ~2.1!.13 By varying the staggered chemical po-
tential one varies the concentration of electrons in the sys-
tem. There are other methods to create gaps in a tight-
binding model. For example, one could vary the magnetic
®eld. This, however, would lead to a more complicated situ-
ation because the corresponding vector potential depends on
space. In general, the relevant parameter for the quantum
Hall transition is the ®lling factornF0 /B . This is essentially
determined by the ratio of the concentration of electrons n
and the magnetic ®eldB . Therefore, the variation of the con-
centration of electrons ~i.e., the chemical potential! is equiva-
lent with the variation of the magnetic ®eld in the quantum
Hall system.
In general, the creation of new bands ~``gap opening'' !

can be described by Dirac fermions.16±18 Starting from the
tight-binding Hamiltonian the Dirac fermions can be derived
in a large-scale approximation. The simplest case is that with
half a ūx quantum per lattice plaquette ( f5f0/2).13,19
~Such a strong magnetic ūx is unrealistic in real crystals but
typical for arrays of quantum dots in moderate magnetic
®elds.20! For half a ūx quantum per plaquette it is easy to
derive the Dirac theory from a sublattice representation
which takes into account the phase factor e ipy /a of the tight-
binding Hamiltonian and the staggered potential. The Fourier
components of the nonrandom part H(k) read
S m 11e2ikx z~12e2iky!~12e2ikx! 11e2iky

11e ikx 2m 11e2iky 2z~12e2iky!~12e ikx!
2z~12e iky!~12e ikx! 11e iky m 212e ikx

11e iky z~12e iky!~12e2ikx! 212e2ikx 2m

D , ~2.2!

with z5it8/4. All elements of the matrix are measured in units of the nearest neighbor hopping rate t . After expansion of
k5(6p ,6p)1ap for small p vectors around the four nodes and a global orthogonal transformation H(k)→OH(k)O with

O5S s0 2is0
is0 2s0

D , ~2.3!

the Hamiltonian becomes

H8~p !52S m14iz ipx2py 2iz~px1py! 0
2ipx2py 2m24iz 0 2iz~px2py!

2iz~px1py! 0 m24iz py1ipx

0 2iz~px2py! py2ipx 2m14iz
D [S H11 H12

H21 H22D . ~2.4!

The corresponding Green's function,

GÃ5SH111iv H12

H21 H221iv D 21

;S ~H111iv !21 ~H111iv !21H12~H221iv !21

~H221iv !21H21~H111iv !21 ~H221iv !21 D , ~2.5!
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decays asymptotically into two diagonal blocks

;S ~H111iv !21 0
0 ~H221iv !21D . ~2.6!

The lattice constant a is implicitly scaled out in t8, m8, and
p j . ; means asymptotics with respect to m14iz;0 and
px;py;0. Thus the approximation breaks up the Hamil-
tonian ~2.1! into two independent Dirac Hamiltonians
H11/225sp1s3(m7t8) with Pauli matrices s j . The two
Dirac theories describe particles with different masses
m7t8, respectively. The next nearest neighbor hopping term
lifts the degeneracy of the two Dirac particles. Therefore, it
plays an important role in this model and must be taken into
account. A variation of the chemical potential implies a
variation of the Dirac mass. In particular, Dirac fermions
undergo a Hall transition if the mass vanishes.13,21 This is a
consequence of the fact that the mass breaks the time-
reversal symmetry: depending on the sign of m there is a
clockwise or counterclockwise Hall current. If the light Dirac
particle undergoes a Hall transition at m2t850 its contribu-
tion to the Hall conductivity changes from sxy521/2 for
m2t8,0 to sxy51/2 for m2t8.0. ~The conductivity is in
units of e2/h .! The heavy Dirac particle contributes
sxy51/2 because its mass is positive. Thus the combined
effect is a Hall step from sxy50 to sxy51. This picture is
particularly simple for F5F0/2 but should also hold for
other values of the ūx as long as the low energy excitations
are linear and can be described by Dirac fermions.
For large scale properties like for the critical behavior

near the Hall transition it is suf®cient to consider only the
light particle with m2t8,

~H81iv !215S iv1m2t8 i¹11¹2

i¹12¹2 iv2m1t8D
21

[G~ iv !

