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Abstract. Skyline queries enable satisfying search results by delivering
best matches, even if the filter criteria are conflictive. The result of a
Skyline query consists of those objects for which there is no dominating
object in the input data set. Algorithms for Skyline computation are
often classified into generic and index-based approaches. While there are
uncountable papers on the comparison on generic algorithms, there exists
only a few publications on the effect of index-based Skyline computation.
In this technical report, we evaluate the most recent index-based Skyline
algorithms BBS, ZSky, and SkyMap in order to find out which algorithm
performs best. We conducted comprehensive experiments on different
data sets and present some really unexpected outcomes.
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1 Introduction

Preferences in databases are a well established framework to create personalized
information systems [I]. Skyline queries [2] are the most prominent representatives
of these queries; they model equally important preferences, and the aim is to
find all Pareto-optimal objects. More detailed: Given a data set D, a Skyline
query returns all objects that are not dominated by any other object in D. An
object p is dominated by another object ¢, if ¢ is at least as good as p on all
dimensions and definitely better in at least one dimension. Thus, a Skyline query
computes all Pareto-optimal objects w.r.t. to a preference or feature function
and has many applications in multi-criteria optimization problems.

Ezxample 1. Assume the sample data set in Table [l Imagine that the objects are
hotels and the x and y coordinates in the 2-dim space correspond to the price and
distance to the beach. The target is to find the cheapest hotels which are close to
the beach, where both preferences should be considered as equally important (a
Pareto preference). Then this query would identify the hotels {p1, p2, p3, D5, D6 }
as the Skyline result. All objects in this set are indifferent and dominate all other
objects.
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Table 1. Sample data set for Skyline.

object|p1|p2|ps|p4|ps|pe |P7|Ps|Po
x 3| 1| 2| 3| 5] 7| 6| 4| 6
y 3| 6| 4] 7| 2| 1| 2| 4] 6

The main problem with Skyline queries is to efficiently find the set of non-
dominated objects from a large data set, because Skyline processing is an ex-
pensive operation. Its cost is mainly constituted by I/O costs in accessing data
from a secondary storage (e.g., disks) and CPU costs spent on dominance tests.
Note that search efficiency is one of the most important performance criteria to
Skyline computation. There exist several algorithms for Skyline processing such
as window-based, distributed, divide-conquer, lattice-based, and index-based algo-
rithms. In general, these approaches can be divided into generic and index-based
techniques.

Generic algorithms are often capable to evaluate each kind of preference
(modeled as irreflexive and transitive order [3]) due to an object-to-object com-
parison approach. However, in a worst-case scenario the generic algorithms show
a quadratic runtime O(n?) in the size n of the input relation. Note that there
are also linear algorithms, but only for limited applications [4/5]. On the other
hand, index-based algorithms tend to be faster, but are less flexible — they are
designed for quite static data, flat query structures and have a high maintenance
overhead associated with database updates [6]. In general, they cannot deal with
complex preference queries, where, e.g., intermediate relations are dynamically
produced by a Cartesian product or a join.

As Skyline queries have been considered as an analytical tool in some com-
mercial relational database systems [7I8], and the data sets to be processed in
real-world applications are of considerable size, there is definitely the need for
improved query performance. And indexing data is one natural choice to achieve
this performance improvement. Also, Lee et al. [9] show that a wide variety of
special Skyline queries (k-dominant Skylines, Skybands, Subspace Skylines, etc.)
can be supported using a single index structure. While indexes can dramatically
speed-up retrieval, they also introduce maintenance costs and tend to quickly
degenerate on higher dimensional data.

In this report, we compare the best known index algorithms for Skyline com-
putation, namely BBS [10], ZSky [1119], and SkyMap [12] w.r.t. their performance,
since search efficiency is the most important performance criteria using this kind
of queries. As a baseline algorithm we use the well-known BNL approach [2].
We will present comprehensive experiments on synthetic and real-world data to
evaluate the behavior in different scenarios in order to find the best approach for
one’s field of application.