[SG11 G12

G21 G22
D , ~2.7!

where ¹ is the lattice gradient operator. Disorder, originally
introduced in H by the random potential V , appears in
H11/22 as a diagonal matrix V8 with independent random el-
ements V1, V2. The appearance of two random variables per
site is a consequence of the sublattice representation required
by the phase factor e ipy /a of the tight-binding Hamiltonian.
The random matrix V8 is equivalent to a random mass
dms3 and a random energy dEs0. For technical reasons the
random energy term will be neglected in the following.
It should be noticed that the random mass is marginally

irrelevant on a perturbative level.22 However, going beyond
perturbation theory, it turns out that the random mass leads
to spontaneous symmetry breaking which changes the prop-
erties signi®cantly.23 This effect has not been included in
previous studies of the localization properties near the Hall
transition. It will be important for the considerations in this
paper.
Dirac fermions can also be derived as the large scale ap-

proximation of the network model.24 It was recently pointed
out by Ho and Chalker25 that the network implies a random
Dirac mass ~due to ūctuations in the tunneling rates !, a
random energy ~due to ūctuations in the ūx per plaquette !,
and a random vector potential ~due to ūctuations in the
phase of the hopping elements!. That is, in terms of the net-
work model the random Dirac mass requires a ®xed ūx per
plaquette and a ®xed phase for the current between the ver-
tices of the network. This is probably the simplest situation
for the realization of a QHT.
After averaging with respect to the random mass the lo-

calization length j l , measured in lattice units a5Af0/2B for
electrons in a magnetic ®eldB , is de®ned as the decay length
of the function C j j8(r ,v)[^uG j j8(r ,0;iv)u

2&. The relation
uG j j8(r ,0;iv)u

25G j j8(r ,0;iv)G j8 j(0,r;2iv) means that j l
is given by the product of two Green's function at frequen-
cies with opposite sign ~retarded and advanced Green's func-
tions!. Due to the 232 block structure of G there exists a
relation between Green's functions at iv and Green's func-
tions at 2iv:

G j j~r ,r8;2iv !52G j8 j8~r8,r;iv !,

G j j8~r ,r8;2iv !52G j j8~r8,r;iv ! ~ jÞ j8!. ~2.8!

This identity re ēcts the Lorentz covariance of the Dirac
theory. It implies

uG j j~r ,r8;iv !u252G j j~r ,r8;iv !G j8 j8~r ,r8;iv ! ~2.9!

and

uG j j8~r ,r8;iv !u252G j j8~r ,r8;iv !G j8 j~r ,r8;iv !.
~2.10!

This means that only the Green's functions with one fre-
quency is required for the evaluation of localization proper-
ties in the relativistic model. The averaged quantity
C j j8(r ,v) is translational invariant. Therefore, it can be ex-
pressed by its Fourier components CÄj j8(k ,v). This can be
used to calculate the localization length j l . ~The following
discussion holds for any choice of j , j8. Therefore, these
labels are not written explicitly.! The correlation function
C(r ,v) for large r is proportional to r2aexp(2r/jl) with
some exponent a for which we assume that it is ®xed for the
model and does not depend on the parameters. This implies
that

(rr2C~r ,v !

(rC~r ,v !
5

(rr22aexp~2r/j l!

(rr2aexp~2r/j l!
5j l

2 (xx22aexp~2x !

(xx2aexp~2x !
.

~2.11!
Dropping the constant term from the ratio of sums on the
right hand side of ~2.11!, the localization length can be de-
®ned in terms of the Fourier components as

j l5UA2
¹k
2CÄ~k ,v !

CÄ~k ,v !
U
k50

. ~2.12!

The localization length is ®nite forvÞ0 but diverges in the
regime of delocalized states with v→0.
The localization length for massless Dirac fermions with-

out disorder diverges like uvu21 if v50 is approached. This
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behavior is probably unstable against arbitrarily weak ran-
domness, as it will be shown in this paper. However, it has
been shown in a previous paper26 that the localization length
of the averaged correlation function has a lower bound which
is the energy-energy correlation length of the 2D random
bond Ising model. Since the latter diverges at the critical
points, this implies a divergent localization length at the
QHT.
The calculation for the network model of Chalker and

Coddington,6 indicates that the critical exponent n51 of the
pure model may change to n57/3 due to disorder. This was
discussed as a possible appearance of a new random ®xed
point of the random model.13 However, a new ®xed point
with such a behavior has not been found so far in terms of
renormalization group calculations.