The rest of this work is organized as follows: Section [2] presents background
on Skylines and we introduce the index-based Skyline algorithms used in this
report in Section Section El contains our comprehensive experiments. In Section
we discuss some related work, and in Section [f] we give some final remarks.
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2 Background

Before going into details on index-based Skyline processing, this section will
provide some preliminary definitions. The aim of a Skyline query or Pareto
preference is to find the best matching objects in a data set D, denoted by Sky(D)
[13]. More formally:

Definition 1 (Dominance and Indifference). Assume a set of vectors D C
Re. Given p = (p1,...,Pn);q = (q1,---,qq) € D, p dominates g on D, denotes as
p = q, if the following holds:

p<geVie{l,..,d}:pi<gANIje{l,..,d} p; <g; (1)

Two objects p and q are called indifferent on D, denoted as p ~ q, if and only if
pAqandqAp.

Note that following Definition [1, we consider a subset D C R? in that we
search for Skylines w.r.t. the natural order < in each dimension. Characteristic
properties of such a data set D are its dimensionality d, its cardinality n, and its
Skyline size |Sky(D)|.

Definition 2 (Skyline Sky(D)). The Skyline Sky(D) of D is defined by the
mazima i D according to the ordering <, or explicitly by the set

Sky(D):={pe D |3qeD:q=<p} (2)

In this sense, the minimal values in each domain are preferred and we write p < q
if p is better than q.

In Example |l| we have Sky(D) = {p1,p2,P3s, Ps5,D6}-

Skylines are not restricted to numerical domains. For any universe {2 and
orderings <;€ (2 x 2)(i € {1,...,d}) the Skyline w.r.t. <; can be computed,
if there exist scoring functions g; : 2 — R for all ¢ € {1,...,d} such that
P =i ¢ < gi(p) < ¢i(q)). Then the Skyline of a set M C 2 w.r.t. (<;)i=1,... 4 IS
equivalent to the Skyline of {(g(p1), .-, 9(pa)) | pi € M}. That means, categorical
domains can easily be mapped to a numerical domain.

3 Algorithms

In this section we review the state-of-the-art index-based Skyline algorithms BBS,
ZSky, and SkyMap as well as BNL as an object comparison approach.

3.1 BBS

BBS (Branch-and-Bound Skyline) [I0J14] is based on a nearest neighbor (NN)
search and uses R-trees for data partitioning. As an example consider Figure a)
taken from [II]. The object p; is the first Skyline object, since it is the NN to
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Fig. 1. The BBS algorithm, cp. [11].

the origin. The objects p4, ps, and pg fall into the dominance region of p; and
therefore can be discarded. p3 is the second NN (not worse than p;) and hence is
another Skyline object. The same idea applies to ps (which dominates p;7) and
p2 and pg. All non-dominated objects build the Skyline.

BBS uses a main-memory R-tree to perform dominance tests on every exami-
nee (i.e., data object or index node) by issuing an enclosure query. If an examinee
is entirely enclosed by any Skyline candidate’s dominance region, it is dominated
and can be discarded. For example, in Figure (b)7 ps is compared with the
minimum bounding rectangles (MBR) B, and Bj. Since pg is in By, it is possibly
dominated by some data objects enclosed by B,. Hence, pg is compared with the
dominance regions of all the data objects inside B, and found to be dominated
by p1 and ps.

3.2 ZSky

ZSky is a framework for Skyline computation using a Z-order space filling curve [9].
A Z-order curve maps multi-dimensional data objects to one-dimensional objects.
Thereby each object is represented by a bit-string computed by interleaving the
bits of its coordinate values, called Z-address, which then can be used for B-tree
indexing. Through the Z-addresses the B-tree imposes a pre-sorting on the data,
which can be exploited for dominance tests: No database item can dominate any
item having a lower Z-address. These observations lead to the access order of the
data objects arranged on a Z-order curve.

In Figure (a) the data space is partitioned into four regions I to IV. Region I
is not dominated by any other object, and all objects in region IV are dominated
by region I. Region IT and III are incomparable. These principles also apply to
subregions and single coordinates. Using a Z-order curve, region I should be
accessed first, followed by region II and III, and finally region IV. The access
sequence therefore follows the mentioned Z-order curve as seen in Figure b).

With effective region-based dominance tests, ZSky (more accurate ZSearch)
can efficiently assert if a region of data objects is dominated by a single object or a
region of Skyline objects. In each round, the region of a node is examined against
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the current Skyline candidate list. If its corresponding region is not dominated,
the node is further explored.

P2 P9

4+ p:O O

pi

I m '’
T T T T T T
0 1 23 45 6 7 X

(a) ZSky regions. (b) A Z-order curve.

Fig. 2. ZSky example, cp. [9].

Z-Sky can also be used with bulkloading. Bulkloading builds a ZB-tree in
a bottom-up fashion. It sorts all data objects in an ascending order of their
Z-addresses and forms leaf nodes based on every N data objects. It also puts
every IV leaf nodes together to form non-leaf nodes until the root of a ZB-tree is
formed.

3.3 SkyMap

Selke and Balke [12] proposed SkyMap for Skyline query computation. In general,
SkyMap is based on the idea of the Z-order curve, but relies on a trie (from
retrieval) indexing structure instead on a ZB-tree. In a trie (also known as Prefix
B-tree), internal nodes are solely used for navigational purposes, whereas the leaf
nodes store the actual data. SkyMap is a multi-dimensional extension of binary
tries, which additionally provides an efficient method for dominance checks. The
SkyMap index has primarily been designed to resemble the recursive splitting
process of Z-regions.

When traversing a SkyMap index while looking for objects ¢ dominating an
object p, one can skip any node (along with all its children) whose corresponding
Z-region is worse than p w.r.t. at least one dimension. Navigation within the
SkyMap index is particularly efficient by relying on inexpensive bitwise operations
only. In this sense, SkyMap promises efficient navigation and index maintenance
which should result in a higher performance in comparison to Z-Sky.

3.4 BNL

BNL (Block-Nested-Loop) was developed by Borzsonyi [2] in 2001. The idea of
BNL is to scan over the input data set D and to maintain a window (or block)
of objects in main memory containing the temporary Skyline elements w.r.t. the
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data read so far. When an object p € D is read from the input, p is compared to
all objects of the window and, based on this comparison, p is either eliminated,
or placed into the window. At the end of the algorithm the window contains the
Skyline. The average case complexity is of the order O(n), where n counts the
number of input objects. In the worst case the complexity is O(n?) [2].

The major advantage of a BNL-style algorithm is its simplicity and suitability
for computing the Skyline of arbitrary partial orders [3]. Note that BNL is not
an index approach, but is used as a baseline algorithm in our experiments.

4 Experiments

In this section we show our comprehensive comparison study on index-based
Skyline algorithms, i.e., BBS, ZSky, ZSky-Bl (ZSky with bulkloading), and
SkyMap. As a base line algorithm we used the generic BNL. In all our exper-
iments the data objects and index structures are held in main memory as has
also been done by the original works [TOJ9IT5] and [12]. All experiments were
implemented in Java 1.8 and performed on a common PC (Intel i7 4.0 GHz CPU,
16 GB RAM) running Linux. We use a maximum of 4 GB RAM for the JVM.

Similar to most of the related work in the literature, we use elapse time /
runtime as the main performance metric. Each measurement was based on 16
repetitions from which we neglected the four best and four worst runtimes. From
the remaining 8 measurements we used the average runtime in our figures.

Four our synthetic data sets we used the data generator commonly used in
Skyline research [2] and that one was also used by the original papers [T0/9/12].
We generated independent (ind), correlated (cor), and anti-correlated (anti) data
and varied the number of dimensions (d) and the number of input objects (n).
For the experiments on real-data, we used the well-known Zillow, House, and
NBA data sets which will be explained in detail later when used.

4.1 Effect of Data Dimensionality

In this section we consider the influence of the number of dimensions d on
the runtime of the algorithms. We used different data distributions and varied
d € {4,6,8,10,15,20,25,30}, where each dimension has the integer domain
[0,1024). We fixed n = 100K, and plotted the elapsed time in log scale against
the data dimensionality.