III. FUNCTIONAL INTEGRAL REPRESENTATION

It is convenient to introduce a functional integral repre-
sentation for C(r ,v), because this provides a basis to apply
an approximation using a saddle-point integration. The prod-
uct of Green's functions on the right hand side of ~2.9! and
~2.10! can formally be written as

~ iv1H !r j ,r8 j8
21

~ iv1HT!r8k8,rk
21

5E xr8 j8xÅr jCrkC
Å

r8k8exp~2S0!DCDCÅDxDxÅ,

~3.1!

with the quadratic form of the super®eld (xr ,Cr),

S052i sign~v !(
r ,r8

S xr

Cr
D S iv1H 0

0 iv1HTD
r ,r8

S xÅr8

CÅr8
D .

~3.2!

x is a complex ®eld andC a Grassmann ®eld, respectively.
It is important to notice that H appears in the quadratic form
for the complex ®eld, whereasHT appears for the Grassmann
®eld. This difference will turn out to be crucial for the local-
ization properties of the Dirac fermions. In particular, it will
give all the delocalized states expected near the Hall transi-
tion. In contrast, the quadratic form where H is used in the
Grassmann sector instead of HT does not give these critical
properties.26,21
Averaging with respect to disorder leads to

^~ iv1H !r j ,r8 j8
21

~ iv1HT!r8k8,rk
21 &

5E xr8 j8xÅr jCrkC
Å

r8k8^exp~2S0!&DCDCÅDxDxÅ.

~3.3!

A Gaussian distribution of the random Dirac mass is as-
sumed in the following with mean m and variance g . Then
the average can be performed exactly giving an additional
quartic interaction term in S0 with coupling constant g . For
weak disorder, i.e., small g , one could apply perturbation
theory. Unfortunately, this does not lead to interesting results
because it cannot catch spontaneous symmetry breaking. In
order to deal with the latter one must construct a representa-
tion which describes the ®eld which is the conjugate to the
symmetry breaking terms of the Dirac theory, the mass m
and the frequency v . The appearance of the symmetry break-
ing terms in S0 dictates the choice of xrxÅr and CrC

Å
r as the

collective ®elds.

A. Collective ®eld representation

In general, products of the ®eldsx , C , in S0 can be re-
placed by the collective ®elds as xrxÅr→Qr , CrC

Å
r→Pr ,

xrC
Å

r→QÅr , and CrxÅr→Qr . ~Some care is necessary to
choose the paths of integration correctly.27! One obtains for
~3.3! in the collective ®eld representation~for details see Ref.
27!

1
g2E Qr ,k jQ

Å
r8, j8k8exp~2S8!DPDQDQDQÅ ~rÞr8!,

~3.4!

with the supersymmetric effective action

S85
1
g(r ~Tr2Qr

21Tr2Pr
212Tr2QÅrQr!1ln det@~H01ivs0

22tQt !~H0
T1ivs012itPt !21#

1ln det@124tQÅt~H0
T1ivs012itPt !21

3tQt~H01ivs022tQt !21# . ~3.5!

H05is¹1ms3 is the average Dirac Hamiltonian and t the
diagonal matrix (1,i). The introduction of the collective
®elds is important to discover the ®nite length scaleep/g,
created by disorder, which is crucial for the properties of the
random Dirac mass model.27

B. Saddle-point approximation

A saddle-point ~SP! approximation is a crude approach
for a two-dimensional system because it usually gives the
wrong results for low dimensional systems due to strong
effects of ūctuations. In the model under consideration it
will be used as a starting point to study also the ūctuations.
An argument in favor of a SP approach is the fact that some
features of the model can be described which are not avail-
able from pertubation theory. An example is the creation of
states in the massive Dirac theory due to randomness.23,28
The hope is that the ūctuations around the SP are controlled
by Gaussian ūctuations, at least if randomness is weak. This
will be supported by the discussion presented below. An-
other argument for the SP approximation is its equivalence
with the N→`-limit, where N is a formal extension of the
model to one for electrons with N states per lattice site.21
The SP of the functional integral is given by the equations

dQS85dPS850. The two SP equations are identical if one
substitutes P5iQ:

s3tQrts35g~H01ivs022tQt !r ,r
21 . ~3.6!

An ansatz for a uniform SP solution reads tQ0t
52(ihs01mss3)/2. The SP equations imply a shift of the
frequency v→h8[h1v with

h82v5h8gI , ~3.7!
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and a shift of the average mass m→m8[m1ms with

ms52mgI/~11gI !, ~3.8!

I;
1
pE0

1
@h821~m1ms!