Independent Data. Figure [3|shows our results on synthetic independent data.
Considering the index construction (on the top right, “Index”), BBS is worst and
ZSky-Bl is best, because there are no special computations due to bulkloading. We
also observe that the index construction time increases with growing dimensions.
For the Skyline computation time (on the top left, “Skyline”), BNL outperforms
some index algorithms, but has the highest runtime from 10 dimensions on. Note,
that the size of the Skyline is nearly the size of the input data from 20 dimensions
on and therefore the computation costs are nearly equal in these cases. In general,
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BBS is the slowest algorithm, whereas there is nearly no difference between ZSky
and ZSky-Bl. Based on the incremental insert of objects, we only get slightly
better Z-regions. In summary, BNL performs well for less number of dimensions,
whereas SkyMap performs better with increasing dimensions.

BNL BBS EEEEN  ZSky E== ZSky-Bl EEEEE SkyMap mmmmm

1000 ¢

Skyline Index

100

Runtime [s]
Ty

Skyline + Index

Runtime [s]

Fig. 3. Independent data. Runtime w.r.t. dimensionality.

Table [2] summarizes some statistics for the evaluation, e.g., the size of the
Skyline, and the number of dominance tests. The dominance tests also includes
the comparison between regions to objects and other regions in BBS and ZSky.
In particular, the number of dominance tests is very high for BNL and BBS,
which are mainly based on object-to-object comparisons. On the other hand,
ZSky and SkyMap are able to sort out leafs or inner nodes of the index structure,
which leads to a better performance and less comparisons.

Table 2. Independent data. Dominance tests w.r.t. dimensionality.

Dim||Skyline| BNL BBS ZSky  ZSky-Bl  SkyMap
4 246 472.733 211.994  199.086  258.971  229.151
6| 2.486| 8.686.399  5.338.050 7.189.352 7.560.025 2.719.943
8| 9.671| 88.058.715  51.243.124 32.050.250 31.739.487  9.780.642
10|| 25.673| 465.239.329 336.695.082 95.895.490 94.628.219 33.612.608

20]|| 97.034|4.794.518.883 4.709.122.182 602.389.909 599.937.128 285.420.489
25(| 99.806|4.988.782.311 4.980.685.164 649.692.554 647.307.956 315.818.979

15| 76.944|3.265.808.129 2.967.079.852 411.655.318 409.392.015 168.155.529
30]|| 99.995]4.999.628.298 4.999.453.504 650.497.209 648.157.904 316.831.960
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Correlated Data. In Figure [4] we present results on correlated data. The
index construction time is very similar to the results of independent data: The
data distribution has nearly no influence on the tree construction. It is notable
that for the used correlated data exactly one point was in the Skyline. This,
of course, speeds-up Skyline computation. As a result, BBS shows a very good
behavior for every number of dimensions, because BBS checks the temporary
Skyline set (one point) against the points in the R-tree. Since there are many
boxes which are dominated early, BBS performs extraordinary good. A similar
behavior can be found for Z-Sky, whereas SkyMap performs worst.

BNL BBS EEEE  7zSky == ZSky-Bl EEEER  SkyMap mmmm

Skyline Index

Runtime [s]

Skyline + Index

Runtime [s]

d

Fig. 4. Correlated data. Runtime w.r.t. dimensionality.

Table [3] shows the number of dominance tests for correlated data. Interest-
ingly, SkyMap uses exactly 99.999 dominance tests for all eight experiments. This
is due to the fact that the first point is added to the list and afterwards all other
points in the list are tested against this point. All other algorithms need more
dominance test with increasing dimensions.

Table 3. Correlated data. Dominance tests w.r.t. dimensionality.

Dim||Skyline| BNL BBS ZSky ZSky-Bl SkyMap

4 1/100.585 476 24.009 28.200 99.999
6 1/100.761 409 45.510 48.600 99.999
8 1/100.616 380 55.097 56.600 99.999
10 1/105.989 428 58.802 61.000 99.999

15 1|106.876 484 64.031  64.400  99.999
20 1/137.654 698 65.655  65.800  99.999
25 1/136.053 757 66.419  66.400  99.999
30 1/130.694 770 67.645  67.600  99.999
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Anti-Correlated Data. Figure [5| shows our results on anti-correlated data.
Anti-correlated data is the worst-case for Skyline computation, because there are
many indifferent objects and the result set is large. The costs for index creation
and Skyline computation is very similar to independent data. Considering the
total costs (“Skyline 4+ Index”), BNL is better than all index-based approaches
until 6 dimensions. In higher dimensions BBS, ZSky, and ZSky-Bl are nearly
equally good and all are outperformed by SkyMap. Furthermore, SkyMap is
much better than all other algorithms w.r.t. the pure Skyline computation. These
results are also reflected by the numbers in Table [4] SkyMap uses the lowest

number of dominance tests.

Runtime [s]

Runtime [s]

Skyline

Skyline + Index

BNL

BBS EEEEN  ZSky E== ZSky-Bl EEEEN  SkyMap mmmmm

Index

Fig. 5. Anti-correlated data. Runtime w.r.t. dimensionality.

Table 4. Anti-correlated data. Dominance tests w.r.t. dimensionality.

Dim|[Skyline| BNL BBS ZSky  ZSky-Bl SkyMap
4 3.465 17.819.929 76.151.238 31.583.925 34.211.658 16.059.065

6 14.076| 175.948.579 507.586.113 139.902.463 139.814.862 46.419.955

8 34.278| 823.124.157 1.741.955.033 325.706.677 324.366.814 123.623.731
10 58.508(2.108.683.666 3.346.922.807 612.903.441 610.423.362 415.030.123
15 94.400(4.603.053.657 5.892.636.374 1.066.961.134 1.063.518.245 804.763.547
20 99.669(4.979.353.245 6.295.607.429 1.169.862.079 1.166.292.765 876.884.805
25 99.933(4.995.078.177 6.242.921.947 1.193.496.757 1.189.897.954 924.878.532

30

99.978

4.999.135.061 6.187.246.550

1.185.961.162 1.182.256.403 921.935.565
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Memory Usage Figure |§| shows the memory usage (in 10° bytes) of BBS,
ZSky, ZSky-Bl, and SkyMap for different number of dimensions. BBS and ZSky
require the highest amount of memory, whereas ZSky-Bl and SkyMap are more
frugal. This is due the small 'inner index structure’ resp. the sorted list in SkyMap.
Nevertheless, increasing dimensions lead to increasing memory usage.

BBS mmEEN  ZSky === ZSky-Bl EEEEN  SkyMap mmmmm

independent correlated anti-correlated

Memory usage [10° Bytes]

d d d

Fig. 6. Memory usage w.r.t. dimensionality.

We also investigated the structure of the index approaches in Table [5| We
considered the number of inner nodes, the number of leafs, and the height of
the trees. It is visible that ZSky-Bl always constructs the same tree due to its
bulkloading technique.

Table 5. Independent data. Tree structure w.r.t. dimensionality.

BBS ZSky ZSky-Bl1

dim||#in. nodes #leafs height|#in. nodes #leafs height|#in. nodes #leafs height
4 92 1.626 3 5 683 3 4 500 3

6 37 1.343 3 5 702 3 4 500 3

8 67 1.393 3 5 715 3 4 500 3
10 73 1.461 3 5 693 3 4 500 3
15 41  1.324 3 5 696 3 4 500 3
20 74 1.399 3 5 706 3 4 500 3
25 31 1.268 3 5 706 3 4 500 3
30 36 1.281 3 5 693 3 4 500 3

4.2 Effect of Data Cardinality

In the following experiments we considered the influence of the data input size n
using the following characteristics: Integer domain in [0,1024), d = 8 dimensions,
input size n € {10K, 100K, 500K, 1000K, 2000K }.
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Independent Data. Figure [7] shows that ZSky and ZSky-Bl perform worse
from n = 500K objects on w.r.t. the Skyline computation. Even BNL as an
object-to-object comparison algorithm is faster. This is based on the fact that
the underlying ZB-tree constructs index nodes very fast, and due to less common
prefixes this results in very large Z-regions which must be checked for dominance.
SkyMap is definitely better than its competitors, because of its trie index structure.
Also BBS is better than the ZSky approaches, although it is the oldest of all
algorithms. On the other hand, BBS is really worse w.r.t. the index construction
time because of the linear splits. The SkyMap sorting is a bit more costly than
the filling of the ZB-trees via bulkloading.