21k2#21kdk

;2
1
2p

ln@h821~m1ms!
2#

52
1
p
lnumu, ~3.9!

with m5m1ms1ih8. In the pure limit g→0 the SP equa-
tions lead to h85v and ms50. For a given g.0 the SP
depends on two parameters, m and v . For v50 and large
umu there is only a trivial solution of ~3.7! with h85h50
because gI,1. As one varies umu there is a critical point
mc52mc52e2p/g, where gI,1 approaches gI51. As a
consequence, the SP solution of ~3.7! bifurcates from h50
to hÞ0 at m5mc , and h50 becomes unstable.27 In the
following only the region with hÞ0 is considered, where
sign(h)5sign(v). This has a nonzero density of states

r~m !'~1/2pg ! lim
v→0

h8

5~1/2pg !h5~1/4pg !A~mc
22m2!Q~mc

22m2!,

~3.10!

which describes a semicircular behavior. Of course, this must
be normalized with an energy cutoff dependent constant.
As an ansatz for the SP approximation with vÞ0 one can

write

h8~v !25h8~v50 !21d5
mc
22m2

4 1d , ~3.11!

where the last equation follows from the SP equation for
v50. This implies

umu25mc
2/41d ~3.12!

and for Eq. ~3.7!
~g/2p !h8ln~114d/mc
2!5v . ~3.13!

The expansion of the logarithm for d!mc
2/4 yields a cubic

equation for d

Smc
22m2

4 1d D d2'v2S pmc
2

2g D 2. ~3.14!

Although this equation could be solved directly it is simpler
to distinguish two different asymptotic regimes:

~i! (mc
22m2)/4!d!mc

2/4,

d;v2/3S pmc
2

2g D 2/3 ~3.15!

and ~ii! (mc
22m2)/4@d ,

d;v
pmc

2

g
1

Amc
22m2 . ~3.16!

C. Gaussian ūctuations

In order to evaluate the localization length j l the Gaussian
ūctuations around the SP must be calculated ~semiclassical
approximation!. Since Q , P , and Q are 232 matrices, the
ūctuations can also be written as four-component vector
®elds: q15dQ11 , q25(dQ121dQ21)/2, q352i(dQ12
2dQ21)/2, q45dQ22 with analogous de®nitions for
p1 , . . . ,p4 and for the Grassmann ®eldc1 , . . . ,c4. The ac-
tion of the Gaussian ūctuations reads in the Fourier repre-
sentation

S8'E (
m ,m851

4

@~Ik!m ,m8~qk ,mq2k ,m81pk ,mp2k ,m8!

12~Ik8!m ,m8c
Å

k ,mc2k ,m8#d
2k , ~3.17!

with the ūctuation matrices Ik and Ik8 . For the large-scale
properties one needs only the asymptotic behavior for small
wave vectors k . In particular, for a vanishing wave vector
there is
I05S 1/g22am*2 0 0 2b

0 2/g24aumu2 0 0
0 0 2/g24aumu2 0
2b 0 0 1/g22am2

D , ~3.18!

I805S 1/g22am*2 0 0 0
0 2~1/g22aumu222b ! 0 0
0 0 2~1/g22aumu212b ! 0
0 0 0 1/g22am2

D , ~3.19!
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with

a5E ~ umu21k2!22d2k/4p2;umu22/4p51/pmc
2

~3.20!

and

b5E k2~ umu21k2!22d2k/4p2

5I/221/4p;2lnumu2/4p;1/2g . ~3.21!

These quantities become quite large for small umu indicating
a short range behavior of the related modes. However, the
second diagonal element of I8 vanishes for vanishing v be-
cause of 1/g22aumu222b5v/gh8. This is a direct conse-
quence of the SP condition ~3.7! and indicates a critical
mode ck ,2 for all umu,mc . Moreover, it implies a divergent
behavior of the localization length if v→0. The correspond-
ing correlation function of the critical mode can be calcu-
lated in the large-scale limit by expanding I8k in powers of
k as

CÄ~k ,v !5g22~2v/gh81Dk2!21, ~3.22!

where

D54aF11aS m2

1/g22am2 1
m*2

1/g22am*2D G . ~3.23!

gh8D/2 is like a diffusion coef®cient. It is real and it never
becomes zero. The critical behavior describes a phase with a
divergent sum (r , j^uG j j(r ,r8)u2&; i.e., the correlation func-
tion decays nonexponentially. It implies that
CÄ(k50,v)5h8/2gv5p^r(v)&/v . This holds not only on
the SP level but, in general, due to the identity
(r8, j , j8uG j j8(r ,r8)u

25pr/v .
CÄin ~3.22! is an approximation based on Dk2!1. Since

D diverges like 1/pmc
2 it is not possible to use this expres-

sion for the pure limit. This also re ēcts the nonperturbative
character of the SP approximation.
Apart from the critical ~delocalized! fermion mode there

is a boson mode which becomes critical at m56mc . This is
due to a vanishing eigenvalue of I0 because h50 at
m56mc . Thus there are delocalized states for umu,mc due
to massless fermions, whereas a combination of critical fer-
mions and critical bosons controls the QHT. The band of
delocalized fermions simpli®es the study of transport prop-
erties of the model away from the critical points m56mc .
An analogous calculation for the Gaussian ūctuations

can be performed for Anderson localization @i.e., for f50 in
Eq. ~2.1!#. In that case the Green's function of Eq. ~2.7! must
be replaced by

G~ iv ![S iv1M1¹2 0
0 iv2M2¹2D 21

. ~3.24!

Now the matrix H5M1¹2 is symmetric in contrast to
H5is¹1(m2t8)s3. As a consequence the corresponding
ūctuation matrix is degenerated for the fermion and the
boson sector ~i.e., Ik85Ik) with
I05S 1/g2a 0 0 0
0 2~1/g2b ! 0 0
0 0 2~1/g2b ! 0
0 0 0 1/g2a*

D ,
~3.25!

where

a5
1

~2p !d
E ~k22E1ih !2

@~k22E !21h2#2
ddk ~3.26!

and

b5
1

~2p !d
E 1

~k22E !21h2
ddk . ~3.27!

There are two vanishing eigenvalues of I0 for vanishing v in
the Grassmann as well as in the complex sector, each of them
is 1/g2b5v/gh8. Therefore, the large-scale behavior of
this model is very different, and the critical properties are
described by a nonlinear s model including fermion as well
as boson degrees of freedom.29 This is a consequence of the
fact that f50 preserves the supersymmetry, whereas the
model with f5f0/2 breaks the supersymmetry implying I
ÞI8. The latter implies that there is only one massless ~de-
localized! fermion ®eld, and all other ®elds are massive~lo-
calized!.

D. Corrections to Gaussian ūctuations

Gaussian ūctuations are usually not suf®cient to describe
the properties of a critical system, especially at low dimen-
sionality, because the interaction between the ūctuations are
a relevant perturbation. For Anderson localization the inter-
action is marginal in d52 as one ®nds from power counting
of the scaling behavior. This method can also be applied to
the effective ®eld theory of random Dirac fermions. It pro-
vides a ®rst check for the effect of the interaction among the
ūctuations. In the following we will see that the perturba-
tion term for random Dirac fermions has dimensionality
22. Therefore, the interaction of the ūctuations is irrel-
evant. ~It seems that the dimensionality is reduced by 2 in
comparison to Anderson localization. This is similar to the
dimensional reduction by 2 in supersymmetric theories, ap-
plied to the average density of states for a particle in a strong
magnetic ®eld and a random potential.30,31!
Away from the critical points umu5mc it is suf®cient to

study the Grassmann ūctuations because the complex ūc-
tuations are massive. Their action reads for terms up to the
fourth order in the ūctuations,

S8'2E ~2v/gh81Dk2!cÅk ,2c2k ,2d2k

28 (
r1 , . . . ,r4

Tr2@QÅr1G
Å

r1r2Qr2G
Å

r2r3
T QÅr3G

Å
r3r4Qr4G

Å
r4r1
T # ,

~3.28!
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FIG. 1. Scaling of the localiza-
tion length as a function of the fre-
quency for disorder strength
g50.2 and m2t850.
where GÅ5tG0t . c2s1 is the only critical mode of the col-
lective Grassmann ®eldQr . Thus the interaction term can
also be written as

28 (
r1 , . . . ,r4

Tr2@s1GÅr1r2s1G
Å

r2r3
T s1GÅr3r4s1G

Å
r4r1
T #

3cÅr1,2cr2,2c
Å

r3,2cr4,2 . ~3.29!