Runtime [s]

Runtime [s]

BNL mmmmm BBS mmmm ZSky === ZSky-Bl EEEEN SkyMap EmEEE

Skyline Index

10k 100k 500k 1000k 2000k 10k 100k 500k 1000k 2000k

Skyline + Index

Fig. 7. Independent data. Runtime w.r.t. input size.

Table [6] shows the number of dominance tests, where SkyMap clearly out-

performs all other algorithms. It is notable that in ZSky the number of index
nodes highly increases and therefore it builds larger Z-regions, which in the end
lead to a higher runtime.

Table 6. Independent data. Dominance tests w.r.t. input size.

n||Skyline| BNL BBS ZSky ZSky-Bl  SkyMap

10k|| 2.591 5.495.792  3.532.499 2.138.624 2.110.187  1.187.352
100k|| 9.671 88.058.715 51.243.124 32.050.250 31.739.487  9.780.642
500k|| 22.302| 539.332.777 287.752.839 239.295.317 243.096.515 48.935.100
1000k|| 30.332|1.086.388.323 556.550.102 537.592.064 562.808.810 77.029.696
2000k|| 39.301|2.048.044.727 994.592.267 1.215.101.764 1.300.961.556 132.732.900
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Correlated Data. We also considered the input size w.r.t. correlated data.
Figure [§] presents the results. Again, our data generator produced correlated
data with exactly one Skyline point independently from the cardinality. It can
be seen that SkyMap is the slowest algorithm, because SkyMap has to process
the complete input list. Even BNL is faster. ZSky and ZSky-Bl are better but
outperformed by BBS. However, BBS has very high index construction costs. We
also see that the number of dominance tests increases with higher cardinality,
Table

BNL BBS mmmm ZSky ===3 ZSky-Bl mmE SkyMap

1000 ¢ .
Skyline Index

100 |

Runtime [s]

10k 100k 500k 1000k 2000k 10k 100k 500k 1000k 2000k

Skyline + Index

Runtime [s]

Fig. 8. Correlated data. Runtime w.r.t. input size.

Table 7. Correlated data. Dominance tests w.r.t. input size.

n|[Skyline] BNL BBS ZSky ZSky-Bl SkyMap

10k 1| 10.616 202 6.222 6.248 9.999
100k 1| 100.616 380 55.097  56.600  99.999
500k 1| 500.616 1.112 230.943 239.610 499.999

1000k 1(1.000.616 2.255 392.334 414.222  999.999
2000k 1/2.000.616 4.583 671.706 718.047 1.999.999

Anti-Correlated Data. Figure [9] and Table [§] show our results on anti-
correlated data. Anti-correlated data lead to many Skyline objects and therefore
are more challenging for Skyline algorithms. Clearly, BNL shows a bad perfor-
mance because of many objects comparisons. BBS is quite good on less data
objects but slows down with increasing number of objects. Even ZSky becomes
worse because of larger Z-regions. The winner is definitely SkyMap, which out-
performs all other algorithms by far.
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BNL BBS EEEEN  ZSky B ZSky-Bl EEEER  SkyMap mmmmm

10000

Skyline Index

1000

100

10

Runtime [s]

10k 100k 500k 1000k 2000k 10k 100k 500k 1000k 2000k

Skyline + Index

Runtime [s]

10k 100k 500k 1000k 2000k

Fig. 9. Anti-Correlated data. Runtime w.r.t. input size.

Table 8. Anti-correlated data. Dominance tests w.r.t. input size.

n||Skyline| BNL BBS ZSky ZSky-Bl SkyMap

10k 5.754 21.792.379 32.411.570 8.738.591 8.692.718 5.759.944
100k|| 34.278| 823.124.157 1.741.955.033  325.706.677  324.366.814  123.623.731
500Kk|| 103.719| 8.403.576.644 23.265.561.175 2.890.122.498 2.877.608.350 1.284.343.881
1000k || 164.304|21.457.709.801 70.307.815.653 7.594.185.785 7.569.948.205 3.683.825.552
2000Kk|| 250.442|53.123.931.360 199.088.948.328 18.903.874.716 18.829.325.685 10.561.851.499

Memory Usage Considering the memory usage, Figure there is no clear
winner. BBS in general has a very high memory consumption. The memory usage
for ZSky and SkyMap is low, but strongly increases with larger input data.
Table [9] shows the structure of the used trees, which is not very spectacular,
and does not explain the strange behavior in our memory measurements before.