The trace term can be evaluated and yields after some
straightforward calculation together with the approximation
Gr ,r8'umu22@(ih8s02ms3)dr ,r81i¹1;r ,r8s11i¹2;r ,r8s2#
the following expression

28umu28 (
r1 , . . . ,r4

@cÅr1dr1 ,r2cr2dr2 ,r3c
Å

r3dr3 ,r4cr4dr4 ,r1

1cÅr1dr1 ,r2
* cr2dr2 ,r3

* cÅr3dr3 ,r4
* cr4dr4 ,r1# , ~3.30!

where the index 2 of the Grassmann ®eld has been dropped
and dr ,r85(¹1;r ,r81i¹2;r ,r8). This result re ēcts the fact
that terms with an odd number of ¹ operators cancels in
~3.29! and terms quadratic in ¹ cancel each other because of
the anticommutation rule of the Grassmann ®eld:
cÅr1cr1c

Å
r3cr31cÅr1cr3c

Å
r3cr150. Higher order terms with at

most second order gradients disappear individually because
they contain Grassmann ®elds at the same site. Simple power
counting indicates that this interaction term has dimension-
ality 22. Therefore, the interaction is irrelevant in compari-
son with Gaussian ūctuations considered in the previous
section, and it scales quickly to zero under renormalization
group transformations.
The situation is different if we approach m56mc be-

cause the complex ®eld also becomes critical. As a conse-
quence, the corrections to Gaussian ūctuations are marginal
rather than irrelevant then. It is possible that the localization
length becomes ®nite at m56mc due to renormalization
effects. This phenomenon near 6mc requires a separate
treatment which will not be considered in this paper.
The irrelevance of the interaction terms is very special for

the model under consideration. In similar two-dimensional
models, like the Gross-Neveu model or the tight-binding
model without magnetic ®eld ~orthogonal nonlinear s
model! or with weak magnetic ®eld ~unitary nonlinear s
model!, the interaction is always marginal ~i.e., dimensional-
ity of the interaction term is zero!.

IV. LOCALIZATION LENGTH

According to the discussion of the Gaussian ūctuations
in Sec. III C, the leading large scale behavior is given by the
correlation function of ~3.22!. From the latter the localization
length can be calculated, using Eq. ~2.12!, as j l
5(2Dgh8/v)1/2. Together with the SP results ~3.11! and
~3.23!, j l reads

j l'A2g
p Smc

22m2

4 1d D 1/4~mc
2/41d !21/2v21/2.

~4.1!

The localization length diverges like v21/2 because D and
h8 remain nonzero for umu,mc according to the results of
the SP approximation. To compare j l with numerical or ex-
perimental results it is important that D can be large
(;umu22) and h8 can be small. Therefore, several quasiscal-
ing regimes exist as indicated by the graph in Fig. 1 which is
simply the plot of ~4.1! together with ~3.13!. Only in the
asymptotic regime v;0, i.e., for (mc

22m2)/4@d , the local-
ization length diverges like v21/2,

j l;A2g
p Smc

22m2

4 D 1/4 2mc
v21/2. ~4.2!

Surprisingly, the exponent n51/2 agrees with that of a com-
pletely different approach to the QHT by Af ēck. 11 More-
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over, n51/2 was also found by Ludwig et al. for Dirac fer-
mions with a random vector potential at that special point on
their ®xed point line where the average density of states is
®nite.13
A quasiscaling regime occurs for (mc

22m2)/4
!d!mc

2/4, where we have

j l;A2g
p

~mc
2/41d !21/2S pmc

2

2g D 1/6v21/3

;A2g
p

2
mc

S pmc
2

2g D 1/6v21/3, ~4.3!

i.e., the effective exponent is n51/3.
Going back to the SP equation ~3.13! one could also as-

sume mc
2/4!d . It gives

2d1/2~g/2p !ln~mc
2!5d1/2;v . ~4.4!

This result implies for the localization length

j l;A2g
p

d21/4v21/2;A2g
p

v21, ~4.5!

i.e., the effective exponent is n51. The coef®cient in ~4.3!
decays for small g like g1/3e2p/3g whereas the corresponding
coef®cient in ~4.5! grows like g1/2 with the strength of dis-
order. The coef®cients of the power law forn51/3 (c1), for
n51/2 (c2) and for n51 (c3) are plotted in Fig. 2. n51 and
the behavior of the corresponding coef®cient c3 agree with
the observation in experiments.2±4

FIG. 2. Coef®cientsc j of the power laws of j l for m2t850.
V. CONDUCTIVITY

The longitudinal conductivity can be calculated via Ku-
bo's formula,

sxx~v !5
e2

h v2(
r

r2^G j j8~r ,0;iv !G j8 j~0,r;2iv !&.

~5.1!
The correlation function is again the expression we have
considered in the effective ®eld theory. Since for small v
only the large-scale part of the correlation contributes sig-
ni®cantly, we can useCÄ(k ,v) of ~3.22! to write

sxx~v !52
e2

h v2¹k
2CÄ~k ,v !uk505

e2

h v2g22D~v/gh8!22

5
e2

h Dh82. ~5.2!

For weak disorder we use the approximation D;4a . Fur-
thermore, for v;0 we get a51/4pumu2;1/pmc

2 . There-
fore, the conductivity reads in the dc limit

sxx~v50 !;
e2

ph
mc
22m2

mc
2 Q~mc

22m2!. ~5.3!

For m50 the dc conductivity is independent of disorder,

sxx
c ~v50 !;e2/ph . ~5.4!

This result is in agreement with a calculation for Dirac fer-
mions with a random vector potential.13 Thus there is a uni-
versal conductivity in d52 at the center of the band of ex-
tended states 2mc,m,mc .
The Hall conductivity can be calculated using a simpler

®eld theory which does not break the supersymmetry.21 In
units of e2/h it was found

sxy'1/21sign~m !@1/22~1/p !arctan~Amc
2/m221 !

3Q~mc
22m2!#. ~5.5!

For m50 the Hall conductivity is always e2/2h , whereas for
mÞ0 it depends on the disorder via mc . The resistivity,
calculated from the averaged conductivities ~which is an ad-
ditional approximation because one should actually evaluate
the averaged resistivity! yields

rxx
c 5sxx

c /~sxx
c 21sxy

c 2!'0.9h/e2. ~5.6!

This value agrees with an error of about 610% with various
experimental results.32

VI. DISCUSSION OF THE RESULTS

For a given strength of randomness g there are three dif-
ferent regimes of the behavior of the localization length, de-
pending on the value of d . d is directly related to the fre-
quency v according to the equations ~3.15!, ~3.16!, and ~4.4!,
respectively. The corresponding power laws j l;c jv

2n j ap-
pear with effective exponents n151/3 and n351 and with
the asymptotic exponent n251/2. The exponents and the cor-
responding coef®cients c j are shown in Table I, and the g
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dependence of the coef®cients is plotted in Fig. 2. Ludwig
et al. evaluated the exponent n for two-dimensional Dirac
fermions with a random vector potential with variance ga . In
that case the exponent of the asymptotic localization length
depends smoothly on randomness as n51/(11ga /p).13 It
should be noticed that the inequality n>1 of Chayes et al.33
for two-dimensional random systems does not apply to the
problem under consideration ~cf. also the discussion in Ref.
13!. It is remarkable though that there is agreement of the
asymptotic result n51/2 between the present calculation for
the random Dirac mass, the random vector potential with
®nite average density of states ~where ga /p51) ~Ref. 13!,
and the nonlinear s model with the topological term.11
The result n51/3 is not reliable because it appears close

to the critical points umu5mc , where the bosonic degrees of
freedom become critical. Moreover, the asymptotic regime
with n51/2 is not realistic: The typical width of the ūctua-
tions Ag in a sample is about 10% of the hopping rate. I.e.,
mc52e2p/g is immeasurably small. Therefore, only the re-
gime d@mc

2/4 would be accessible, and only the effective
exponent n51, together with the coef®cient A2g/p , is of
practical relevance. Consequently, only the coef®cient of the
localization length is affected by randomness. This is in
agreement with the observations in Refs. 2±4. However, the
divergency of the localization length is controversial among
the various experiments. In this context it would be interest-
ing if the crossover length, evaluated in the paper as
;exp(p/g), can be observed experimentally.
The density of states is nonzero near the QHT. This result

TABLE I. Exponents for the localization length and the corre-
sponding coef®cients.