Table 9. Independent data. Tree structure w.r.t. input size.

BBS ZSky ZSky-Bl1
n||#in. nodes #leafs height|#in. nodes #leafs height|#in. nodes #leafs height
10k 3 132 3 66 2 50 3
100k 67 1.393 3 5 715 3 4 500 3
500k 299  7.030 4 33 4.081 3 14 2.500 3
1000k 529 13.854 4 65 8.166 3 26 5.000 3
2000k 1.089 27.842 4 129 16.332 3 51  1.000 3
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BBS mmmm ZSky E===1 ZSky-Bl EmmEm SkyMap mmmmm
10000 ¢ r -
independent correlated anti-correlated

1000 |

100 |

Memory usage [10° Bytes]

10k 100k 500k 1000k 2000k 10k 100k 500k 1000k 2000k 10k 100k 500k 1000k 2000k

n n n

Fig. 10. Memory usage w.r.t. input size

4.3 Effect of Domain Size

We now examine the influence of the domain size. Instead of considering domains
in [0,1024), we utilize a domain size of [0, {2,210, 215 220 225 230} for each
dimension. In addition, we set d = 5, n = 10 and used independent data. Figure
[I1] shows our results.

BNL BBS mmmm ZSky C==3 ZSky-B| mmE SkyMap

Skyline

Runtime [s]

Skyline + Index

Runtime [s]

10 15 20 25 30

Exponent for base 2

Fig. 11. Independent data. Runtime w.r.t. domain size.

It is notable that ZSky is highly efficient for [0,2°), but worse for higher
domains w.r.t. Skyline computation runtime. BBS and BNL are much better
than ZSky and SkyMap for higher dimensions. This is due to the Z-addresses,
which are stored as bits, and these bits are based on the domain values. That
means, when using a maximal domain value of 2° on 5 dimensions we need 25 bits
per Z-address, and 150 bits for 230 values. This leads to the high computation
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costs. Therefore, algorithms using Z-addresses are mainly applicable for “low-
cardinality” domains. On the other hand, the runtime of BNL and BBS are
quite good, because they are based on an object comparison where a high or low
cardinality domain does not matter. Considering the index constructions costs,
BBS and ZSky are worse than ZSky-Bl and SkyMap.

Table [10| shows the number of dominance tests. SkyMap ist better than its
competitors in most cases w.r.t. the dominance tests but performs worse w.r.t.
the runtime.

Table 10. Independent data. Dominance tests w.r.t. the domain size.

WcrtcHSkylinc‘ BNL BBS ZSky  ZSky-Bl SkyMap
25 25| 2.068.282 153.226 9.154 30.160 1.036.345
21011 1.277] 9.228.729 5.329.707 8.466.249 11.399.219 2.856.159
215]| 1.787]12.082.605 7.783.663 17.743.135 20.071.884 3.476.130
220|| 1.842[12.301.452 7.519.476 27.879.935 28.617.562 3.518.037
225|| 1.843]12.337.183 7.639.781 29.074.243 29.569.252 3.520.676
230|| 1.843]12.337.183 7.639.781 29.074.255 29.569.264 3.520.688

4.4 Real Data

For our experiments on real world data we used the well-known Zillow data set,
which consists of 5 dimensions and 1.288.684 distinct objects. Zillow represents
real estates in the United States and stores information about the number of
rooms, base area, year of construction, and so on. The House data set is a
6-dimensional database of 127.931 objects and represents the average costs of
a family in the USA for water, electricity, etc. Our third real data set is NBA,
a b-dimensional data with 17.265 entries about NBA players. For the sake of
convenience, we search the objects with the lowest values, i.e., the smallest flat,
the thrifty American and the worst basketball player. Note that ZSky is not able
to deal with duplicates and hence we reduced all data sets to its essence.