Regime d!(mc
22m2)/4 (mc

22m2)/4!d!mc
2/4 d@mc

2/4

n 1/2 1/3 1
Coef®cient c2 c1 c3
is nonperturbative because r}exp(2p/g), and it re ēcts
spontaneous symmetry breaking.23 It agrees with a Monte
Carlo simulation for the network model by Lee and Wang,34
with an exact diagonalization of a ®nite system,35 with a
rigorous estimation,23 and with an exact calculation for
Lorentzian disorder.28
The longitudinal conductivity sxx(v) is nonzero between

m52mc and m5mc , the transition region between two
Hall plateaus. In an experiment it may not be possible to
resolve the width of this band of delocalized states since
mc is too small. Therefore, the width of the transition be-
tween the Hall plateaus will always be dominated by thermal
broadening. Thus a power law for the width D at temperature
T like D;Tk ~Ref. 36! is a realistic ansatz. The conductivity
at the QHT should agree with the value of sxx at m50, i.e.,
sxx
c 5e2/hp . Converting this value into the corresponding
value of rxx

c gives '0.9h/e2 which is in good agreement
with experiments. The universal value sxx

c 5e2/hp agrees
with the value found for random vector potential,13 but not
with the result found from the numerical simulation of the
network model, where sxx

c 5e2/2h was found.7 This value
was also obtained for the lowest Landau level projection.8
It seems that our results for the 2D Dirac fermions with a

random mass are in good agreement with the corresponding
results for 2D Dirac fermions with a random vector potential
and with recent experiments. But there is disagreement with
the results of the numerical simulation of the network model.
This may be related to different types of randomness ~e.g.,
strong randomness in the magnetic ®eld! or to different ge-
ometries. It is also possible that there is a strong renormal-
ization of the localization length near m56mc , due to ex-
tended boson ®elds leading to an exponent n'7/3. This,
however, would raise the question about the origin of the
experimental value n'1. Moreover, the disagreement of the
values of sxx

c for the network model on the one side and for
Dirac fermions with m50 on the other side cannot be ex-
plained by renormalization effects.
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11 I. Af ēck, Nucl. Phys. B 265, 409 ~1986!.
12H. Levine, S.B. Libby, and A.M.M. Pruisken, Phys. Rev. Lett. 51,
1915 ~1983!; A.M.M. Pruisken, in The Quantum Hall Effect,
edited by R.E. Prange and S.M. Girvin ~Springer-Verlag, New
York, 1990!.

13A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, and G. Grinstein,
Phys. Rev. B 50, 7526 ~1994!.

14D.J. Thouless, M. Kohmoto, M.P. Nightingale, and M. den Nijs,
Phys. Rev. Lett. 49, 405 ~1982!.

15Y. Hatsugai, Phys. Rev. B 48, 11 851 ~1993!.
16M. Oshikawa, Phys. Rev. B 50, 17 357 ~1994!.
17G.W. Semenoff, Phys. Rev. Lett. 53, 2449 ~1984!.
18F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 ~1988!.
19M.P.A. Fisher and E. Fradkin, Nucl. Phys. B 251, 457 ~1985!.
20D. Weiss, Quantum Dynamics of Submicron Structures, edited by
H.A. Cerdeira et al. ~Kluwer, New York, 1995!.

21K. Ziegler, Europhys. Lett. 28, 49 ~1994!.
22Vi. Dotsenko and Vl.S. Dotsenko, Adv. Phys. 32, 129 ~1983!.
23K. Ziegler, Nucl. Phys. B 285, 606 ~1987!.



10 670 55K. ZIEGLER
24D.H. Lee, Phys. Rev. B 50, 10 788 ~1994!.
25C.-M. Ho and J.T. Chalker ~unpublished!.
26K. Ziegler, Europhys. Lett. 31, 549 ~1995!.
27K. Ziegler, Nucl. Phys. B 344, 499 ~1990!.
28K. Ziegler, Phys. Rev. B 53, 9653 ~1996!.
29K.B. Efetov, Adv. Phys. 32, 53 ~1983!.
30F. Wegner, Z. Phys. B 51, 279 ~1983!.
31E. BreÂzin, D. Gross, and C. Itzykson, Nucl. Phys. B 235, 24

~1984!.
32D. Shahar, D.C. Tsui, M. Shayegan, and R.N. Bhatt, Phys. Rev.
Lett. 74, 4511 ~1995!.

33J.T. Chayes, L. Chayes, D.S. Fisher, and T. Spencer, Phys. Rev.
Lett. 57, 2999 ~1986!.

34D.-H. Lee and Z. Wang, Philos. Mag. Lett. 73, 145 ~1996!.
35Y. Hatsugai and P.A. Lee, Phys. Rev. B 48, 4204 ~1993!.
36H.P. Wei, D.C. Tsui, M.A. Paalanen, and A.M.M. Pruisken, Phys.
Rev. Lett. 61, 1294 ~1988!.