Figure shows that ZSky is best for the Zillow data set. This is obvious,
because the Skyline only exists of 1 object. In contrast, the runtime of SkyMap,
similar to our other tests, is quite high for small Skyline sets, i.e., Zillow and
NBA, whereas it performs better for House. Considering the House data set,
BBS and SkyMap perform best when considering the pure Skyline computation,
even though BBS is much older than SkyMap. On the other hand, SkyMap
produces lower index maintenance costs. In the NBA data set, BNL outperforms
its competitors because the input data set is relatively small.

Table presents the number of dominance tests used to find the Skyline.
In particular, ZSky uses only a few dominance tests on the Zillow data set. This
is due to the early rejection of Z-regions, which avoids many object-to-object
comparisons.
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Fig. 12. Real data.

Table 11. Real data. Dominance tests.

Data source|  Zillow House NBA

n|1.288.684 127.931 17.265
dim 5 6 5
Skyline 1 5.762 493

Dominanztests
BNL|1.289.021 24.945.919 412.469
BBS 36.425 23.669.845 765.889
ZSky 794 24.305.540 798.783
ZSky-Bulk 1.504 23.585.699 833.547
SkyMap|1.288.683 5.389.686 533.139

5 Related Work

Since the introduction of Skyline queries by Borzsonyi et al. in 2001 (cp. [2]) to
retrieve Pareto-optimal objects from a database, various algorithms have been
proposed. These algorithms can be categorized into indez-based and generic
approaches.

Indez-based algorithms offer very good performance under some circumstances,
but the major problem is the lack of applicability for computations with joined
relations, cp. [I0]. This leads to poor applicability of index-based algorithms
if they are not used in well-defined static use cases. Another problem is the
index maintenance costs if the data set of the index is constantly changing.
The maintenance may generate more computational costs than the Skyline
queries themselves. In general, index-based algorithms cannot deal with complex
Skyline queries [6]. Despite this lack of generality, index-based Skyline techniques
have been a center of interest in the last few years. Examples for index-based
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approaches are for instance Indez by Tan et al. using B*-trees [16], or Kossmann
et al.’s Nearest Neighbor [I7]. Using R-trees, BBS [10/T4/I8] proved to be even
faster, outperforming generic algorithms by far. In [I5/T19] the ZB-tree was
presented. This index data structure was specifically designed for Skyline queries
and made the ZINC and ZSearch algorithm using it faster than BBS with less
memory consuming. Another state-of-the art algorithm is SkyMap [12], which
exploits trie-based index structure to solve the major efficiency bottlenecks like
fast access and superior scalability for higher dimensions, in particular for realistic
applications.

Generic algorithms involve solutions that do not require any pre-processing
of the underlying data set. Despite the lower performance compared to index
algorithms, generic algorithms are capable of processing arbitrary data without
any preparations. Each object has to be read and analyzed at least once, some-
thing a good index-base algorithm never has to do. Well-known generic Skyline
algorithms are BNL [2], SFS [19], LESS [20], SaLSa [2I], BSkyTree [22], ARL-S
[4], Scalagon [23124], just to list a few.

6 Summary and Conclusion

In this work we briefly reviewed the well-known index-based Skyline algorithms
BBS, ZSky, and SkyMap. In order to apply the most efficient index structure
in database systems, we presented comprehensive experiments on synthetic and
real-world data to evaluate the performance of the presented algorithms. As
expected, none of the algorithms performs best for all experiments. The decision
for an algorithm must be based on the application it should be used for.

BNL is quite good for a small number of dimensions, whereas SkyMap shows
its advantages for higher dimensions. We have also seen that with increasing
data dimensionality the performance of R-trees and hence of BBS deteriorates.
On the other hand, BBS and SkyMap outperform the other algorithms with
increasing input size, independently from the data distribution. When considering
the domain size, BNL and BBS are better than their competitors and therefore
should be preferred for high cardinality domains. The Z-Sky approaches do well
in the case of real data. However, one of the drawbacks of Z-Sky is its restriction
to total orders. Duplicates are not allowed. In addition, in the ZB-tree approach
regions may overlap, which hampers effective pruning. Moreover, the maintenance
of B-trees is rather expensive in case of frequent updates, in particular due to
rebalancing operations caused by node underflows.

In a nutshell, one has carefully to decide which algorithm should be used
w.r.t. the application, and this report gives some decision criteria.
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